02 December 2011

📉Graphical Representation: Tables (Just the Quotes)

"Information that is imperfectly acquired, is generally as imperfectly retained; and a man who has carefully investigated a printed table, finds, when done, that he has only a very faint and partial idea of what he has read; and that like a figure imprinted on sand, is soon totally erased and defaced." (William Playfair, "The Commercial and Political Atlas", 1786)

"In the course of executing that design, it occurred to me that tables are by no means a good form for conveying such information. [...] Making an appeal to the eye when proportion and magnitude are concerned is the best and readiest method of conveying a distinct idea." (William Playfair, "The Statistical Brewery", 1801)

"Isolated facts, those that can only be obtained by rough estimate and that require development, can only be presented in memoires; but those that can be presented in a body, with details, and on whose accuracy one can rely, may be expounded in tables." (Emmanuel Duvillard, "Memoire sur le travail du Bureau de statistique", 1806)

"Tables are like cobwebs, like the sieve of Danaides; beautifully reticulated, orderly to look upon, but which will hold no conclusion. Tables are abstractions, and the object a most concrete one, so difficult to read the essence of." (Thomas Carlyle, "Chartism", 1840)

"But law is no explanation of anything; law is simply a generalization, a category of facts. Law is neither a cause, nor a reason, nor a power, nor a coercive force. It is nothing but a general formula, a statistical table." (Florence Nightingale, "Suggestions for Thought", 1860)

"The dominant principle which characterizes my graphic tables and my figurative maps is to make immediately appreciable to the eye, as much as possible, the proportions of numeric results. […] Not only do my maps speak, but even more, they count, they calculate by the eye." (Chatles D Minard, "Des tableaux graphiques et des cartes figuratives", 1862) 

"If statistical graphics, although born just yesterday, extends its reach every day, it is because it replaces long tables of numbers and it allows one not only to embrace at glance the series of phenomena, but also to signal the correspondences or anomalies, to find the causes, to identify the laws." (Émile Cheysson, cca. 1877)

"That the ten digits do not occur with equal frequency must be evident to any one making much use of logarithmic tables, and noticing how much faster the first pages wear out than the last ones." (Simon Newcomb, "Note on the frequencies of the different digits in natural numbers", Amer. J. Math 4, 1881)

"To a very striking degree our culture has become a Statistical culture. Even a person who may never have heard of an index number is affected [...] by [...] of those index numbers which describe the cost of living. It is impossible to understand Psychology, Sociology, Economics, Finance or a Physical Science without some general idea of the meaning of an average, of variation, of concomitance, of sampling, of how to interpret charts and tables." (Carrol D Wright, 1887)

"Getting information from a table is like extracting sunlight from a cucumber." (Arthur B. Farquhar & Henry Farquhar, "Economic and Industrial Delusions", 1891)

"The graphical method has considerable superiority for the exposition of statistical facts over the tabular. A heavy bank of figures is grievously wearisome to the eye, and the popular mind is as incapable of drawing any useful lessons from it as of extracting sunbeams from cucumbers." (Arthur B Farquhar & Henry Farquhar, "Economic and Industrial Delusions", 1891)

"The essential quality of graphic representations is clarity. If the diagram fails to give a clearer impression than the tables of figures it replaces, it is useless. To this end, we will avoid complicating the diagram by including too much data." (Armand Julin, "Summary for a Course of Statistics, General and Applied", 1910)

"Since a table is a collection of certain sets of data, a chart with one curve representing each set of data can be made to take the place of the table. Wherever a chart can be plotted by straight lines, the speed of this is infinitely greater than making out a table, and where the curvilinear law is known, or can be approximated by the use of the empiric law, the speed is but little less." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"Although, the tabular arrangement is the fundamental form for presenting a statistical series, a graphic representation - in a chart or diagram - is often of great aid in the study and reporting of statistical facts. Moreover, sometimes statistical data must be taken, in their sources, from graphic rather than tabular records." (William L Crum et al, "Introduction to Economic Statistics", 1938)

"When numbers in tabular form are taboo and words will not do the work well as is often the case. There is one answer left: Draw a picture. About the simplest kind of statistical picture or graph, is the line variety. It is very useful for showing trends, something practically everybody is interested in showing or knowing about or spotting or deploring or forecasting." (Darell Huff, "How to Lie with Statistics", 1954)

"We must emphasize that such terms as 'select at random', 'choose at random', and the like, always mean that some mechanical device, such as coins, cards, dice, or tables of random numbers, is used." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"A statistical table is the logical listing of related quantitative data in vertical columns and horizontal rows of numbers with sufficient explanatory and qualifying words, phrases and statements in the form of titles, headings and notes to make clear the full meaning of data and their origin." (Alva M Tuttle, "Elementary Business and Economic Statistics", 1957)

"However informative and well designed a statistical table may be, as a medium for conveying to the reader an immediate and clear impression of its content, it is inferior to a good chart or graph. Many people are incapable of comprehending large masses of information presented in tabular form; the figures merely confuse them. Furthermore, many such people are unwilling to make the effort to grasp the meaning of such data. Graphs and charts come into their own as a means of conveying information in easily comprehensible form." (Alfred R Ilersic, "Statistics", 1959)

"All the evidence obtained from the reproduction of the study mentioned here indicates that the graphic method is 'better' than the tabular. Tables, since graphs are based on them, are necessary, but they are like background rocks, heavy and uninteresting. Graphs, on the other hand, spice the reports; clarify them, and make them interesting and palatable." (Karl M Dallenbach, 1963)

"The statistician has no magic touch by which he may come in at the stage of tabulation and make something of nothing. Neither will his advice, however wise in the early stages of a study, ensure successful execution and conclusion. Many a study, launched on the ways of elegant statistical design, later boggled in execution, ends up with results to which the theory of probability can contribute little." (W Edwards Deming, "Principles of Professional Statistical Practice", Annals of Mathematical Statistics, 36(6), 1965)

"The problem that still remains to be solved is that of the orderable matrix, that needs the use of imagination […] When the two components of a data table are orderable, the normal construction is the orderable matrix. Its permutations show the analogy and the complementary nature that exist between the algorithmic treatments and the graphical treatments." (Jacques Bertin, "Semiology of graphics" ["Semiologie Graphique"], 1967)

"A statistical table is a systematic arrangement of numerical data in columns and rows. Its purpose is to show quantitative facts clearly, concisely, and effectively. It should facilitate an understanding of the logical relationships among the numbers presented. Tables are used in the compilation of raw data, in the summarizing and analytic processes, and in the presentation of statistics in final form. A good table is the product of careful thinking and hard work. It is not just a package of figures put into neat compartments and ruled to make it look more attractive. It contains carefully selected data put together with thought and ingenuity to serve a specific purpose." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"Tables are [...] the backbone of most statistical reports. They provide the basic substance and foundation on which conclusions can be based. They are considered valuable for the following reasons: (1) Clarity - they present many items of data in an orderly and organized way. (2) Comprehension - they make it possible to compare many figures quickly. (3) Explicitness - they provide actual numbers which document data presented in accompanying text and charts. (4) Economy - they save space, and words. (5) Convenience - they offer easy and rapid access to desired items of information." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"We would wish ‘numerate’ to imply the possession of two attributes. The first of these is an ‘at-homeness’ with numbers and an ability to make use of mathematical skills which enable an individual to cope with the practical mathematical demands of his everyday life. The second is ability to have some appreciation and understanding of information which is presented in mathematical terms, for instance in graphs, charts or tables or by reference to percentage increase or decrease." (Cockcroft Committee, "Mathematics Counts: A Report into the Teaching of Mathematics in Schools", 1982)

"The basic principle which should be observed in designing tables is that of grouping related data, either by the use of space or, if necessary, rules. Items which are close together will be seen as being more closely related than items which are farther apart, and the judicious use of space is therefore vitally important. Similarly, ruled lines can be used to relate and divide information, and it is important to be sure which function is required. Rules should not be used to create closed compartments; this is time-wasting and it interferes with scanning." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"We are not saying that the primary purpose of a graph is to convey numbers with as many decimal places as possible. We agree with Ehrenberg (1975) that if this were the only goal, tables would be better. The power of a graph is its ability to enable one to take in the quantitative information, organize it, and see patterns and structure not readily revealed by other means of studying the data." (William Cleveland & Robert McGill, "Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Models", Journal of the American Statistical Association 79, 1984)

"The ease and speed with which tables can be understood depends very much on the tabulation logic. The author must ask himself what information the reader already has when he consults a particular table, and what information he is seeking from it. The row and column headings should relate to the information he already has, thus leading him to the information he seeks which is displayed in the body of the table." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"Wherever possible, numerical tables should be explicit rather than implicit, i.e. the information should be given in full. In an implicit table, the reader may be required to add together two values in order to obtain a third which is not explicitly stated in the table. […] Implicit tables save space, but require more effort on the part of the reader and may cause confusion and errors. They are particularly unsuitable for slides and other transient displays." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"This is why a 'web' of notes with links (like references) between them is far more useful than a fixed hierarchical system. When describing a complex system, many people resort to diagrams with circles and arrows. Circles and arrows leave one free to describe the interrelationships between things in a way that tables, for example, do not. The system we need is like a diagram of circles and arrows, where circles and arrows can stand for anything." (Tim Berners-Lee, "Information Management: A Proposal", 1989)

"A good way to evaluate a model is to look at a visual representation of it. After all, what is easier to understand - a table full of mathematical relationships or a graphic displaying a decision tree with all of its splits and branches?" (Seth Paul et al. "Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis", 2002)

"Computers are able to multiply useless images without taking into account that, by definition, every graphic corresponds to a table. This table allows you to think about three basic questions that go from the particular to the general level. When this last one receives an answer, you have answers for all of them. Understanding means accessing the general level and discovering significant grouping (patterns). Consequently, the function of a graphic is answering the three following questions:
Which are the X,Y, Z components of the data table? (What it’s all about?)
What are the groups in X, in Y that Z builds? (What the information at the general level is?
What are the exceptions?

