23 December 2006

IT: Computing (Just the Quotes)

"Let it be remarked [...] that an important difference between the way in which we use the brain and the machine is that the machine is intended for many successive runs, either with no reference to each other, or with a minimal, limited reference, and that it can be cleared between such runs; while the brain, in the course of nature, never even approximately clears out its past records. Thus the brain, under normal circumstances, is not the complete analogue of the computing machine but rather the analogue of a single run on such a machine." (Norbert Wiener, "Cybernetics: Or Control and Communication in the Animal and the Machine", 1948)

"There are two types of systems engineering - basis and applied. [...] Systems engineering is, obviously, the engineering of a system. It usually, but not always, includes dynamic analysis, mathematical models, simulation, linear programming, data logging, computing, optimating, etc., etc. It connotes an optimum method, realized by modern engineering techniques. Basic systems engineering includes not only the control system but also all equipment within the system, including all host equipment for the control system. Applications engineering is - and always has been - all the engineering required to apply the hardware of a hardware manufacturer to the needs of the customer. Such applications engineering may include, and always has included where needed, dynamic analysis, mathematical models, simulation, linear programming, data logging, computing, and any technique needed to meet the end purpose - the fitting of an existing line of production hardware to a customer's needs. This is applied systems engineering." (Instruments and Control Systems Vol. 31, 1958)

"The mathematical and computing techniques for making programmed decisions replace man but they do not generally simulate him." (Herbert A Simon, "Management and Corporations 1985", 1960)

"There is the very real danger that a number of problems which could profitably be subjected to analysis, and so treated by simpler and more revealing techniques. will instead be routinely shunted to the computing machines [...] The role of computing machines as a mathematical tool is not that of a panacea for all computational ills." (Richard E Bellman & Paul Brock, "On the Concepts of a Problem and Problem-Solving", American Mathematical Monthly 67, 1960)

"The purpose of computing is insight, not numbers." (Richard W Hamming, "Numerical Methods for Scientists and Engineers", 1962)

"Another thing I must point out is that you cannot prove a vague theory wrong. If the guess that you make is poorly expressed and rather vague, and the method that you use for figuring out the consequences is a little vague - you are not sure, and you say, 'I think everything's right because it's all due to so and so, and such and such do this and that more or less, and I can sort of explain how this works' […] then you see that this theory is good, because it cannot be proved wrong! Also if the process of computing the consequences is indefinite, then with a little skill any experimental results can be made to look like the expected consequences." (Richard P Feynman, "The Character of Physical Law", 1965)

"Computational reducibility may well be the exception rather than the rule: Most physical questions may be answerable only through irreducible amounts of computation. Those that concern idealized limits of infinite time, volume, or numerical precision can require arbitrarily long computations, and so be formally undecidable." (Stephen Wolfram, Undecidability and intractability in theoretical physics", Physical Review Letters 54 (8), 1985)

"We distinguish diagrammatic from sentential paper-and-pencil representations of information by developing alternative models of information-processing systems that are informationally equivalent and that can be characterized as sentential or diagrammatic. Sentential representations are sequential, like the propositions in a text. Diagrammatic representations are indexed by location in a plane. Diagrammatic representations also typically display information that is only implicit in sentential representations and that therefore has to be computed, sometimes at great cost, to make it explicit for use. We then contrast the computational efficiency of these representations for solving several. illustrative problems in mathematics and physics." (Herbert A Simon, "Why a diagram is (sometimes) worth ten thousand words", 1987)

"Neural computing is the study of cellular networks that have a natural property for storing experimental knowledge. Such systems bear a resemblance to the brain in the sense that knowledge is acquired through training rather than programming and is retained due to changes in node functions. The knowledge takes the form of stable states or cycles of states in the operation of the net. A central property of such nets is to recall these states or cycles in response to the presentation of cues." (Igor Aleksander & Helen Morton, "Neural computing architectures: the design of brain-like machines", 1989)

"Beauty is more important in computing than anywhere else in technology because software is so complicated. Beauty is the ultimate defense against complexity." (David Gelernter, "Machine Beauty: Elegance And The Heart Of Technolog", 1998)

"As systems became more varied and more complex, we find that no single methodology suffices to deal with them. This is particularly true of what may be called information intelligent systems - systems which form the core of modern technology. To conceive, design, analyze and use such systems we frequently have to employ the totality of tools that are available. Among such tools are the techniques centered on fuzzy logic, neurocomputing, evolutionary computing, probabilistic computing and related methodologies. It is this conclusion that formed the genesis of the concept of soft computing." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic: A personal perspective", 1999)

"In science, it is a long-standing tradition to deal with perceptions by converting them into measurements. But what is becoming increasingly evident is that, to a much greater extent than is generally recognized, conversion of perceptions into measurements is infeasible, unrealistic or counter-productive. With the vast computational power at our command, what is becoming feasible is a counter-traditional move from measurements to perceptions. […] To be able to compute with perceptions it is necessary to have a means of representing their meaning in a way that lends itself to computation." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic: A personal perspective", 1999)

"Why was progress in computing technology so fast compared with the lack of progress in space travel? The reason is very simple: computing technology is only now approaching scientific limits such as quantum uncertainty and the speed of light, while space technology has already run into its limits that derive from the basic principles of physics and chemistry." (Mordechai Ben-Ari, "Just a Theory: Exploring the Nature of Science", 2005)

"Granular computing is a general computation theory for using granules such as subsets, classes, objects, clusters, and elements of a universe to build an efficient computational model for complex applications with huge amounts of data, information, and knowledge. Granulation of an object a leads to a collection of granules, with a granule being a clump of points (objects) drawn together by indiscernibility, similarity, proximity, or functionality. In human reasoning and concept formulation, the granules and the values of their attributes are fuzzy rather than crisp. In this perspective, fuzzy information granulation may be viewed as a mode of generalization, which can be applied to any concept, method, or theory." (Salvatore Greco et al, "Granular Computing and Data Mining for Ordered Data: The Dominance-Based Rough Set Approach", 2009)

No comments:

Related Posts Plugin for WordPress, Blogger...