"To a very striking degree our culture has become a Statistical culture. Even a person who may never have heard of an index number is affected [...] by [...] of those index numbers which describe the cost of living. It is impossible to understand Psychology, Sociology, Economics, Finance or a Physical Science without some general idea of the meaning of an average, of variation, of concomitance, of sampling, of how to interpret charts and tables." (Carrol D Wright, 1887)
"Except in some of the simplest cases where the line connecting the plotted data is straight, it will generally be possible to fit a number of very different forms of equation to the same curve, none of them exactly, but all agreeing with the original about equally well. Interpolation on any of these curves will usually give results within the desired degree of accuracy. The greatest caution, however, should be observed in exterpolation, or the use of the equation outside of the limits of the observations." (John B Peddle, "The Construction of Graphical Charts", 1910)
"Most authors would greatly resent it if they were told that their writings contained great exaggerations, yet many of these same authors permit their work to be illustrated with charts which are so arranged as to cause an erroneous interpretation. If authors and editors will inspect their charts as carefully as they revise their written matter, we shall have, in a very short time, a standard of reliability in charts and illustrations just as high as now found in the average printed page." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)
"The principles of charting and curve plotting are not at all complex, and it is surprising that many business men dodge the simplest charts as though they involved higher mathematics or contained some sort of black magic. [...] The trouble at present is that there are no standards by which graphic presentations can be prepared in accordance with definite rules so that their interpretation by the reader may be both rapid and accurate. It is certain that there will evolve for methods of graphic presentation a few useful and definite rules which will correspond with the rules of grammar for the spoken and written language." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)
"Graphic methods are very commonly used in business correlation problems. On the whole, carefully handled and skillfully interpreted graphs have certain advantages over mathematical methods of determining correlation in the usual business problems. The elements of judgment and special knowledge of conditions can be more easily introduced in studying correlation graphically. Mathematical correlation is often much too rigid for the data at hand." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1938)
"The use of two or more amount scales for comparisons of series in which the units are unlike and, therefore, not comparable [...] generally results in an ineffective and confusing presentation which is difficult to understand and to interpret. Comparisons of this nature can be much more clearly shown by reducing the components to a comparable basis as percentages or index numbers." (Rufus R Lutz, "Graphic Presentation Simplified", 1949)
"Charts and graphs represent an extremely useful and flexible medium for explaining, interpreting, and analyzing numerical facts largely by means of points, lines, areas, and other geometric forms and symbols. They make possible the presentation of quantitative data in a simple, clear, and effective manner and facilitate comparison of values, trends, and relationships. Moreover, charts and graphs possess certain qualities and values lacking in textual and tabular forms of presentation." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)
"In line charts the grid structure plays a controlling role in interpreting facts. The number of vertical rulings should be sufficient to indicate the frequency of the plottings, facilitate the reading of the time values on the horizontal scale. and indicate the interval or subdivision of time." (Anna C Rogers, "Graphic Charts Handbook", 1961)
"The logarithmic transformation serves several purposes:" (1) The resulting regression coefficients sometimes have a more useful theoretical interpretation compared to a regression based on unlogged variables." (2) Badly skewed distributions - in which many of the observations are clustered together combined with a few outlying values on the scale of measurement - are transformed by taking the logarithm of the measurements so that the clustered values are spread out and the large values pulled in more toward the middle of the distribution." (3) Some of the assumptions underlying the regression model and the associated significance tests are better met when the logarithm of the measured variables is taken." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)
"The time-series plot is the most frequently used form of graphic design. With one dimension marching along to the regular rhythm of seconds, minutes, hours, days, weeks, months, years, centuries, or millennia, the natural ordering of the time scale gives this design a strength and efficiency of interpretation found in no other graphic arrangement." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)
"The bar of a bar chart has two aspects that can be used to visually decode quantitative information-size" (length and area) and the relative position of the end of the bar along the common scale. The changing sizes of the bars is an important and imposing visual factor; thus it is important that size encode something meaningful. The sizes of bars encode the magnitudes of deviations from the baseline. If the deviations have no important interpretation, the changing sizes are wasted energy and even have the potential to mislead." (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38" (4) 1984)
"Good graphics can be spoiled by bad annotation. Labels must always be subservient to the information to be conveyed, and legibility should never be sacrificed for style. All the information on the sheet should be easy to read, and more important, easy to interpret. The priorities of the information should be clearly expressed by the use of differing sizes, weights and character of letters." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)