These questions can be applied to every kind of problem. They measure the usefulness of whatever construction or graphical invention allowing you to avoid useless graphics." (Jacques Bertin, [interview] 2003)

"Graphs are for the forest and tables are for the trees. Graphs give you the big picture and show you the trends; tables give you the details." (Naomi B Robbins, "Creating More effective Graphs", 2005)

"What distinguishes data tables from graphics is explicit comparison and the data selection that this requires. While a data table obviously also selects information, this selection is less focused than a chart's on a particular comparison. To the extent that some figures in a table are visually emphasised. say in colour or size and style of print. the table is well on its way to becoming a chart. If you're making no comparisons - because you have no particular message and so need no selection (in other words, if you are simply providing a database, number quarry or recycling facility) - tables are easier to use than charts." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"Data visualization [...] expresses the idea that it involves more than just representing data in a graphical form (instead of using a table). The information behind the data should also be revealed in a good display; the graphic should aid readers or viewers in seeing the structure in the data. The term data visualization is related to the new field of information visualization. This includes visualization of all kinds of information, not just of data, and is closely associated with research by computer scientists." (Antony Unwin et al, "Introduction" [in "Handbook of Data Visualization"], 2008) 

"Plotting data is a useful first stage to any analysis and will show extreme observations together with any discernible patterns. In addition the relative sizes of categories are easier to see in a diagram (bar chart or pie chart) than in a table. Graphs are useful as they can be assimilated quickly, and are particularly helpful when presenting information to an audience. Tables can be useful for displaying information about many variables at once, while graphs can be useful for showing multiple observations on groups or individuals. Although there are no hard and fast rules about when to use a graph and when to use a table, in the context of a report or a paper it is often best to use tables so that the reader can scrutinise the numbers directly." (Jenny Freeman et al, "How to Display Data", 2008)

"When displaying information visually, there are three questions one will find useful to ask as a starting point. Firstly and most importantly, it is vital to have a clear idea about what is to be displayed; for example, is it important to demonstrate that two sets of data have different distributions or that they have different mean values? Having decided what the main message is, the next step is to examine the methods available and to select an appropriate one. Finally, once the chart or table has been constructed, it is worth reflecting upon whether what has been produced truly reflects the intended message. If not, then refine the display until satisfied; for example if a chart has been used would a table have been better or vice versa?" (Jenny Freeman et al, "How to Display Data", 2008)

"Tables work in a variety of situations because they convey large amounts of data in a condensed fashion. Use tables in the following situations: (1) to structure data so the reader can easily pick out the information desired, (2) to display in a chart when the data contains too many variables or values, and (3) to display exact values that are more important than a visual moment in time." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)

"The data [in tables] should not be so spaced out that it is difficult to follow or so cramped that it looks trapped. Keep columns close together; do not spread them out more than is necessary. If the columns must be spread out to fit a particular area, such as the width of a page, use a graphic device such as a line or screen to guide the reader’s eye across the row." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)

"By giving numbers a proper shape, by visually encoding them, the graphic has saved you time and energy that you would otherwise waste if you had to use a table that was not designed to aid your mind." (Alberto Cairo, "The Functional Art", 2011)

"A common mistake is that all visualization must be simple, but this skips a step. You should actually design graphics that lend clarity, and that clarity can make a chart 'simple' to read. However, sometimes a dataset is complex, so the visualization must be complex. The visualization might still work if it provides useful insights that you wouldn’t get from a spreadsheet. […] Sometimes a table is better. Sometimes it’s better to show numbers instead of abstract them with shapes. Sometimes you have a lot of data, and it makes more sense to visualize a simple aggregate than it does to show every data point." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"With fast computers and plentiful data, finding statistical significance is trivial. If you look hard enough, it can even be found in tables of random numbers." (Gary Smith, "Standard Deviations", 2014)

"One thing to keep in mind with a table is that you want the design to fade into the background, letting the data take center stage. Don’t let heavy borders or shading compete for attention. Instead, think of using light borders or simply white space to set apart elements of the table." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"[...] tables interact with our verbal system, graphs interact with our visual system, which is faster at processing information." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"Using a table in a live presentation is rarely a good idea. As your audience reads it, you lose their ears and attention to make your point verbally." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"A useful way to think about tables and graphics is to visualize layers. Just as photographic files may be manipulated in photo editing software using layers, data presentations are constructed by imagining that layers of an image are placed one on top of another. There are three general layers that apply to visual data presentations: (a) a frame that is typically a rectangle or matrix, (b) axes and coordinate systems (for graphics), and (c) data presented as numbers or geometric objects." (John Hoffmann, "Principles of Data Management and Presentation", 2017)

"Most of us have difficulty figuring probabilities and statistics in our heads and detecting subtle patterns in complex tables of numbers. We prefer vivid pictures, images, and stories. When making decisions, we tend to overweight such images and stories, compared to statistical information. We also tend to misunderstand or misinterpret graphics." (Daniel J Levitin, "Weaponized Lies", 2017)

"Reference tables show a lot of data with a high degree of precision. They are designed generally to provide users with a way to find particular pieces of data. […] Summary tables provide some type of extraction of data from a reference table or a spreadsheet. The data are usually manipulated, analyzed, or summarized in some way, such as by sorting or providing summary statistics (means, percentages, ranges). The results of statistical models are usually presented in research reports using this type of table." (John Hoffmann, "Principles of Data Management and Presentation", 2017)

"The most accurate but least interpretable form of data presentation is to make a table, showing every single value. But it is difficult or impossible for most people to detect patterns and trends in such data, and so we rely on graphs and charts. Graphs come in two broad types: Either they represent every data point visually (as in a scatter plot) or they implement a form of data reduction in which we summarize the data, looking, for example, only at means or medians." (Daniel J Levitin, "Weaponized Lies", 2017)

"The main differences between Bayesian networks and causal diagrams lie in how they are constructed and the uses to which they are put. A Bayesian network is literally nothing more than a compact representation of a huge probability table. The arrows mean only that the probabilities of child nodes are related to the values of parent nodes by a certain formula (the conditional probability tables) and that this relation is sufficient. That is, knowing additional ancestors of the child will not change the formula. Likewise, a missing arrow between any two nodes means that they are independent, once we know the values of their parents. [...] If, however, the same diagram has been constructed as a causal diagram, then both the thinking that goes into the construction and the interpretation of the final diagram change." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"Apart from the technical challenge of working with the data itself, visualization in big data is different because showing the individual observations is just not an option. But visualization is essential here: for analysis to work well, we have to be assured that patterns and errors in the data have been spotted and understood. That is only possible by visualization with big data, because nobody can look over the data in a table or spreadsheet." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"When visuals are applied to data, they can enlighten the audience to insights that they wouldn’t see without charts or graphs. Many interesting patterns and outliers in the data would remain hidden in the rows and columns of data tables without the help of data visualizations. They connect with our visual nature as human beings and impart knowledge that couldn’t be obtained as easily using other approaches that involve just words or numbers." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

01 December 2011

📉Graphical Representation: Percentages (Just the Quotes)

"[…] statistical literacy. That is, the ability to read diagrams and maps; a 'consumer' understanding of common statistical terms, as average, percent, dispersion, correlation, and index number."  (Douglas Scates, "Statistics: The Mathematics for Social Problems", 1943)

"Percentages offer a fertile field for confusion. And like the ever-impressive decimal they can lend an aura of precision to the inexact. […] Any percentage figure based on a small number of cases is likely to be misleading. It is more informative to give the figure itself. And when the percentage is carried out to decimal places, you begin to run the scale from the silly to the fraudulent." (Darell Huff, "How to Lie with Statistics", 1954)

"Charts not only tell what was, they tell what is; and a trend from was to is (projected linearly into the will be) contains better percentages than clumsy guessing." (Robert A Levy, "The Relative Strength Concept of Common Stock Forecasting", 1968)

