"[Disorganized complexity] is a problem in which the number of variables is very large, and one in which each of the many variables has a behavior which is individually erratic, or perhaps totally unknown. However, in spite of this helter-skelter, or unknown, behavior of all the individual variables, the system as a whole possesses certain orderly and analyzable average properties. [...] [Organized complexity is] not problems of disorganized complexity, to which statistical methods hold the key. They are all problems which involve dealing simultaneously with a sizable number of factors which are interrelated into an organic whole. They are all, in the language here proposed, problems of organized complexity." (Warren Weaver, "Science and Complexity", American Scientist Vol. 36, 1948)
"The fundamental problem today is that of organized complexity. Concepts like those of organization, wholeness, directiveness, teleology, and differentiation are alien to conventional physics. However, they pop up everywhere in the biological, behavioral and social sciences, and are, in fact, indispensable for dealing with living organisms or social groups. Thus a basic problem posed to modern science is a general theory of organization. General system theory is, in principle, capable of giving exact definitions for such concepts and, in suitable cases, of putting them to quantitative analysis." (Ludwig von Bertalanffy, "General System Theory", 1968)
"Technology can relieve the symptoms of a problem without affecting the underlying causes. Faith in technology as the ultimate solution to all problems can thus divert our attention from the most fundamental problem - the problem of growth in a finite system." (Donella A Meadows, "The Limits to Growth", 1972)
"When a mess, which is a system of problems, is taken apart, it loses its essential properties and so does each of its parts. The behavior of a mess depends more on how the treatment of its parts interact than how they act independently of each other. A partial solution to a whole system of problems is better than whole solutions of each of its parts taken separately." (Russell L Ackoff, "The future of operational research is past", The Journal of the Operational Research Society Vol. 30 (2), 1979)
"The world is a complex, interconnected, finite, ecological–social–psychological–economic system. We treat it as if it were not, as if it were divisible, separable, simple, and infinite. Our persistent, intractable global problems arise directly from this mismatch." (Donella Meadows,"Whole Earth Models and Systems", 1982)
"The real leverage in most management situations lies in understanding dynamic complexity, not detail complexity. […] Unfortunately, most 'systems analyses' focus on detail complexity not dynamic complexity. Simulations with thousands of variables and complex arrays of details can actually distract us from seeing patterns and major interrelationships. In fact, sadly, for most people 'systems thinking' means 'fighting complexity with complexity', devising increasingly 'complex' (we should really say 'detailed') solutions to increasingly 'complex' problems. In fact, this is the antithesis of real systems thinking."
"Systemic problems trace back in the end to worldviews. But worldviews themselves are in flux and flow. Our most creative opportunity of all may be to reshape those worldviews themselves. New ideas can change everything." (Anthony Weston, "How to Re-Imagine the World", 2007)
"All forms of complex causation, and especially nonlinear transformations, admittedly stack the deck against prediction. Linear describes an outcome produced by one or more variables where the effect is additive. Any other interaction is nonlinear. This would include outcomes that involve step functions or phase transitions. The hard sciences routinely describe nonlinear phenomena. Making predictions about them becomes increasingly problematic when multiple variables are involved that have complex interactions. Some simple nonlinear systems can quickly become unpredictable when small variations in their inputs are introduced." (Richard N Lebow, "Forbidden Fruit: Counterfactuals and International Relations", 2010)
"The problem of complexity is at the heart of mankind's inability to predict future events with any accuracy. Complexity science has demonstrated that the more factors found within a complex system, the more chances of unpredictable behavior. And without predictability, any meaningful control is nearly impossible. Obviously, this means that you cannot control what you cannot predict. The ability ever to predict long-term events is a pipedream. Mankind has little to do with changing climate; complexity does." (Lawrence K Samuels, "The Real Science Behind Changing Climate", 2014)
"Because the perfect system cannot be designed, there will always be weak spots that human ingenuity and resourcefulness can exploit." (Paul Gibbons, "The Science of Successful Organizational Change", 2015)
No comments:
Post a Comment