"It may often happen that an inefficient statistic is accurate enough to answer the particular questions at issue. There is however, one limitation to the legitimate use of inefficient statistics which should be noted in advance. If we are to make accurate tests of goodness of fit, the methods of fitting employed must not introduce errors of fitting comparable to the errors of random sampling; when this requirement is investigated, it appears that when tests of goodness of fit are required, the statistics employed in fitting must be not only consistent, but must be of 100 percent efficiency. This is a very serious limitation to the use of inefficient statistics, since in the examination of any body of data it is desirable to be able at any time to test the validity of one or more of the provisional assumptions which have been made." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)
"No human mind is capable of grasping in its entirety the meaning of any considerable quantity of numerical data." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)
"Statistics may be regarded as (i) the study of populations, (ii) as the study of variation, and (iii) as the study of methods of the reduction of data." (Sir Ronald A Fisher, "Statistical Methods for Research Worker", 1925)
"The conception of statistics as the study of variation is the natural outcome of viewing the subject as the study of populations; for a population of individuals in all respects identical is completely described by a description of anyone individual, together with the number in the group. The populations which are the object of statistical study always display variations in one or more respects. To speak of statistics as the study of variation also serves to emphasise the contrast between the aims of modern statisticians and those of their predecessors." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)
"The problems which arise in the reduction of data may thus conveniently be divided into three types: (i) Problems of Specification, which arise in the choice of the mathematical form of the population. (ii) When a specification has been obtained, problems of Estimation arise. These involve the choice among the methods of calculating, from our sample, statistics fit to estimate the unknow n parameters of the population. (iii) Problems of Distribution include the mathematical deduction of the exact nature of the distributions in random samples of our estimates of the parameters, and of other statistics designed to test the validity of our specification (tests of Goodness of Fit)." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)
"The statistical examination of a body of data is thus logically similar to the general alternation of inductive and deductive methods throughout the sciences. A hypothesis is conceived and defined with all necessary exactitude; its logical consequences are ascertained by a deductive argument; these consequences are compared with the available observations; if these are completely in, accord with the deductions, the hypothesis is justified at least until fresh and more stringent observations are available." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)
"To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of." (Sir Ronald A Fisher, [presidential address] 1938)
"The effects of chance are the most accurately calculable, and therefore the least doubtful of all the factors of an evolutionary situation." (Sir Ronald A Fisher, "Croonian Lecture: Population Genetics", Proceedings of the Royal Society of London Vol. 141, 1955)
"The precise specification of our knowledge is, however, the same as the precise specification of our ignorance." (Sir Ronald A Fisher, "Statistical Methods and Scientific Inference", 1959)
"In relation to any experiment we may speak of this hypothesis as the 'null hypothesis', and it should be noted that the null hypothesis is never proved or established, but is possibly disproved, in the course of experimentation. Every experiment may be said to exist only in order to give the facts a chance of disproving the null hypothesis." (Sir Ronald A Fisher, "The Design of Experiments", 1971)
"Inductive inference is the only process known to us by which essential new knowledge comes into the world." (Sir Ronald A Fisher, "The Design of Experiments", 1971)
"[…] no isolated experiment, however significant in itself, can suffice for the experimental demonstration of any natural phenomenon; for the ‘one chance in a million’ will undoubtedly occur, with no less and no more than its appropriate frequency, however surprised we may be that it should occur to us." (Sir Ronald A Fisher, "The Design of Experiments", 1971)
"Statistical procedure and experimental design are only two different aspects of the same whole, and that whole is the logical requirements of the complete process of adding to natural knowledge by experimentation." (Sir Ronald A Fisher, "The Design of Experiments", 1971)
"The statistician cannot excuse himself from the duty of getting his head clear on the principles of scientific inference, but equally no other thinking man can avoid a like obligation." (Sir Ronald A Fisher, "The Design of Experiments", 1971)