"We would wish ‘numerate’ to imply the possession of two attributes. The first of these is an ‘at-homeness’ with numbers and an ability to make use of mathematical skills which enable an individual to cope with the practical mathematical demands of his everyday life. The second is ability to have some appreciation and understanding of information which is presented in mathematical terms, for instance in graphs, charts or tables or by reference to percentage increase or decrease." (Cockcroft Committee, "Mathematics Counts: A Report into the Teaching of Mathematics in Schools", 1982) 

"The ease with which somewhat complex statistics can produce confusion is important, because we live in a world in which complex numbers are becoming more common. Simple statistical ideas - fractions, percentages, rates - are reasonably well understood by many people. But many social problems involve complex chains of cause and effect that can be understood only through complicated models developed by experts. [...] environment has an influence. Sorting out the interconnected causes of these problems requires relatively complicated statistical ideas - net additions, odds ratios, and the like. If we have an imperfect understanding of these ideas, and if the reporters and other people who relay the statistics to us share our confusion - and they probably do - the chances are good that we'll soon be hearing - and repeating, and perhaps making decisions on the basis of - mutated statistics." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Precision and recall are ways of monitoring the power of the machine learning implementation. Precision is a metric that monitors the percentage of true positives. […] Recall is the ratio of true positives to true positive plus false negatives." (Matthew Kirk, "Thoughtful Machine Learning", 2015)

"The most ubiquitous graph is the pie chart. It is a staple of the business world. [...] Never use a pie chart. Present a simple list of percentages, or whatever constitutes the divisions of the pie chart." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"Why does representing information in terms of natural frequencies rather than probabilities or percentages foster insight? For two reasons. First, computational simplicity: The representation does part of the computation. And second, evolutionary and developmental primacy: Our minds are adapted to natural frequencies." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)

"Numbers are often useful in stories because they record a recent change in some amount, or because they are being compared with other numbers. Percentages, ratios and proportions are often better than raw numbers in establishing a context." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)

"The percentage is one of the best (mathematical) friends a journalist can have, because it quickly puts numbers into context. And it's a context that the vast majority of readers and viewers can comprehend immediately." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)

"Generally pie charts are to be avoided, as they can be difficult to interpret particularly when the number of categories is greater than five. Small proportions can be very hard to discern […] In addition, unless the percentages in each of the individual categories are given as numbers it can be much more difficult to estimate them from a pie chart than from a bar chart […]." (Jenny Freeman et al, "How to Display Data", 2008)

"Another way to obscure the truth is to hide it with relative numbers. […] Relative scales are always given as percentages or proportions. An increase or decrease of a given percentage only tells us part of the story, however. We are missing the anchoring of absolute values." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"Comparisons are the lifeblood of empirical studies. We can’t determine if a medicine, treatment, policy, or strategy is effective unless we compare it to some alternative. But watch out for superficial comparisons: comparisons of percentage changes in big numbers and small numbers, comparisons of things that have nothing in common except that they increase over time, comparisons of irrelevant data. All of these are like comparing apples to prunes." (Gary Smith, "Standard Deviations", 2014)

"How good the data quality is can be looked at both subjectively and objectively. The subjective component is based on the experience and needs of the stakeholders and can differ by who is being asked to judge it. For example, the data managers may see the data quality as excellent, but consumers may disagree. One way to assess it is to construct a survey for stakeholders and ask them about their perception of the data via a questionnaire. The other component of data quality is objective. Measuring the percentage of missing data elements, the degree of consistency between records, how quickly data can be retrieved on request, and the percentage of incorrect matches on identifiers (same identifier, different social security number, gender, date of birth) are some examples." (Aileen Rothbard, "Quality Issues in the Use of Administrative Data Records", 2015)

"Where there is no natural ordering to the categories it can be helpful to order them by size, as this can help you to pick out any patterns or compare the relative frequencies across groups. As it can be difficult to discern immediately the numbers represented in each of the categories it is good practice to include the number of observations on which the chart is based, together with the percentages in each category." (Jenny Freeman et al, "How to Display Data", 2008)

"Reporting numbers as percentages can obscure important changes in net values. […] Percentage calculations can give strange answers when any of the numbers involved are negative." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"While the individual man is an insoluble puzzle, in the aggregate he becomes a mathematical certainty. You can, for example, never foretell what anyone man will be up to, but you can say with precision what an average number will be up to. Individuals vary, but percentages remain constant. So says the statistician." (Sir Arthur C Doyle)

📉Graphical Representation: Dot Plots/Charts (Just the Quotes)

"Dot charts are suggested as replacements for bar charts. The replacements allow more effective visual decoding of the quantitative information and can be used for a wider variety of data sets." (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38 (4) 1984)

"[...] error bars are more effectively portrayed on dot charts than on bar charts. […] On the bar chart the upper values of the intervals stand out well, but the lower values are visually deemphasized and are not as well perceived as a result of being embedded in the bars. This deemphasis does not occur on the dot chart." (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38 (4) 1984)

"Pie charts have severe perceptual problems. Experiments in graphical perception have shown that compared with dot charts, they convey information far less reliably. But if you want to display some data, and perceiving the information is not so important, then a pie chart is fine." (Richard Becker & William S Cleveland," S-Plus Trellis Graphics User's Manual", 1996)

"A bar graph typically presents either averages or frequencies. It is relatively simple to present raw data (in the form of dot plots or box plots). Such plots provide much more information. and they are closer to the original data. If the bar graph categories are linked in some way - for example, doses of treatments - then a line graph will be much more informative. Very complicated bar graphs containing adjacent bars are very difficult to grasp. If the bar graph represents frequencies. and the abscissa values can be ordered, then a line graph will be much more informative and will have substantially reduced chart junk." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"The plot tells us the data are granular in the data source, something we could not ascertain with the histogram. There is an important lesson here. Statistics texts and statistical packages that recommend the histogram as the graphical starting point for a data analysis are giving bad advice. The same goes for kernel density estimates. These are appropriate second stages for graphical data analysis. The best starting point for getting a sense of the distribution of a variable is a tally, stem-and-leaf, or a dot plot. A dot plot is a special case of a tally (perhaps best thought of as a delta-neighborhood tally). Once we see that the data are not granular, we may move on to a histogram or kernel density, which smooths the data more than a dot plot." (Leland Wilkinson, "The Grammar of Graphics" 2nd Ed., 2005)

"Area can also make data seem more tangible or relatable, because physical objects take up space. A circle or a square uses more space than a dot on a screen or paper. There’s less abstraction between visual cue and real world." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Visualization is what happens when you make the jump from raw data to bar graphs, line charts, and dot plots. […] In its most basic form, visualization is simply mapping data to geometry and color. It works because your brain is wired to find patterns, and you can switch back and forth between the visual and the numbers it represents. This is the important bit. You must make sure that the essence of the data isn’t lost in that back and forth between visual and the value it represents because if you can’t map back to the data, the visualization is just a bunch of shapes." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Another word of caution for dot plots that show changes over time. The dot plot is, by definition, a summary chart. It does not show all of the data in the intervening years. If the data between the two dots generally move in the same direction, a dot plot is sufficient. But if the data contain sharp variations year by year, a dot plot will obscure that pattern (as it also does for bar charts)." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

30 November 2011

📉Graphical Representation: Effectiveness (Just the Quotes)

"Though accurate data and real facts are valuable, when it comes to getting results the manner of presentation is ordinarily more important than the facts themselves. The foundation of an edifice is of vast importance. Still, it is not the foundation but the structure built upon the foundation which gives the result for which the whole work was planned. As the cathedral is to its foundation so is an effective presentation of facts to the data." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"Graphic charts have often been thought to be tools of those alone who are highly skilled in mathematics, but one needs to have a knowledge of only eighth-grade arithmetic to use intelligently even the logarithmic or ratio chart, which is considered so difficult by those unfamiliar with it. […] If graphic methods are to be most effective, those who are unfamiliar with charts must give some attention to their fundamental structure. Even simple charts may be misinterpreted unless they are thoroughly understood. For instance, one is not likely to read an arithmetic chart correctly unless he also appreciates the significance of a logarithmic chart." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1938)

