"By [diagrams] it is possible to present at a glance all the facts which could be obtained from figures as to the increase, fluctuations, and relative importance of prices, quantities, and values of different classes of goods and trade with various countries; while the sharp irregularities of the curves give emphasis to the disturbing causes which produce any striking change." (Arthur L Bowley, "A Short Account of England's Foreign Trade in the Nineteenth Century, its Economic and Social Results", 1905)
"For a curve the vertical scale, whenever practicable, should be so selected that the zero line will appear on the diagram. [...] If the zero line of the vertical scale will not normally appear on the curve diagram, the zero line should be shown by the use of a horizontal break in the diagram." (Joint Committee on Standards for Graphic Presentation, "Publications of the American Statistical Association" Vol.14" (112), 1915)
"Co-ordinate ruling does not appear prominently on most original charts because the ruling is usually printed in some color of ink distinct from the curve itself. When, however, a chart is reproduced in a line engraving the co-ordinate lines come out the same color as the curve or other important data, and there may be too little contrast to assist the reader." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)
"Graphic representation by means of charts depends upon the super-position of special lines or curves upon base lines drawn or ruled in a standard manner. For the economic construction of these charts as well as their correct use it is necessary that the standard rulings be correctly designed." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)
"It should be a strict rule for all kinds of curve plotting that the horizontal scale must be used. for the independent variable and the vertical scale for the dependent variable. When the curves are plotted by this rule the reader can instantly select a set of conditions from the horizontal scale and read the information from the vertical scale. If there were no rule relating to the arrangement of scales for the independent and dependent variables, the reader would never be able to tell whether he should approach a chart from the vertical scale and read the information from the horizontal scale, or the reverse." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)
"Since a table is a collection of certain sets of data, a chart with one curve representing each set of data can be made to take the place of the table. Wherever a chart can be plotted by straight lines, the speed of this is infinitely greater than making out a table, and where the curvilinear law is known, or can be approximated by the use of the empiric law, the speed is but little less." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)
"The practice of drawing several curves on the same sheet is not to be commended except in cases where the curves will not intersect. A crowded chart on which the curves frequently intersect resembles a Chinese puzzle more than a graphic record, and a report submitted in figures is to be preferred to a chart of this kind. Even when the curves do not intersect, they should be made in different colors in order that they may be readily distinguished, one from the other." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)
"The principles of charting and curve plotting are not at all complex, and it is surprising that many business men dodge the simplest charts as though they involved higher mathematics or contained some sort of black magic. [...] The trouble at present is that there are no standards by which graphic presentations can be prepared in accordance with definite rules so that their interpretation by the reader may be both rapid and accurate. It is certain that there will evolve for methods of graphic presentation a few useful and definite rules which will correspond with the rules of grammar for the spoken and written language." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)
"A graph is a pictorial representation or statement of a series of values all drawn to scale. It gives a mental picture of the results of statistical examination in one case while in another it enables calculations to be made by drawing straight lines or it indicates a change in quantity together with the rate of that change. A graph then is a picture representing some happenings and so designed as to bring out all points of significance in connection with those happenings. When the curve has been plotted delineating these happenings a general inspection of it shows the essential character of the table or formula from which it was derived." (William C Marshall, "Graphical methods for schools, colleges, statisticians, engineers and executives", 1921)
"There is a magic in graphs. The profile of a curve reveals in a flash a whole situation - the life history of an epidemic, a panic, or an era of prosperity. The curve informs the mind, awakens the imagination, convinces." (Henry D Hubbard [in William Brinton's "Graphic Presentation", 1939])
