"[…] statistical literacy. That is, the ability to read diagrams and maps; a 'consumer' understanding of common statistical terms, as average, percent, dispersion, correlation, and index number." (Douglas Scates, "Statistics: The Mathematics for Social Problems", 1943)
"Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write." (Samuel S Wilks, 1951 [paraphrasing Herber Wells] )
"Just as by ‘literacy’, in this context, we mean much more than its dictionary sense of the ability to read and write, so by ‘numeracy’ we mean more than mere ability to manipulate the rule of three. When we say that a scientist is ‘illiterate’, we mean that he is not well enough read to be able to communicate effectively with those who have had a literary education. When we say that a historian or a linguist is ‘innumerate’ we mean that he cannot even begin to understand what scientists and mathematicians are talking about." (Sir Geoffrey Crowther, "A Report of the Central Advisory Committee for Education", 1959)
"It is perhaps possible to distinguish two different aspects of numeracy […]. On the one hand is an understanding of the scientific approach to the study of phenomena - observation, hypothesis, experiment, verification. On the other hand, there is the need in the modern world to think quantitatively, to realise how far our problems are problems of degree even when they appear as problems of kind." (Sir Geoffrey Crowther, "A Report of the Central Advisory Committee for Education", 1959)
"Numeracy has two facets - reading and writing, or extracting numerical information and presenting it. The skills of data presentation may at first seem ad hoc and judgemental, a matter of style rather than of technology, but certain aspects can be formalized into explicit rules, the equivalent of elementary syntax." (Andrew Ehrenberg, "Rudiments of Numeracy", Journal of Royal Statistical Society, 1977)
"People often feel inept when faced with numerical data. Many of us think that we lack numeracy, the ability to cope with numbers. […] The fault is not in ourselves, but in our data. Most data are badly presented and so the cure lies with the producers of the data. To draw an analogy with literacy, we do not need to learn to read better, but writers need to be taught to write better." (Andrew Ehrenberg, "The problem of numeracy", American Statistician 35(2), 1981)
"We would wish ‘numerate’ to imply the possession of two attributes. The first of these is an ‘at-homeness’ with numbers and an ability to make use of mathematical skills which enable an individual to cope with the practical mathematical demands of his everyday life. The second is ability to have some appreciation and understanding of information which is presented in mathematical terms, for instance in graphs, charts or tables or by reference to percentage increase or decrease." (Cockcroft Committee, "Mathematics Counts: A Report into the Teaching of Mathematics in Schools", 1982)
"To function in today's society, mathematical literacy - what the British call ‘numeracy' - is as essential as verbal literacy […] Numeracy requires more than just familiarity with numbers. To cope confidently with the demands of today's society, one must be able to grasp the implications of many mathematical concepts - for example, change, logic, and graphs - that permeate daily news and routine decisions - mathematical, scientific, and cultural - provide a common fabric of communication indispensable for modern civilized society. Mathematical literacy is especially crucial because mathematics is the language of science and technology." (National Research Council, "Everybody counts: A report to the nation on the future of mathematics education", 1989)
"Illiteracy and innumeracy are social ills created in part by increased demand for words and numbers. As printing brought words to the masses and made literacy a prerequisite for productive life, so now computing has made numeracy an essential feature of today's society. But it is innumeracy, not numeracy, that dominates the headlines: ignorance of basic quantitative tools is endemic […] and is approaching epidemic levels […]." (Lynn A Steen, "Numeracy", Daedalus Vol. 119 No. 2, 1990)
"[…] data analysis in the context of basic mathematical concepts and skills. The ability to use and interpret simple graphical and numerical descriptions of data is the foundation of numeracy […] Meaningful data aid in replacing an emphasis on calculation by the exercise of judgement and a stress on interpreting and communicating results." (David S Moore, "Statistics for All: Why, What and How?", 1990)
"To be numerate is more than being able to manipulate numbers, or even being able to ‘succeed’ in school or university mathematics. Numeracy is a critical awareness which builds bridges between mathematics and the real world, with all its diversity. […] in this sense […] there is no particular ‘level’ of Mathematics associated with it: it is as important for an engineer to be numerate as it is for a primary school child, a parent, a car driver or gardener. The different contexts will require different Mathematics to be activated and engaged in […] "(Betty Johnston, "Critical Numeracy", 1994)
"We believe that numeracy is about making meaning in mathematics and being critical about maths. This view of numeracy is very different from numeracy just being about numbers, and it is a big step from numeracy or everyday maths that meant doing some functional maths. It is about using mathematics in all its guises - space and shape, measurement, data and statistics, algebra, and of course, number - to make sense of the real world, and using maths critically and being critical of maths itself. It acknowledges that numeracy is a social activity. That is why we can say that numeracy is not less than maths but more. It is why we don’t need to call it critical numeracy being numerate is being critical." (Dave Tout & Beth Marr, "Changing practice: Adult numeracy professional development", 1997)