"Charts and graphs represent an extremely useful and flexible medium for explaining, interpreting, and analyzing numerical facts largely by means of points, lines, areas, and other geometric forms and symbols. They make possible the presentation of quantitative data in a simple, clear, and effective manner and facilitate comparison of values, trends, and relationships. Moreover, charts and graphs possess certain qualities and values lacking in textual and tabular forms of presentation." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"Correct emphasis is basic to effective graphic presentation. Intensity of color is the simplest method of obtaining emphasis. For most reproduction purposes black ink on a white page is most generally used.  Screens, dots and lines can, of course, be effectively used to give a gradation of tone from light grey to solid black. When original charts are the subjects of display presentation, use of colors is limited only by the subject and the emphasis desired." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Simplicity, accuracy, appropriate size, proper proportion, correct emphasis, and skilled execution - these are the factors that produce the effective chart. To achieve simplicity your chart must be designed with a definite audience in mind, show only essential information. Technical terms should be absent as far as possible. And in case of doubt it is wiser to oversimplify than to make matters unduly complex. Be careful to avoid distortion or misrepresentation. Accuracy in graphics is more a matter of portraying a clear reliable picture than reiterating exact values. Selecting the right scales and employing authoritative titles and legends are as important as precision plotting. The right size of a chart depends on its probable use, its importance, and the amount of detail involved." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"The bar or column chart is the easiest type of graphic to prepare and use in reports. It employs a simple form: four straight lines that are joined to construct a rectangle or oblong box. When the box is shown horizontally it is called a bar; when it is shown vertically it is called a column. [...] The bar chart is an effective way to show comparisons between or among two or more items. It has the added advantage of being easily understood by readers who have little or no background in statistics and who are not accustomed to reading complex tables or charts." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"Modern data graphics can do much more than simply substitute for small statistical tables. At their best, graphics are instruments for reasoning about quantitative information. Often the most effective way to describe, explore, and summarize a set of numbers even a very large set - is to look at pictures of those numbers. Furthermore, of all methods for analyzing and communicating statistical information, well-designed data graphics are usually the simplest and at the same time the most powerful." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"The effective communication of information in visual form, whether it be text, tables, graphs, charts or diagrams, requires an understanding of those factors which determine the 'legibility', 'readability' and 'comprehensibility', of the information being presented. By legibility we mean: can the data be clearly seen and easily read? By readability we mean: is the information set out in a logical way so that its structure is clear and it can be easily scanned? By comprehensibility we mean: does the data make sense to the audience for whom it is intended? Is the presentation appropriate for their previous knowledge, their present information needs and their information processing capacities?" (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"One graph is more effective than another if its quantitative information can be decoded more quickly or more easily by most observers. […] This definition of effectiveness assumes that the reason we draw graphs is to communicate information - but there are actually many other reasons to draw graphs." (Naomi B Robbins, "Creating More effective Graphs", 2005)

"An effective dashboard is the product not of cute gauges, meters, and traffic lights, but rather of informed design: more science than art, more simplicity than dazzle. It is, above all else, about communication." (Stephen Few, "Information Dashboard Design", 2006)

"Most dashboards fail to communicate efficiently and effectively, not because of inadequate technology (at least not primarily), but because of poorly designed implementations. No matter how great the technology, a dashboard's success as a medium of communication is a product of design, a result of a display that speaks clearly and immediately. Dashboards can tap into the tremendous power of visual perception to communicate, but only if those who implement them understand visual perception and apply that understanding through design principles and practices that are aligned with the way people see and think." (Stephen Few, "Information Dashboard Design", 2006)

"The main goal of data visualization is its ability to visualize data, communicating information clearly and effectively. It doesn’t mean that data visualization needs to look boring to be functional or extremely sophisticated to look beautiful. To convey ideas effectively, both aesthetic form and functionality need to go hand in hand, providing insights into a rather sparse and complex dataset by communicating its key aspects in a more intuitive way. Yet designers often tend to discard the balance between design and function, creating gorgeous data visualizations which fail to serve its main purpose - communicate information." (Vitaly Friedman, "Data Visualization and Infographics", Smashing Magazine, 2008)

"For a visual to qualify as beautiful, it must be aesthetically pleasing, yes, but it must also be novel, informative, and efficient. [...] For a visual to truly be beautiful, it must go beyond merely being a conduit for information and offer some novelty: a fresh look at the data or a format that gives readers a spark of excitement and results in a new level of understanding. Well-understood formats (e.g., scatterplots) may be accessible and effective, but for the most part they no longer have the ability to surprise or delight us. Most often, designs that delight us do so not because they were designed to be novel, but because they were designed to be effective; their novelty is a byproduct of effectively revealing some new insight about the world." (Noah Iliinsky, "On Beauty", [in "Beautiful Visualization"] 2010)

"A graph is considered effective if it conveys the intended information in a way that can be understood quickly and without ambiguity by most consumers." (Sanjay Matange  & Dan Neath, "Statistical Graphics Procedures by Example: Effective Graphs Using SAS", 2011)

"Color can tell us where to look, what to compare and contrast, and it can give us a visual scale of measure. Because color can be so effective, it is often used for multiple purposes in the same graphic - which can create graphics that are dazzling but difficult to interpret. Separating the roles that color can play makes it easier to apply color specifically for encouraging different kinds of visual thinking. [...] Choose colors to draw attention, to label, to show relationships (compare and contrast), or to indicate a visual scale of measure." (Felice C Frankel & Angela H DePace, "Visual Strategies", 2012)

"The process of visual analysis can potentially go on endlessly, with seemingly infinite combinations of variables to explore, especially with the rich opportunities bigger data sets give us. However, by deploying a disciplined and sensible balance between deductive and inductive enquiry you should be able to efficiently and effectively navigate towards the source of the most compelling stories." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"A great infographic leads readers on a visual journey, telling them a story along the way. Powerful infographics are able to capture people’s attention in the first few seconds with a strong title and visual image, and then reel them in to digest the entire message. Infographics have become an effective way to speak for the creator, conveying information and image simultaneously." (Justin Beegel, "Infographics For Dummies", 2014)

"The effectiveness principle dictates that the importance of the attribute should match the salience of the channel; that is, its noticeability. In other words, the most important attributes should be encoded with the most effective channels in order to be most noticeable, and then decreasingly important attributes can be matched with less effective channels. " (Tamara Munzner, "Visualization Analysis and Design", 2014)

[…] no single visualization is ever quite able to show all of the important aspects of our data at once - there just are not enough visual encoding channels. […] designing effective visualizations to make sense of data is not an art - it is a systematic and repeatable process." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"Data storytelling gives your insight the best opportunity to capture attention, be understood, be remembered, and be acted on. An effective data story helps your insight reach its full potential: inspiring others to act and drive change." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Understanding language goes hand in hand with the ability to integrate complex contextual information into an effective visualization and being able to converse with the data interactively, a term we call analytical conversation. It also helps us think about ways to create artifacts that support and manage how we converse with machines as we see and understand data."(Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Unlike text, visual communication is governed less by an agreed-upon convention between 'writer' and 'reader' than by how our visual systems react to stimuli, often before we’re aware of it. And just as composers use music theory to create music that produces certain predictable effects on an audience, chart makers can use visual perception theory to make more-effective visualizations with similarly predictable effects." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Good design isn’t just choosing colors and fonts or coming up with an aesthetic for charts. That’s styling - part of design, but by no means the most important part. Rather, people with design talent develop and execute systems for effective visual communication. They understand how to create and edit visuals to focus an audience and distill ideas." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Graphic design is not just about making things look good. It is a powerful combination of form and function that uses visual elements to communicate a message. Form refers to the physical appearance of a design, such as its shape, color, and typography. Function refers to the purpose of a design, such as what it is trying to communicate or achieve. A good graphic design is both visually appealing and functional. It uses the right combination of form and function to communicate its message effectively. Graphic design is also a strategic and thoughtful craft. It requires careful planning and execution to create a design that is both effective and aesthetically pleasing." (Faith Aderemi, "The Essential Graphic Design Handbook", 2024)

"When deeply complex charts work, we find them effective and beautiful, just as we find a symphony beautiful, which is another marvelously complex arrangement of millions of data points that we experience as a coherent whole." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

📉Graphical Representation: Audience (Just the Quotes)

"If the audience can see all the charts at once, they may get a different story from the one you want them to get. Show the charts one at a time. If you have only one chart, keep it covered until you are ready to use it. Take full advantage of the element of surprise. If you use charts which open like a book, use only one page for the message." (Edward J Hegarty, "How to Use a Set of Display Charts", The American Statistician Vol. 2 (5), 1948)

"In making up the charts, keep them simple. One idea to a page and not too much detail is a good rule. Try to get variety in the subject matter - now a chart, next a diagram, then a tabulation. Such variety helps hold audience attention." (Edward J Hegarty, "How to Use a Set of Display Charts", The American Statistician Vol. 2 (5), 1948)

"Try telling the story in words different from those on the charts. […] If the chart shows a picture, describe the picture. Tell what it shows and why it is shown. If it is a diagram, explain it. Don't leave the audience to figure it out. No matter how simple the story shown, tell it in your own words: but remember that explaining a chart doesn't mean reading it out loud." (Edward J Hegarty, "How to Use a Set of Display Charts", The American Statistician Vol. 2 (5), 1948)

"Recognize effective results. Does the type of chart selected give a comprehensive picture of the situation? Does the size of chart and visual aid used satisfy all audience requirements? Do materials meet all reproduction problems? Is the layout well balanced and style of lettering uniform? Does the chart as a whole accurately present the facts? Is the projected idea an effective visual tool?" (Mary E Spear, "Charting Statistics", 1952)

