02 October 2014

Systems Engineering: Tools (Just the Quote)

"Systems engineering is most effectively conceived of as a process that starts with the detection of a problem and continues through problem definition, planning and designing of a system, manufacturing or other implementing section, its use, and finally on to its obsolescence. Further, Systems engineering is not a matter of tools alone; It is a careful coordination of process, tools and people." (Arthur D. Hall, "Systems Engineering from an Engineering Viewpoint" In: Systems Science and Cybernetics. Vol.1 Issue.1, 1965)

"[…] cybernetics studies the flow of information round a system, and the way in which this information is used by the system as a means of controlling itself: it does this for animate and inanimate systems indifferently. For cybernetics is an interdisciplinary science, owing as much to biology as to physics, as much to the study of the brain as to the study of computers, and owing also a great deal to the formal languages of science for providing tools with which the behaviour of all these systems can be objectively described." (A Stafford Beer, 1966)

"System theory is a tool which engineers use to help them design the 'best' system to do the job that must be done. A dominant characteristic of system theory is the interest in the analysis and design (synthesis) of systems from an input-output point of view. System theory uses mathematical manipulation of a mathematical model to help design the actual system." (Fred C Scweppe, "Uncertain dynamic systems", 1973)

"Fitting lines to relationships between variables is the major tool of data analysis. Fitted lines often effectively summarize the data and, by doing so, help communicate the analytic results to others. Estimating a fitted line is also the first step in squeezing further information from the data." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"Fuzzy systems are excellent tools for representing heuristic, commonsense rules. Fuzzy inference methods apply these rules to data and infer a solution. Neural networks are very efficient at learning heuristics from data. They are 'good problem solvers' when past data are available. Both fuzzy systems and neural networks are universal approximators in a sense, that is, for a given continuous objective function there will be a fuzzy system and a neural network which approximate it to any degree of accuracy." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"Linear programming and its generalization, mathematical programming, can be viewed as part of a great revolutionary development that has given mankind the ability to state general goals and lay out a path of detailed decisions to be taken in order to 'best' achieve these goals when faced with practical situations of great complexity. The tools for accomplishing this are the models that formulate real-world problems in detailed mathematical terms, the algorithms that solve the models, and the software that execute the algorithms on computers based on the mathematical theory." (George B Dantzig & Mukund N Thapa, "Linear Programming" Vol I, 1997)

"Delay time, the time between causes and their impacts, can highly influence systems. Yet the concept of delayed effect is often missed in our impatient society, and when it is recognized, it’s almost always underestimated. Such oversight and devaluation can lead to poor decision making as well as poor problem solving, for decisions often have consequences that don’t show up until years later. Fortunately, mind mapping, fishbone diagrams, and creativity/brainstorming tools can be quite useful here." (Stephen G Haines, "The Managers Pocket Guide to Systems Thinking & Learning", 1998)

"As systems became more varied and more complex, we find that no single methodology suffices to deal with them. This is particularly true of what may be called information intelligent systems - systems which form the core of modern technology. To conceive, design, analyze and use such systems we frequently have to employ the totality of tools that are available. Among such tools are the techniques centered on fuzzy logic, neurocomputing, evolutionary computing, probabilistic computing and related methodologies. It is this conclusion that formed the genesis of the concept of soft computing." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic: A personal perspective", 1999)

"[…] swarm intelligence is becoming a valuable tool for optimizing the operations of various businesses. Whether similar gains will be made in helping companies better organize themselves and develop more effective strategies remains to be seen. At the very least, though, the field provides a fresh new framework for solving such problems, and it questions the wisdom of certain assumptions regarding the need for employee supervision through command-and-control management. In the future, some companies could build their entire businesses from the ground up using the principles of swarm intelligence, integrating the approach throughout their operations, organization, and strategy. The result: the ultimate self-organizing enterprise that could adapt quickly - and instinctively - to fast-changing markets." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"A model is a representation in that it (or its properties) is chosen to stand for some other entity (or its properties), known as the target system. A model is a tool in that it is used in the service of particular goals or purposes; typically these purposes involve answering some limited range of questions about the target system." (Wendy S Parker, "Confirmation and Adequacy-for-Purpose in Climate Modelling", Proceedings of the Aristotelian Society, Supplementary Volumes, Vol. 83, 2009)

"System dynamics is an approach to understanding the behaviour of over time. It deals with internal feedback loops and time delays that affect the behaviour of the entire system. It also helps the decision maker untangle the complexity of the connections between various policy variables by providing a new language and set of tools to describe. Then it does this by modeling the cause and effect relationships among these variables." (Raed M Al-Qirem & Saad G Yaseen, "Modelling a Small Firm in Jordan Using System Dynamics", 2010)

"Complexity scientists concluded that there are just too many factors - both concordant and contrarian - to understand. And with so many potential gaps in information, almost nobody can see the whole picture. Complex systems have severe limits, not only to predictability but also to measurability. Some complexity theorists argue that modelling, while useful for thinking and for studying the complexities of the world, is a particularly poor tool for predicting what will happen." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"A key discovery of network science is that the architecture of networks emerging in various domains of science, nature, and technology are similar to each other, a consequence of being governed by the same organizing principles. Consequently we can use a common set of mathematical tools to explore these systems."  (Albert-László Barabási, "Network Science", 2016)

"Although cascading failures may appear random and unpredictable, they follow reproducible laws that can be quantified and even predicted using the tools of network science. First, to avoid damaging cascades, we must understand the structure of the network on which the cascade propagates. Second, we must be able to model the dynamical processes taking place on these networks, like the flow of electricity. Finally, we need to uncover how the interplay between the network structure and dynamics affects the robustness of the whole system." (Albert-László Barabási, "Network Science", 2016)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.