"Statistics is a tool. In experimental science you plan and carry out experiments, and then analyse and interpret the results. To do this you use statistical arguments and calculations. Like any other tool - an oscilloscope, for example, or a spectrometer, or even a humble spanner - you can use it delicately or clumsily, skillfully or ineptly. The more you know about it and understand how it works, the better you will be able to use it and the more useful it will be." (Roger J Barlow, "Statistics: A guide to the use of statistical methods in the physical sciences", 1989)
"The fact that map is a fuzzy and radial, rather than a precisely defined, category is important because what a viewer interprets a display to be will influence her expectations about the display and how she interacts with it." (Alan MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)
"Graphic misrepresentation is a frequent misuse in presentations to the nonprofessional. The granddaddy of all graphical offenses is to omit the zero on the vertical axis. As a consequence, the chart is often interpreted as if its bottom axis were zero, even though it may be far removed. This can lead to attention-getting headlines about 'a soar' or 'a dramatic rise" (or fall)'. A modest, and possibly insignificant, change is amplified into a disastrous or inspirational trend." (Herbert F Spirer et al, "Misused Statistics" 2nd Ed, 1998)
"Without meaningful data there can be no meaningful analysis. The interpretation of any data set must be based upon the context of those data. Unfortunately, much of the data reported to executives today are aggregated and summed over so many different operating units and processes that they cannot be said to have any context except a historical one - they were all collected during the same time period. While this may be rational with monetary figures, it can be devastating to other types of data." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)
"The acquisition of information is a flow from noise to order - a process converting entropy to redundancy. During this process, the amount of information decreases but is compensated by constant re-coding. In the recoding the amount of information per unit increases by means of a new symbol which represents the total amount of the old. The maturing thus implies information condensation. Simultaneously, the redundance decreases, which render the information more difficult to interpret." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)
"Every statistical analysis is an interpretation of the data, and missingness affects the interpretation. The challenge is that when the reasons for the missingness cannot be determined there is basically no way to make appropriate statistical adjustments. Sensitivity analyses are designed to model and explore a reasonable range of explanations in order to assess the robustness of the results." (Gerald van Belle, "Statistical Rules of Thumb", 2002)
"Choose scales wisely, as they have a profound influence on the interpretation of graphs. Not all scales require that zero be included, but bar graphs and other graphs where area is judged do require it." (Naomi B Robbins, "Creating More effective Graphs", 2005)
"Data often arrive in raw form, as long lists of numbers. In this case your job is to summarize the data in a way that captures its essence and conveys its meaning. This can be done numerically, with measures such as the average and standard deviation, or graphically. At other times you find data already in summarized form; in this case you must understand what the summary is telling, and what it is not telling, and then interpret the information for your readers or viewers." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)
"The visual representation of a scale - an axis with ticks - looks like a ladder. Scales are the types of functions we use to map varsets to dimensions. At first glance, it would seem that constructing a scale is simply a matter of selecting a range for our numbers and intervals to mark ticks. There is more involved, however. Scales measure the contents of a frame. They determine how we perceive the size, shape, and location of graphics. Choosing a scale" (even a default decimal interval scale) requires us to think about what we are measuring and the meaning of our measurements. Ultimately, that choice determines how we interpret a graphic." (Leland Wilkinson, "The Grammar of Graphics" 2nd Ed., 2005)
"Generally pie charts are to be avoided, as they can be difficult to interpret particularly when the number of categories is greater than five. Small proportions can be very hard to discern […] In addition, unless the percentages in each of the individual categories are given as numbers it can be much more diff i cult to estimate them from a pie chart than from a bar chart […]." (Jenny Freeman et al, "How to Display Data", 2008)
"Color can tell us where to look, what to compare and contrast, and it can give us a visual scale of measure. Because color can be so effective, it is often used for multiple purposes in the same graphic - which can create graphics that are dazzling but difficult to interpret. Separating the roles that color can play makes it easier to apply color specifically for encouraging different kinds of visual thinking. [...] Choose colors to draw attention, to label, to show relationships" (compare and contrast), or to indicate a visual scale of measure." (Felice C Frankel & Angela H DePace, "Visual Strategies", 2012)
"Done well, annotation can help explain and facilitate the viewing and interpretive experience. It is the challenge of creating a layer of user assistance and user insight: how can you maximize the clarity and value of engaging with this visualization design?" (Andy Kirk, "Data Visualization: A successful design process", 2012)
"The big problems with statistics, say its best practitioners, have little to do with computations and formulas. They have to do with judgment - how to design a study, how to conduct it, then how to analyze and interpret the results. Journalists reporting on statistics have many chances to do harm by shaky reporting, and so are also called on to make sophisticated judgments. How, then, can we tell which studies seem credible, which we should report?" (Victor Cohn & Lewis Cope, "News & Numbers: A writer’s guide to statistics" 3rd Ed, 2012)
"The main difference between journalistic and artistic infographics is that, while in the first information must try to be as objective as possible, the second supports a complete subjectivity and can lend itself to different interpretations, all of them valid. That’s the concept of 'subjective infographic', something apparently contradictory." (Jaime Serra, [interviewed] 2012)