"Understandability implies that the graph will mean something to the audience. If the presentation has little meaning to the audience, it has little value. Understandability is the difference between data and information. Data are facts. Information is facts that mean something and make a difference to whoever receives them. Graphic presentation enhances understanding in a number of ways. Many people find that the visual comparison and contrast of information permit relationships to be grasped more easily. Relationships that had been obscure become clear and provide new insights." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"The conditions under which many data graphics are produced - the lack of substantive and quantitative skills of the illustrators, dislike of quantitative evidence, and contempt for the intelligence of the audience-guarantee graphic mediocrity. These conditions engender graphics that (1) lie; (2) employ only the simplest designs, often unstandardized time-series based on a small handful of data points; and (3) miss the real news actually in the data." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Lurking behind chartjunk is contempt both for information and for the audience. Chartjunk promoters imagine that numbers and details are boring, dull, and tedious, requiring ornament to enliven. Cosmetic decoration, which frequently distorts the data, will never salvage an underlying lack of content. If the numbers are boring, then you've got the wrong numbers." (Edward R Tufte, "Envisioning Information", 1990)

"Audience boredom is usually a content failure, not a decoration failure." (Edward R Tufte, "The cognitive style of PowerPoint", 2003)

"If you want to hide data, try putting it into a larger group and then use the average of the group for the chart. The basis of the deceit is the endearingly innocent assumption on the part of your readers that you have been scrupulous in using a representative average: one from which individual values do not deviate all that much. In scientific or statistical circles, where audiences tend to take less on trust, the 'quality' of the average" (in terms of the scatter of the underlying individual figures) is described by the standard deviation, although this figure is itself an average." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"Information consumption can lead to higher knowledge on the part of the audience, if its members are able to perceive the patterns or meaning of data. It is not a passive process; our brains are not hard drives that store stuff uncritically .When people see, read, or listen, they assimilate content by relating it to their memories and experiences." (Alberto Cairo, "The Functional Art", 2011)

"The more adequately a model fits whatever it stands for without being needlessly complex, and the easier it is for its intended audience to interpret it correctly, the better it will be." (Alberto Cairo, "The Functional Art", 2011)

"An infographic (short for information graphic) is a type of picture that blends data with design, helping individuals and organizations concisely communicate messages to their audience." (Mark Smiciklas, "The Power of Infographics: Using Pictures to Communicate and Connect with Your Audiences", 2012)

"Competition for your audiences attention is fierce. The fact that infographics are unique allows organizations an opportunity to make the content they are publishing stand out and get noticed." (Mark Smiciklas, "The Power of Inforgraphics", 2012)

"Most important, the range of data literacy and familiarity with your data’s context is much wider when you design graphics for a general audience." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Any presentation of data, whether a simple calculated metric or a complex predictive model, is going to have a set of assumptions and choices that the producer has made to get to the output. The more that these can be made explicit, the more the audience of the data will be open to accepting the message offered by the presenter." (Zach Gemignani et al, "Data Fluency", 2014)

"In fact, the analogy to storytelling is limited when applied to communicating with data. Data visualization has fundamental characteristics missing from traditional storytelling. For example, interactive data visualizations let audiences explore information to find insights that resonate with them. Visualizations take shape based to a large extent on the underlying data. And as this data changes, the emphasis and message of the visualization is likely to change." (Zach Gemignani et al, "Data Fluency", 2014)

Beyond annoying our audience by trying to sound smart, we run the risk of making our audience feel dumb. In either case, this is not a good user experience for our audience." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"First, to whom are you communicating? It is important to have a good understanding of who your audience is and how they perceive you. This can help you to identify common ground that will help you ensure they hear your message. Second, What do you want your audience to know or do?" (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"If you simply present data, it’s easy for your audience to say, Oh, that’s interesting, and move on to the next thing. But if you ask for action, your audience has to make a decision whether to comply or not. This elicits a more productive reaction from your audience, which can lead to a more productive conversation - one that might never have been started if you hadn’t recommended the action in the first place." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"Tailoring the message to the audience should not be synonymous with accepting its prejudices, routines, and the usual ways of doing things. Many of what we believe to be good data visualization principles are opposite to what is practiced within organizations. When presenting a chart type the audience is unfamiliar with, or when breaking a rule, the author must argue for its advantages. Annotating the chart, showing how to read it, drawing aˆention to key points, and making direct comparisons with alternative representations will help the audience feel safer in their reading and possible adoption of the new chart." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"Data analysis is more than crunching numbers; it is about finding insights, identifying the unknown unknowns, and presenting the data in a simple yet deep enough way so that your audience can understand your insights and make decisions." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Ideally, the charts are designed in a way that gives your audience clarity and lets them understand the key insights very quickly. Color choices, highlighting, annotations, and other ways of drawing attention to your findings help in the process. By leaving white or blank space around your charts, you are able to keep the focus of your audience on the key message rather than distracting or confusing them." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Data storytelling is transformative. Many people don’t realize that when they share insights, they’re not just imparting information to other people. The natural consequence of sharing an insight is change. Stop doing that, and do more of this. Focus less on them, and concentrate more on these people. Spend less there, and invest more here. A poignant insight will drive an enlightened audience to think or act differently. So, as a data storyteller, you’re not only guiding the audience through the data, you’re also acting as a change agent. Rather than just pointing out possible enhancements, you’re helping your audience fully understand the urgency of the changes and giving them the confidence to move forward." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"The first rule of communication is to shut up and listen, so that you can get to know about the audience for your communication, whether it might be politicians, professionals or the general public. We have to understand their inevitable limitations and any misunderstandings, and fight the temptation to be too sophisticated and clever, or put in too much detail." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"There are eight audience considerations that can influence how you approach your data story: (1) Key goals and priorities. [...] (2) Beliefs and preferences. [...] (3) Specific expectations. [...] (4) Opportune timing. [...] (5) Topic familiarity. [...] (6) Data literacy. [...] (7) Seniority level. [...] (8) Audience mix." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"There is often no one 'best' visualization, because it depends on context, what your audience already knows, how numerate or scientifically trained they are, what formats and conventions are regarded as standard in the particular field you’re working in, the medium you can use, and so on. It’s also partly scientific and partly artistic, so you get to express your own design style in it, which is what makes it so fascinating." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"As presenters of data visualizations, often we just want our audience to understand something about their environment – a trend, a pattern, a breakdown, a way in which things have been progressing. If we ask ourselves what we want our audience to do with that information, we might have a hard time coming up with a clear answer sometimes. We might just want them to know something." (Ben Jones, "Avoiding Data Pitfalls: How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations", 2020) 

"As data visualization creators, we must understand our audience and know when a different graph can engage readers - and help them expand their own graphic literacy." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"Data visualization‘s key responsibilities and challenges include the obligation to earn your audience’s attention - do not take it for granted." (Bill Inmon et al, "Building the Data Lakehouse", 2021)

"What is the secret to getting people to use charts and dashboards? Personalization. Inserting the audience into the visualization, and making it especially meaningful and relevant to the user, never fails." (Steve Wexler, "The Big Picture: How to use data visualization to make better decisions - faster", 2021)

"Design choices include more deliberate thought put into resizing, cropping, simplifying, and enhancing information within the limited real estate. These thumbnails need to be visually interpretable, yet inviting and engaging to the audience." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"A perfectly relevant visualization that breaks a few presentation rules is far more valuable - it’s better - than a perfectly executed, beautiful chart that contains the wrong data, communicates the wrong message, or fails to engage its audience." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Data becomes more useful once it’s transformed into a data visualization or used in a data story. Data storytelling is the ability to effectively communicate insights from a dataset using narratives and visualizations. It can be used to put data insights into context and inspire action from your audience. Color can be very helpful when you are trying to make information stand out within your data visualizations." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Good design isn’t just choosing colors and fonts or coming up with an aesthetic for charts. That’s styling - part of design, but by no means the most important part. Rather, people with design talent develop and execute systems for effective visual communication. They understand how to create and edit visuals to focus an audience and distill ideas." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"One tip to keep an audience focused on your story without overwhelming them is to reduce the saturation of the colors [...] When you lower the brightness and intensity, you are reducing the cognitive load that your audience has to bear. [...] Regardless of what combinations you decide on, you need to avoid pure colors that are bright and saturated." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Sketching bridges idea and visualization. Good sketches are quick, simple, and messy. Don’t think too much about real values or scales or any refining details. In fact, don’t think too much. Just keep in mind those keywords, the possible forms they suggest, and that overarching idea you keep coming back to, the one you wrote down in answer to 'What am I trying to say (or learn)?' And draw. Create shapes, develop a sense of what you want your audience to see. Try anything." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

29 November 2011

📉Graphical Representation: Rules (Just the Quotes)

"Graphic representation by means of charts depends upon the super-position of special lines or curves upon base lines drawn or ruled in a standard manner. For the economic construction of these charts as well as their correct use it is necessary that the standard rulings be correctly designed." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"It is not possible to lay down any hard and fast rules for determining what chart is the best for any given problem. Ordinarily that one is the best which will produce the quickest and clearest results. but unfortunately it is not always possible to construct the clearest one in the least time. Experience is the best guide. Generally speaking, a rectilinear chart is best adapted for equations of the first degree, logarithmic for those other than the first degree and not containing over two variables, and alignment charts where there are three or more variables. However, nearly every person becomes more or less familiar with one type of chart and prefers to adhere to the use of that type because he does not care to take the time and trouble to find out how to use the others. It is best to know what the possibilities of all types are and to be governed accordingly when selecting one or the other for presenting or working out certain data." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"The principles of charting and curve plotting are not at all complex, and it is surprising that many business men dodge the simplest charts as though they involved higher mathematics or contained some sort of black magic. [...] The trouble at present is that there are no standards by which graphic presentations can be prepared in accordance with definite rules so that their interpretation by the reader may be both rapid and accurate. It is certain that there will evolve for methods of graphic presentation a few useful and definite rules which will correspond with the rules of grammar for the spoken and written language." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