"To be numerate means to be competent, confident, and comfortable with one’s judgements on whether to use mathematics in a particular situation and if so, what mathematics to use, how to do it, what degree of accuracy is appropriate, and what the answer means in relation to the context." (Diana Coben, "Numeracy, mathematics and adult learning", 2000)
"Numeracy is the ability to process, interpret and communicate numerical, quantitative, spatial, statistical, even mathematical information, in ways that are appropriate for a variety of contexts, and that will enable a typical member of the culture or subculture to participate effectively in activities that they value." (Jeff Evans, "Adults´ Mathematical Thinking and Emotion", 2000)
"Ignorance of relevant risks and miscommunication of those risks are two aspects of innumeracy. A third aspect of innumeracy concerns the problem of drawing incorrect inferences from statistics. This third type of innumeracy occurs when inferences go wrong because they are clouded by certain risk representations. Such clouded thinking becomes possible only once the risks have been communicated." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)
"In my view, the problem of innumeracy is not essentially 'inside' our minds as some have argued, allegedly because the innate architecture of our minds has not evolved to deal with uncertainties. Instead, I suggest that innumeracy can be traced to external representations of uncertainties that do not match our mind’s design - just as the breakdown of color constancy can be traced to artificial illumination. This argument applies to the two kinds of innumeracy that involve numbers: miscommunication of risks and clouded thinking. The treatment for these ills is to restore the external representation of uncertainties to a form that the human mind is adapted to." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)
"Overcoming innumeracy is like completing a three-step program to statistical literacy. The first step is to defeat the illusion of certainty. The second step is to learn about the actual risks of relevant events and actions. The third step is to communicate the risks in an understandable way and to draw inferences without falling prey to clouded thinking. The general point is this: Innumeracy does not simply reside in our minds but in the representations of risk that we choose." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)
"Statistical innumeracy is the inability to think with numbers that represent uncertainties. Ignorance of risk, miscommunication of risk, and clouded thinking are forms of innumeracy. Like illiteracy, innumeracy is curable. Innumeracy is not simply a mental defect 'inside' an unfortunate mind, but is in part produced by inadequate 'outside' representations of numbers. Innumeracy can be cured from the outside." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)
"Mathematics is often thought to be difficult and dull. Many people avoid it as much as they can and as a result much of the population is mathematically illiterate. This is in part due to the relative lack of importance given to numeracy in our culture, and to the way that the subject has been presented to students." (Julian Havil , "Gamma: Exploring Euler's Constant", 2003)"One can be highly functionally numerate without being a mathematician or a quantitative analyst. It is not the mathematical manipulation of numbers (or symbols representing numbers) that is central to the notion of numeracy. Rather, it is the ability to draw correct meaning from a logical argument couched in numbers. When such a logical argument relates to events in our uncertain real world, the element of uncertainty makes it, in fact, a statistical argument." (Eric R Sowey, "The Getting of Wisdom: Educating Statisticians to Enhance Their Clients' Numeracy", The American Statistician 57(2), 2003)
"Mathematics and numeracy are not congruent. Nor is numeracy an accidental or automatic by-product of mathematics education at any level. When the goal is numeracy some mathematics will be involved but mathematical skills alone do not constitute numeracy." (Theresa Maguire & John O'Donoghue, "Numeracy concept sophistication - an organizing framework, a useful thinking tool", 2003)
"Mathematical literacy is an individual’s capacity to identify and understand the role that mathematics plays in the world, to make well-founded judgements and to use and engage with mathematics in ways that meet the needs of that individual’s life as a constructive, concerned and reflective citizen." (OECD, "Assessing scientific, reading and mathematical literacy: a framework for PISA 2006", 2006)
"Statistical literacy is more than numeracy. It includes the ability to read and communicate the meaning of data. This quality makes people literate as opposed to just numerate. Wherever words (and pictures) are added to numbers and data in your communication, people need to be able to understand them correctly." (United Nations, "Making Data Meaningful" Part 4: "A guide to improving statistical literacy", 2012)
"When a culture is founded on the principle of immediacy of experience, there is no need for numeracy. It is impossible to consume more than one thing at a time, so differentiating between 'a small amount', 'a larger amount' and 'many' is enough for survival." (The Open University, "Understanding the environment: learning and communication", 2016)
No comments:
Post a Comment