"[….] double-scale charts are likely to be misleading unless the two zero values coincide" (either on or off the chart). To insure an accurate comparison of growth the scale intervals should be so chosen that both curves meet at some point. This treatment produces the effect of percentage relatives or simple index numbers with the point of juncture serving as the base point. The principal advantage of this form of presentation is that it is a short-cut method of comparing the relative change of two or more series without computation. It is especially useful for bringing together series that either vary widely in magnitude or are measured in different units and hence cannot be compared conveniently on a chart having only one absolute-amount scale. In general, the double scale treatment should not be used for presenting growth comparisons to the general reader." (Kenneth W Haemer, "Double Scales Are Dangerous", The American Statistician Vol. 2" (3) , 1948)
"[…] many readers are confused by the presence of two scales, and either use the wrong one or simply disregard both. Also, the general reader has the disconcerting habit of believing that because one curve is higher than another, it is also larger in magnitude. This leads to all sorts of misconceptions." (Kenneth W Haemer, "Double Scales Are Dangerous", The American Statistician Vol. 2" (3) , 1948)
"An important rule in the drafting of curve charts is that the amount scale should begin at zero. In comparisons of size the omission of the zero base, unless clearly indicated, is likely to give a misleading impression of the relative values and trend." (Rufus R Lutz, "Graphic Presentation Simplified", 1949)
"If a chart contains a number of series which vary widely in individual magnitude, optical distortion may result from the necessarily sharp changes in the angle of the curves. The space between steeply rising or falling curves always appears narrower than the vertical distance between the plotting points." (Rufus R Lutz, "Graphic Presentation Simplified", 1949)
"The grid lines should be lighter than the curves, with the base line somewhat heavier than the others. All vertical lines should be of equal weight, unless the time scale is subdivided in quarters or other time periods, indicated by heavier rules. Very wide base lines, sometimes employed for pictorial effect, distort the graphic impression by making the base line the most prominent feature of the chart." (Rufus R Lutz, "Graphic Presentation Simplified", 1949)
"A piece of self-deception - often dear to the heart of apprentice scientists - is the drawing of a 'smooth curve'" (how attractive it sounds!) through a set of points which have about as much trend as the currants in plum duff. Once this is done, the mind, looking for order amidst chaos, follows the Jack-o'-lantern line with scant attention to the protesting shouts of the actual points. Nor, let it be whispered, is it unknown for people who should know better to rub off the offending points and publish the trend line which their foolish imagination has introduced on the flimsiest of evidence. Allied to this sin is that of overconfident extrapolation, i.e. extending the graph by guesswork beyond the range of factual information. Whenever extrapolation is attempted it should be carefully distinguished from the rest of the graph, e.g. by showing the extrapolation as a dotted line in contrast to the full line of the rest of the graph. [...] Extrapolation always calls for justification, sooner or later. Until this justification is forthcoming, it remains a provisional estimate, based on guesswork." (Michael J Moroney, "Facts from Figures", 1951)
"The number of grid lines should be kept to a minimum. This means that there should be just enough coordinate lines in the field so that the eye can readily interpret the values at any point on the curve. No definite rule can be specified as to the optimum number of lines in a grid. This must be left to the discretion of the chart-maker and can come only from experience. The size of the chart, the type and range of the data. the number of curves, the length and detail of the period covered, as well as other factors, will help to determine the number of grid lines." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)
"The histogram, with its columns of area proportional to number, like the bar graph, is one of the most classical of statistical graphs. Its combination with a fitted bell-shaped curve has been common since the days when the Gaussian curve entered statistics. Yet as a graphical technique it really performs quite poorly. Who is there among us who can look at a histogram-fitted Gaussian combination and tell us, reliably, whether the fit is excellent, neutral, or poor? Who can tell us, when the fit is poor, of what the poorness consists? Yet these are just the sort of questions that a good graphical technique should answer at least approximately." (John W Tukey, "The Future of Processes of Data Analysis", 1965)
"Probably one of the most common misuses (intentional or otherwise) of a graph is the choice of the wrong scale - wrong, that is, from the standpoint of accurate representation of the facts. Even though not deliberate, selection of a scale that magnifies or reduces - even distorts - the appearance of a curve can mislead the viewer." (Peter H Selby, "Interpreting Graphs and Tables", 1976)
"As a general rule, plotted points and graph lines should be given more 'weight' than the axes. In this way the 'meat' will be easily distinguishable from the 'bones'. Furthermore, an illustration composed of lines of unequal weights is always more attractive than one in which all the lines are of uniform thickness. It may not always be possible to emphasise the data in this way however. In a scattergram, for example, the more plotted points there are, the smaller they may need to be and this will give them a lighter appearance. Similarly, the more curves there are on a graph, the thinner the lines may need to be. In both cases, the axes may look better if they are drawn with a somewhat bolder line so that they are easily distinguishable from the data." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)