"The eye can accurately appraise only very few features of a diagram, and consequently a complicated or confusing diagram will lead the reader astray. The fundamental rule for all charting is to use a plan which is simple and which takes account, in its arrangement of the facts to be presented, of the above-mentioned capacities of the eye."  (William L Crum et al, "Introduction to Economic Statistics", 1938)

"In making up the charts, keep them simple. One idea to a page and not too much detail is a good rule. Try to get variety in the subject matter - now a chart, next a diagram, then a tabulation. Such variety helps hold audience attention." (Edward J Hegarty, "How to Use a Set of Display Charts", The American Statistician Vol. 2 (5), 1948)

"The grid lines should be lighter than the curves, with the base line somewhat heavier than the others. All vertical lines should be of equal weight, unless the time scale is subdivided in quarters or other time periods, indicated by heavier rules. Very wide base lines, sometimes employed for pictorial effect, distort the graphic impression by making the base line the most prominent feature of the chart." (Rufus R Lutz, "Graphic Presentation Simplified", 1949)

"The number of grid lines should be kept to a minimum. This means that there should be just enough coordinate lines in the field so that the eye can readily interpret the values at any point on the curve. No definite rule can be specified as to the optimum number of lines in a grid. This must be left to the discretion of the chart-maker and can come only from experience. The size of the chart, the type and range of the data. the number of curves, the length and detail of the period covered, as well as other factors, will help to determine the number of grid lines." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"As a general rule, plotted points and graph lines should be given more 'weight' than the axes. In this way the 'meat' will be easily distinguishable from the 'bones'. Furthermore, an illustration composed of lines of unequal weights is always more attractive than one in which all the lines are of uniform thickness. It may not always be possible to emphasise the data in this way however. In a scattergram, for example, the more plotted points there are, the smaller they may need to be and this will give them a lighter appearance. Similarly, the more curves there are on a graph, the thinner the lines may need to be. In both cases, the axes may look better if they are drawn with a somewhat bolder line so that they are easily distinguishable from the data." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"The rule is that a graph of a change in a variable with time should always have a vertical scale that starts with zero. Otherwise, it is inherently misleading." (Douglas A Downing & Jeffrey Clark, "Forgotten Statistics: A Self-Teaching Refresher Course", 1996) 

"[...] when data is presented in certain ways, the patterns can be readily perceived. If we can understand how perception works, our knowledge can be translated into rules for displaying information. Following perception‐based rules, we can present our data in such a way that the important and informative patterns stand out. If we disobey the rules, our data will be incomprehensible or misleading." (Colin Ware, "Information Visualization: Perception for Design" 2nd Ed., 2004)

"Plotting data is a useful first stage to any analysis and will show extreme observations together with any discernible patterns. In addition the relative sizes of categories are easier to see in a diagram (bar chart or pie chart) than in a table. Graphs are useful as they can be assimilated quickly, and are particularly helpful when presenting information to an audience. Tables can be useful for displaying information about many variables at once, while graphs can be useful for showing multiple observations on groups or individuals. Although there are no hard and fast rules about when to use a graph and when to use a table, in the context of a report or a paper it is often best to use tables so that the reader can scrutinise the numbers directly." (Jenny Freeman et al, "How to Display Data", 2008)

"[...] if you want to show change through time, use a time-series chart; if you need to compare, use a bar chart; or to display correlation, use a scatter-plot - because some of these rules make good common sense." (Alberto Cairo, "The Functional Art", 2011)

"For every rule in data visualization, there is a scenario where that rule should be broken. This means that choosing the best chart or the best design is always a trade-off between several conflicting goals. Our imperfect perception means that data visualization has a larger subjective dimension than a data table. Sometimes we only need this subjective, impressionist dimension and other times we need to translate it into hard figures. Striving for accuracy is important, but it’s more important to provide those insights that only a visual display can reveal." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"There can be several reasons why someone breaks the rules, whether from ignorance, malice, or the sincere desire to find a more effective way to explore the data or communicate the results. Whatever the reason, breaking the rules frustrates the audience’s expectations and will incur a cost. Sometimes you might consider this an investment, while often it is nothing more than waste." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"A perfectly relevant visualization that breaks a few presentation rules is far more valuable - it’s better - than a perfectly executed, beautiful chart that contains the wrong data, communicates the wrong message, or fails to engage its audience." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"But rules are open to interpretation and sometimes arbitrary or even counterproductive when it comes to producing good visualizations. They’re for responding to context, not setting it. Instead of worrying about whether a chart is "right" or "wrong", focus on whether it’s good." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

28 November 2011

📉Graphical Representation: Perception (Just the Quotes)

"We can gain further insight into what makes good plots by thinking about the process of visual perception. The eye can assimilate large amounts of visual information, perceive unanticipated structure, and recognize complex patterns; however, certain kinds of patterns are more readily perceived than others. If we thoroughly understood the interaction between the brain, eye, and picture, we could organize displays to take advantage of the things that the eye and brain do best, so that the potentially most important patterns are associated with the most easily perceived visual aspects in the display." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"When a graph is constructed, quantitative and categorical information is encoded, chiefly through position, size, symbols, and color. When a person looks at a graph, the information is visually decoded by the person's visual system. A graphical method is successful only if the decoding process is effective. No matter how clever and how technologically impressive the encoding, it is a failure if the decoding process is a failure. Informed decisions about how to encode data can be achieved only through an understanding of the visual decoding process, which is called graphical perception." (William S Cleveland, "The Elements of Graphing Data", 1985)

"Pie charts have severe perceptual problems. Experiments in graphical perception have shown that compared with dot charts, they convey information far less reliably. But if you want to display some data, and perceiving the information is not so important, then a pie chart is fine." (Richard Becker & William S Cleveland," S-Plus Trellis Graphics User's Manual", 1996)

"[...] when data is presented in certain ways, the patterns can be readily perceived. If we can understand how perception works, our knowledge can be translated into rules for displaying information. Following perception‐based rules, we can present our data in such a way that the important and informative patterns stand out. If we disobey the rules, our data will be incomprehensible or misleading." (Colin Ware, "Information Visualization: Perception for Design" 2nd Ed., 2004)

"Most dashboards fail to communicate efficiently and effectively, not because of inadequate technology (at least not primarily), but because of poorly designed implementations. No matter how great the technology, a dashboard's success as a medium of communication is a product of design, a result of a display that speaks clearly and immediately. Dashboards can tap into the tremendous power of visual perception to communicate, but only if those who implement them understand visual perception and apply that understanding through design principles and practices that are aligned with the way people see and think." (Stephen Few, "Information Dashboard Design", 2006)

"Perception requires imagination because the data people encounter in their lives are never complete and always equivocal. [...] We also use our imagination and take shortcuts to fill gaps in patterns of nonvisual data. As with visual input, we draw conclusions and make judgments based on uncertain and incomplete information, and we conclude, when we are done analyzing the patterns, that out picture is clear and accurate. But is it?" (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"[…] perceptual accuracy decreases with distance, so columns that are to be compared should be side by side. Current linked micromap software requires the user." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"Sparklines aren't necessarily a variation on the line chart, rather, a clever use of them. [...] They take advantage of our visual perception capabilities to discriminate changes even at such a low resolution in terms of size. They facilitate opportunities to construct particularly dense visual displays of data in small space and so are particularly applicable for use on dashboards." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"For every rule in data visualization, there is a scenario where that rule should be broken. This means that choosing the best chart or the best design is always a trade-off between several conflicting goals. Our imperfect perception means that data visualization has a larger subjective dimension than a data table. Sometimes we only need this subjective, impressionist dimension and other times we need to translate it into hard figures. Striving for accuracy is important, but it’s more important to provide those insights that only a visual display can reveal." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"Color is difficult to use effectively. A small number of well-chosen colors can be highly distinguishable, particularly for categorical data, but it can be difficult for users to distinguish between more than a handful of colors in a visualization. Nonetheless, color is an invaluable tool in the visualization toolbox because it is a channel that can carry a great deal of meaning and be overlaid on other dimensions. […] There are a variety of perceptual effects, such as simultaneous contrast and color deficiencies, that make precise numerical judgments about a color scale difficult, if not impossible." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"Beyond basic charts, practitioners must also learn to compose visualizations together elegantly. The perceptual stage focuses on making the literal charts more precise as well as working to de-emphasize the entire piece. Design choices start to consider distractions, reducing visual clutter and centering on the message. Minimalism is espoused as a core value with an emphasis on shifting toward precision as accuracy. This is the most common next step for practitioners. Minimalism is also a key stage in maturation. It is experimentation at one extreme that helps practitioners distill down to core, shared practices." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Communicating data through functionally aesthetic charts is not only about perception and precision but also understanding." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Our visual perception is context-dependent; we are not good at seeing things in isolation." (Alan Smith, "How Charts Work: Understand and explain data with confidence", 2022)