"The universal intelligibility of a pictogram is inversely proportional to its complexity and potential for interpretive ambiguity." (Joel Katz, "Designing Information: Human factors and common sense in information design", 2012)
"While the information is of the utmost importance when it comes to soundness, what is done with the information - essentially, how it is designed - is also important. With this in mind, there are two things to consider: format and design quality. If an inappropriate format is used, the outcome will be inferior. Similarly, if the design misrepresents or skews the information deliberately or due to user error, or if the design is inappropriate given the subject matter, it cannot be considered high quality, no matter how aesthetically appealing it appears at first glance." (Jason Lankow et al, "Infographics: The power of visual storytelling", 2012)
"Visualization can be appreciated purely from an aesthetic point of view, but it’s most interesting when it’s about data that’s worth looking at. That’s why you start with data, explore it, and then show results rather than start with a visual and try to squeeze a dataset into it. It’s like trying to use a hammer to bang in a bunch of screws. […] Aesthetics isn’t just a shiny veneer that you slap on at the last minute. It represents the thought you put into a visualization, which is tightly coupled with clarity and affects interpretation." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)
"Graphs can help us interpret data and draw inferences. They can help us see tendencies, patterns, trends, and relationships. A picture can be worth not only a thousand words, but a thousand numbers. However, a graph is essentially descriptive - a picture meant to tell a story. As with any story, bumblers may mangle the punch line and the dishonest may lie." (Gary Smith, "Standard Deviations", 2014)
"Commonly, data do not make a clear and unambiguous statement about our world, often requiring tools and methods to provide such clarity. These methods, called statistical data analysis, involve collecting, manipulating, analyzing, interpreting, and presenting data in a form that can be used, understood, and communicated to others." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)
"Confirmation bias can affect nearly every aspect of the way you look at data, from sampling and observation to forecasting - so it’s something to keep in mind anytime you’re interpreting data. When it comes to correlation versus causation, confirmation bias is one reason that some people ignore omitted variables - because they’re making the jump from correlation to causation based on preconceptions, not the actual evidence." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)
"The main differences between Bayesian networks and causal diagrams lie in how they are constructed and the uses to which they are put. A Bayesian network is literally nothing more than a compact representation of a huge probability table. The arrows mean only that the probabilities of child nodes are related to the values of parent nodes by a certain formula" (the conditional probability tables) and that this relation is sufficient. That is, knowing additional ancestors of the child will not change the formula. Likewise, a missing arrow between any two nodes means that they are independent, once we know the values of their parents. [...] If, however, the same diagram has been constructed as a causal diagram, then both the thinking that goes into the construction and the interpretation of the final diagram change." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)
"Too many simultaneous encodings will be overwhelming to the reader; colors must be easily distinguishable, and of a small enough number that the reader can interpret them. " (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)
"As a first principle, any visualization should convey its information quickly and easily, and with minimal scope for misunderstanding. Unnecessary visual clutter makes more work for the reader’s brain to do, slows down the understanding" (at which point they may give up) and may even allow some incorrect interpretations to creep in." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)
"Even though data is being thrust on more people, it doesn’t mean everyone is prepared to consume and use it effectively. As our dependence on data for guidance and insights increases, the need for greater data literacy also grows. If literacy is defined as the ability to read and write, data literacy can be defined as the ability to understand and communicate data. Today’s advanced data tools can offer unparalleled insights, but they require capable operators who can understand and interpret data." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)
"When dealing with meaningful visual representation, aspects of a representation's meaning can be altered by modifying its visual characteristics; these characteristics are extensively explored in semiotics, the study of signs and symbols and their use or interpretation." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)
"As beautiful as data can be, it’s not an al fresco painting that should be open to interpretation from anyone who walks by its section of the museum. Make bold, smart color choices that leave no doubt what the purpose of the data is." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)
"But rules are open to interpretation and sometimes arbitrary or even counterproductive when it comes to producing good visualizations. They’re for responding to context, not setting it. Instead of worrying about whether a chart is right" or "wrong", focus on whether it’s good." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)
"Charts used to confirm are less formal, and designed well enough to be interpreted, but they don’t always have to be presentation worthy. […] Or maybe you don’t know what you’re looking for […] This is exploratory work - rougher still in design, usually iterative, sometimes interactive. Most of us don’t do as much exploratory work as we do declarative and confirmatory; we should do more. It’s a kind of data brainstorming." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)
See also: Misinterpretation