10 November 2024

🏭🗒️Microsoft Fabric: Data Warehouse [Notes]

Disclaimer: This is work in progress intended to consolidate information from various sources for learning purposes. For the latest information please consult the documentation (see the links below)! 

Last updated: 11-Mar-2024

Warehouse vs SQL analytics endpoint in Microsoft Fabric
Warehouse vs SQL analytics endpoint in Microsoft Fabric [3]

[Microsoft Fabric] Data Warehouse

  • highly available relational data warehouse that can be used to store and query data in the Lakehouse
    • supports the full transactional T-SQL capabilities 
    • modernized version of the traditional data warehouse
  • unifies capabilities from Synapse Dedicated and Serverless SQL Pools
  • modernized with key improvements
  • resources are managed elastically to provide the best possible performance
    • ⇒ no need to think about indexing or distribution
    • a new parser gives enhanced CSV file ingestion time
    • metadata is now cached in addition to data
    • improved assignment of compute resources to milliseconds
    • multi-TB result sets are streamed to the client
  • leverages a distributed query processing engine
    • provides with workloads that have a natural isolation boundary [3]
      • true isolation is achieved by separating workloads with different characteristics, ensuring that ETL jobs never interfere with their ad hoc analytics and reporting workloads [3]
  • {operation} data ingestion
    • involves moving data from source systems into the data warehouse [2]
      • the data becomes available for analysis [1]
    • via Pipelines, Dataflows, cross-database querying, COPY INTO command
    • no need to copy data from the lakehouse to the data warehouse [1]
      • one can query data in the lakehouse directly from the data warehouse using cross-database querying [1]
  • {operation} data storage
    • involves storing the data in a format that is optimized for analytics [2]
  • {operation} data processing
    • involves transforming the data into a format that is ready for consumption by analytical tools [1]
  • {operation} data analysis and delivery
    • involves analyzing the data to gain insights and delivering those insights to the business [1]
  • {operation} designing a warehouse (aka warehouse design)
    • standard warehouse design can be used
  • {operation} sharing a warehouse (aka warehouse sharing)
    • a way to provide users read access to the warehouse for downstream consumption
      • via SQL, Spark, or Power BI
    • the level of permissions can be customized to provide the appropriate level of access
  • {feature} mirroring 
    • provides a modern way of accessing and ingesting data continuously and seamlessly from any database or data warehouse into the Data Warehousing experience in Fabric
      • any database can be accessed and managed centrally from within Fabric without having to switch database clients
      • data is replicated in a reliable way in real-time and lands as Delta tables for consumption in any Fabric workload
  • {concept}SQL analytics endpoint 
    • a warehouse that is automatically generated from a Lakehouse in Microsoft Fabric [3]
  • {concept}virtual warehouse
    • can containing data from virtually any source by using shortcuts [3]
  • {concept} cross database querying 
    • enables to quickly and seamlessly leverage multiple data sources for fast insights and with zero data duplication [3]
References:
[1] Microsoft Learn: Fabric (2023) Get started with data warehouses in Microsoft Fabric (link
[2] Microsoft Learn: Fabric (2023) Microsoft Fabric decision guide: choose a data store (link)
[3] Microsoft Learn: Fabric (2024) What is data warehousing in Microsoft Fabric? (link)
[4] Microsoft Learn: Fabric (2023) Better together: the lakehouse and warehouse (link)

Resources:
[1] Microsoft Learn: Fabric (2023) Data warehousing documentation in Microsoft Fabric (link)


No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.