"People feel data. They don’t just process statistics and come to rational conclusions. They form emotions about the data visualization. We are not informed by charts; we’re affected by them." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Unlike text, visual communication is governed less by an agreed-upon convention between 'writer' and 'reader' than by how our visual systems react to stimuli, often before we’re aware of it. And just as composers use music theory to create music that produces certain predictable effects on an audience, chart makers can use visual perception theory to make more-effective visualizations with similarly predictable effects." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"We see first what stands out. Our eyes go right to change and difference - peaks, valleys, intersections, dominant colors, outliers. Many successful charts - often the ones that please us the most and are shared and talked about - exploit this inclination by showing a single salient point so clearly that we feel we understand the chart’s meaning without even trying." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Your eyes and your brain always notice more dynamic visual information first and fastest. The implicit lesson is to make the idea you want people to see stand out. Conversely, make sure you’re not helping people see something that either doesn’t help convey your idea or actively fights against it." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

📉Graphical Representation: Signal (Just the Quotes)

"If statistical graphics, although born just yesterday, extends its reach every day, it is because it replaces long tables of numbers and it allows one not only to embrace at glance the series of phenomena, but also to signal the correspondences or anomalies, to find the causes, to identify the laws." (Émile Cheysson, cca. 1877)

"When large numbers of curves and charts are used by a corporation, it will be found advantageous to have certain standard abbreviations and symbols on the face of the chart so that information may be given in condensed form as a signal to anyone reading the charts." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"First, color has identity value. In other words, it serves to distinguish one thing from another. In many cases it does this much better and much quicker than black and white coding by different types of shading or lines. […] Second, color has suggestion value. […] Red is usually taken to mean a danger signal or an unfavorable condition. But since it is one of the most visible of colors it is excellent for adding emphasis, regardless of connotation. […] Green has no such unfavorable implication, and is usually appropriate for suggesting a green light" condition. […] Similarly, every color carries its own connotations; and although they seldom make a vital difference one way or the other, it seems logical to try to make them work for you rather than against you." (Kenneth W Haemer, "Color in Chart Presentation", The American Statistician Vol. 4" (2) , 1950)

"While all data contain noise, some data contain signals. Before you can detect a signal, you must filter out the noise." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Noise is a signal we don't like. Noise has two parts. The first has to do with the head and the second with the heart. The first part is the scientific or objective part: Noise is a signal. [...] The second part of noise is the subjective part: It deals with values. It deals with how we draw the fuzzy line between good signals and bad signals. Noise signals are the bad signals. They are the unwanted signals that mask or corrupt our preferred signals. They not only interfere but they tend to interfere at random." (Bart Kosko, "Noise", 2006)

"One person’s signal is another person’s noise and vice versa. We call this relative role reversal the noise-signal duality." (Bart Kosko, "Noise", 2006)

"A signal is a useful message that resides in data. Data that isn’t useful is noise. […] When data is expressed visually, noise can exist not only as data that doesn’t inform but also as meaningless non-data elements of the display (e.g. irrelevant attributes, such as a third dimension of depth in bars, color variation that has no significance, and artificial light and shadow effects)." (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"Data contain descriptions. Some are true, some are not. Some are useful, most are not. Skillful use of data requires that we learn to pick out the pieces that are true and useful. [...] To find signals in data, we must learn to reduce the noise - not just the noise that resides in the data, but also the noise that resides in us. It is nearly impossible for noisy minds to perceive anything but noise in data." (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"Form simplification means simplifying relationships among the components of the whole, emphasizing the whole and reducing the relevance of individual components by standardizing and generalizing relationships. This results in an increased weight of useful information (signal) against useless information (noise)." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"Before you can even consider creating a data story, you must have a meaningful insight to share. One of the essential attributes of a data story is a central or main insight. Without a main point, your data story will lack purpose, direction, and cohesion. A central insight is the unifying theme" (telos appeal) that ties your various findings together and guides your audience to a focal point or climax for your data story. However, when you have an increasing amount of data at your disposal, insights can be elusive. The noise from irrelevant and peripheral data can interfere with your ability to pinpoint the important signals hidden within its core." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"In addition to managing how the data is visualized to reduce noise, you can also decrease the visual interference by minimizing the extraneous cognitive load. In these cases, the nonrelevant information and design elements surrounding the data can cause extraneous noise. Poor design or display decisions by the data storyteller can inadvertently interfere with the communication of the intended signal. This form of noise can occur at both a macro and micro level." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"An outlier is a data point that is far away from other observations in your data. It may be due to random variability in the data, measurement error, or an actual anomaly. Outliers are both an opportunity and a warning. They potentially give you something very interesting to talk about, or they may signal that something is wrong in the data." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

27 November 2011

📉Graphical Representation: Execution (Just the Quotes)

"In the course of executing that design, it occurred to me that tables are by no means a good form for conveying such information. [...] Making an appeal to the eye when proportion and magnitude are concerned is the best and readiest method of conveying a distinct idea." (William Playfair, "The Statistical Brewery", 1801)

"Simplicity, accuracy, appropriate size, proper proportion, correct emphasis, and skilled execution - these are the factors that produce the effective chart. To achieve simplicity your chart must be designed with a definite audience in mind, show only essential information. Technical terms should be absent as far as possible. And in case of doubt it is wiser to oversimplify than to make matters unduly complex. Be careful to avoid distortion or misrepresentation. Accuracy in graphics is more a matter of portraying a clear reliable picture than reiterating exact values. Selecting the right scales and employing authoritative titles and legends are as important as precision plotting. The right size of a chart depends on its probable use, its importance, and the amount of detail involved." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"The execution of any task involving information visualization will be motivated by the user's intention and influenced by many factors. One of these is the user's internal model. Another is the visible externalization of some data. A decision as to how - as well as whether - to proceed will depend upon an interpretation of these sources of information." (Robert Spence, "Information Visualization", 2001)

"Most dashboards fail to communicate efficiently and effectively, not because of inadequate technology (at least not primarily), but because of poorly designed implementations. No matter how great the technology, a dashboard's success as a medium of communication is a product of design, a result of a display that speaks clearly and immediately. Dashboards can tap into the tremendous power of visual perception to communicate, but only if those who implement them understand visual perception and apply that understanding through design principles and practices that are aligned with the way people see and think." (Stephen Few, "Information Dashboard Design", 2006)

"Good graphic design is not a panacea for bad copy, poor layout or misleading statistics. If any one of these facets are feebly executed it reflects poorly on the work overall, and this includes bad graphs and charts." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"A perfectly relevant visualization that breaks a few presentation rules is far more valuable - it’s better - than a perfectly executed, beautiful chart that contains the wrong data, communicates the wrong message, or fails to engage its audience." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Good design isn’t just choosing colors and fonts or coming up with an aesthetic for charts. That’s styling - part of design, but by no means the most important part. Rather, people with design talent develop and execute systems for effective visual communication. They understand how to create and edit visuals to focus an audience and distill ideas." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Graphic design is not just about making things look good. It is a powerful combination of form and function that uses visual elements to communicate a message. Form refers to the physical appearance of a design, such as its shape, color, and typography. Function refers to the purpose of a design, such as what it is trying to communicate or achieve. A good graphic design is both visually appealing and functional. It uses the right combination of form and function to communicate its message effectively. Graphic design is also a strategic and thoughtful craft. It requires careful planning and execution to create a design that is both effective and aesthetically pleasing." (Faith Aderemi, "The Essential Graphic Design Handbook", 2024)

26 November 2011

📉Graphical Representation: Complexity (Just the Quotes)

"The principles of charting and curve plotting are not at all complex, and it is surprising that many business men dodge the simplest charts as though they involved higher mathematics or contained some sort of black magic. [...] The trouble at present is that there are no standards by which graphic presentations can be prepared in accordance with definite rules so that their interpretation by the reader may be both rapid and accurate. It is certain that there will evolve for methods of graphic presentation a few useful and definite rules which will correspond with the rules of grammar for the spoken and written language." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