"Exploratory regression methods attempt to reveal unexpected patterns, so they are ideal for a first look at the data. Unlike other regression techniques, they do not require that we specify a particular model beforehand. Thus exploratory techniques warn against mistakenly fitting a linear model when the relation is curved, a waxing curve when the relation is S-shaped, and so forth." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)
"Skewness is a measure of symmetry. For example, it's zero for the bell-shaped normal curve, which is perfectly symmetric about its mean. Kurtosis is a measure of the peakedness, or fat-tailedness, of a distribution. Thus, it measures the likelihood of extreme values." (John L Casti, "Reality Rules: Picturing the world in mathematics", 1992)
"As a general rule, the fewer the time intervals used in the averaging process, the more closely the moving average curve resembles the curve of the actual data. Conversely, the greater the number of intervals, the smoother the moving average curve. […] Moving average curves tend to have a delayed reaction to changes." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996)
"As a general rule, the fewer the time intervals used in the averaging process, the more closely the moving average curve resembles the curve of the actual data. Conversely, the greater the number of intervals, the smoother the moving average curve. […] Moving average curves tend to have a delayed reaction to changes." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996)
"Grouped area graphs sometimes cause confusion because the viewer cannot determine whether the areas for the data series extend down to the zero axis. […] Grouped area graphs can handle negative values somewhat better than stacked area graphs but they still have the problem of all or portions of data curves being hidden by the data series towards the front." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996)
"When approximations are all that are needed, stacked area graphs are usually adequate. When accuracy is desired, this type of graph is generally not used, particularly when the values fluctuate significantly and/or the slopes of the curves are steep." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996)
"It is important to pay heed to the following detail: a disadvantage of logarithmic diagrams is that a graphical integration is not possible, i.e., the area under the curve" (the integral) is of no relevance." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)
"Sometimes bar charts are avoided because they are common. This is a mistake. Rather, bar charts should be leveraged because they are common, as this means less of a learning curve for your audience." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)
"With time series though, there is absolutely no substitute for plotting. The pertinent pattern might end up being a sharp spike followed by a gentle taper down. Or, maybe there are weird plateaus. There could be noisy spikes that have to be filtered out. A good way to look at it is this: means and standard deviations are based on the naïve assumption that data follows pretty bell curves, but there is no corresponding 'default' assumption for time series data" (at least, not one that works well with any frequency), so you always have to look at the data to get a sense of what’s normal. [...] Along the lines of figuring out what patterns to expect, when you are exploring time series data, it is immensely useful to be able to zoom in and out." (Field Cady, "The Data Science Handbook", 2017)
"Skewed data means data that is shifted in one direction or the other. Skewness can cause machine learning models to underperform. Many machine learning models assume normally distributed data or data structures to follow the Gaussian structure. Any deviation from the assumed Gaussian structure, which is the popular bell curve, can affect model performance. A very effective area where we can apply feature engineering is by looking at the skewness of data and then correcting the skewness through normalization of the data." (Anthony So et al, "The Data Science Workshop" 2nd Ed., 2020)
"Standard graphs, like bar and line charts, are so common because they are perceptually more accurate, familiar to people, and easy to create. Nonstandard graphs - those that use circles or curves, for instance - may not allow the reader to most accurately perceive the exact data values. But perceptual accuracy is not always the goal. And sometimes it's not a goal at all. Spurring readers to engage with a graph is sometimes just as important. Sometimes, it's more important. And nonstandard chart types may do just that. In some cases, nonstandard graphs may help show underlying patterns and trends in better ways that standard graphs. In other cases, the fact that these nonstandard graphs are different may make them more engaging, which we may sometimes need to first attract attention to the visualization." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)