"Simplicity, accuracy, appropriate size, proper proportion, correct emphasis, and skilled execution - these are the factors that produce the effective chart. To achieve simplicity your chart must be designed with a definite audience in mind, show only essential information. Technical terms should be absent as far as possible. And in case of doubt it is wiser to oversimplify than to make matters unduly complex. Be careful to avoid distortion or misrepresentation. Accuracy in graphics is more a matter of portraying a clear reliable picture than reiterating exact values. Selecting the right scales and employing authoritative titles and legends are as important as precision plotting. The right size of a chart depends on its probable use, its importance, and the amount of detail involved." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"While circle charts are not likely to present especially new or creative ideas, they do help the user to visualize relationships. The relationships depicted by circle charts do not tend to be very complex, in contrast to those of some line graphs. Normally, the circle chart is used to portray a common type of relationship (namely. part-to-total) in an attractive manner and to expedite the message transfer from designer to user." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"The bar or column chart is the easiest type of graphic to prepare and use in reports. It employs a simple form: four straight lines that are joined to construct a rectangle or oblong box. When the box is shown horizontally it is called a bar; when it is shown vertically it is called a column. [...] The bar chart is an effective way to show comparisons between or among two or more items. It has the added advantage of being easily understood by readers who have little or no background in statistics and who are not accustomed to reading complex tables or charts." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"The more complex the shape of any object. the more difficult it is to perceive it. The nature of thought based on the visual apprehension of objective forms suggests, therefore, the necessity to keep all graphics as simple as possible. Otherwise, their meaning will be lost or ambiguous, and the ability to convey the intended information and to persuade will be inhibited." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"Excellence in statistical graphics consists of complex ideas communicated
with clarity, precision, and efficiency. Graphical displays should
- show the data
- induce the viewer to think about the substance rather than about the
methodology, graphic design, the technology of graphic production,
or something else
- avoid distorting what the data have to say
- present many numbers in a small space
- make large data sets coherent
- encourage the eye to compare different pieces of data
- reveal the data at several levels of detail, from a broad overview to the
- serve a reasonable clear purpose: description, exploration, tabulation,
- be closely integrated." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"We can gain further insight into what makes good plots by thinking about the process of visual perception. The eye can assimilate large amounts of visual information, perceive unanticipated structure, and recognize complex patterns; however, certain kinds of patterns are more readily perceived than others. If we thoroughly understood the interaction between the brain, eye, and picture, we could organize displays to take advantage of the things that the eye and brain do best, so that the potentially most important patterns are associated with the most easily perceived visual aspects in the display." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"Confusion and clutter are failures of design, not attributes of information. And so the point is to find design strategies that reveal detail and complexity - rather than to fault the data for an excess of complication. Or, worse, to fault viewers for a lack of understanding. Among the most powerful devices for reducing noise and enriching the content of displays is the technique of layering and separation, visually stratifying various aspects of the data." (Edward R Tufte, "Envisioning Information", 1990)

"A good chart delineates and organizes information. It communicates complex ideas, procedures, and lists of facts by simplifying, grouping, and setting and marking priorities. By spatial organization, it should lead the eye through information smoothly and efficiently." (Mary H Briscoe, "Preparing Scientific Illustrations: A guide to better posters, presentations, and publications" 2nd ed., 1995)

"A common mistake is that all visualization must be simple, but this skips a step. You should actually design graphics that lend clarity, and that clarity can make a chart 'simple' to read. However, sometimes a dataset is complex, so the visualization must be complex. The visualization might still work if it provides useful insights that you wouldn’t get from a spreadsheet. […] Sometimes a table is better. Sometimes it’s better to show numbers instead of abstract them with shapes. Sometimes you have a lot of data, and it makes more sense to visualize a simple aggregate than it does to show every data point." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"So what is the difference between a chart or graph and a visualization? […] a chart or graph is a clean and simple atomic piece; bar charts contain a short story about the data being presented. A visualization, on the other hand, seems to contain much more ʻchart junkʼ, with many sometimes complex graphics or several layers of charts and graphs. A visualization seems to be the super-set for all sorts of data-driven design." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"The universal intelligibility of a pictogram is inversely proportional to its complexity and potential for interpretive ambiguity." (Joel Katz, "Designing Information: Human factors and common sense in information design", 2012)

"What is good visualization? It is a representation of data that helps you see what you otherwise would have been blind to if you looked only at the naked source. It enables you to see trends, patterns, and outliers that tell you about yourself and what surrounds you. The best visualization evokes that moment of bliss when seeing something for the first time, knowing that what you see has been right in front of you, just slightly hidden. Sometimes it is a simple bar graph, and other times the visualization is complex because the data requires it." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Most of us have difficulty figuring probabilities and statistics in our heads and detecting subtle patterns in complex tables of numbers. We prefer vivid pictures, images, and stories. When making decisions, we tend to overweight such images and stories, compared to statistical information. We also tend to misunderstand or misinterpret graphics." (Daniel J Levitin, "Weaponized Lies", 2017)

"Bad complexity neither elucidates important salient points nor shows coherent broader trends. It will obfuscate, frustrate, tax the mind, and ultimately convey trendlessness and confusion to the viewer. Good complexity, in contrast, emerges from visualizations that use more data than humans can reasonably process to form a few salient points." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Confirmation is a kind of focused exploration, whereas true exploration is more open-ended. The bigger and more complex the data, and the less you know going in, the more exploratory the work. If confirmation is hiking a new trail, exploration is blazing one." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Visualization is an abstraction, a way to reduce complexity […] complexity and color catch the eye; they’re captivating. They can also make it harder to extract meaning from a chart." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"When deeply complex charts work, we find them effective and beautiful, just as we find a symphony beautiful, which is another marvelously complex arrangement of millions of data points that we experience as a coherent whole." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

📉Graphical Representation: Cluster (Just the Quotes)

"To the untrained eye, randomness appears as regularity or tendency to cluster." (William Feller, "An Introduction to Probability Theory and its Applications", 1950) 

"Sometimes clusters of variables tend to vary together in the normal course of events, thereby rendering it difficult to discover the magnitude of the independent effects of the different variables in the cluster. And yet it may be most desirable, from a practical as well as scientific point of view, to disentangle correlated describing variables in order to discover more effective policies to improve conditions. Many economic indicators tend to move together in response to underlying economic and political events." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"The logarithmic transformation serves several purposes: (1) The resulting regression coefficients sometimes have a more useful theoretical interpretation compared to a regression based on unlogged variables. (2) Badly skewed distributions - in which many of the observations are clustered together combined with a few outlying values on the scale of measurement - are transformed by taking the logarithm of the measurements so that the clustered values are spread out and the large values pulled in more toward the middle of the distribution. (3) Some of the assumptions underlying the regression model and the associated significance tests are better met when the logarithm of the measured variables is taken." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"The scatterplot is a useful exploratory method for providing a first look at bivariate data to see how they are distributed throughout the plane, for example, to see clusters of points, outliers, and so forth." (William S Cleveland, "Visualizing Data", 1993)

"Multivariate techniques often summarize or classify many variables to only a few groups or factors (e.g., cluster analysis or multi-dimensional scaling). Parallel coordinate plots can help to investigate the influence of a single variable or a group of variables on the result of a multivariate procedure. Plotting the input variables in a parallel coordinate plot and selecting the features of interest of the multivariate procedure will show the influence of different input variables." (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009)

"Parallel coordinate plots are often overrated concerning their ability to depict multivariate features. Scatterplots are clearly superior in investigating the relationship between two continuous variables and multivariate outliers do not necessarily stick out in a parallel coordinate plot. Nonetheless, parallel coordinate plots can help to find and understand features such as groups/clusters, outliers and multivariate structures in their multivariate context. The key feature is the ability to select and highlight individual cases or groups in the data, and compare them to other groups or the rest of the data." (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009) 

"Be careful not to confuse clustering and stratification. Even though both of these sampling strategies involve dividing the population into subgroups, both the way in which the subgroups are sampled and the optimal strategy for creating the subgroups are different. In stratified sampling, we sample from every stratum, whereas in cluster sampling, we include only selected whole clusters in the sample. Because of this difference, to increase the chance of obtaining a sample that is representative of the population, we want to create homogeneous groups for strata and heterogeneous (reflecting the variability in the population) groups for clusters." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"Linking is a powerful dynamic interactive graphics technique that can help us better understand high-dimensional data. This technique works in the following way: When several plots are linked, selecting an observation's point in a plot will do more than highlight the observation in the plot we are interacting with - it will also highlight points in other plots with which it is linked, giving us a more complete idea of its value across all the variables. Selecting is done interactively with a pointing device. The point selected, and corresponding points in the other linked plots, are highlighted simultaneously. Thus, we can select a cluster of points in one plot and see if it corresponds to a cluster in any other plot, enabling us to investigate the high-dimensional shape and density of the cluster of points, and permitting us to investigate the structure of the disease space." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"Dimensionality reduction is a way of reducing a large number of different measures into a smaller set of metrics. The intent is that the reduced metrics are a simpler description of the complex space that retains most of the meaning. […] Clustering techniques are similarly useful for reducing a large number of items into a smaller set of groups. A clustering technique finds groups of items that are logically near each other and gathers them together." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"[...] scatterplots had advantages over earlier graphic forms: the ability to see clusters, patterns, trends, and relations in a cloud of points. Perhaps most importantly, it allowed the addition of visual annotations (point symbols, lines, curves, enclosing contours, etc.) to make those relationships more coherent and tell more nuanced stories." (Michael Friendly & Howard Wainer, "A History of Data Visualization and Graphic Communication", 2021)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.