14 January 2019

🔬Data Science: Evolutionary Algorithm (Definitions)

"An Evolutionary Algorithm (EA) is a general class of fitting or maximization techniques. They all maintain a pool of structures or models that can be mutated and evolve. At every stage in the algorithm, each model is graded and the better models are allowed to reproduce or mutate for the next round. Some techniques allow the successful models to crossbreed. They are all motivated by the biologic process of evolution. Some techniques are asexual (so, there is no crossbreeding between techniques) while others are bisexual, allowing successful models to swap ''genetic' information. The asexual models allow a wide variety of different models to compete, while sexual methods require that the models share a common 'genetic' code." (William J Raynor Jr., "The International Dictionary of Artificial Intelligence", 1999)

"Meta-heuristic optimization approach inspired by natural evolution, which begins with potential solution models, then iteratively applies algorithms to find the fittest models from the set to serve as inputs to the next iteration, ultimately leading to a sub-optimal solution which is close to the optimal one." (Gilles Lebrun et al, "EA Multi-Model Selection for SVM", 2009)

"Evolutionary algorithms are search methods that can be used for solving optimization problems. They mimic working principles from natural evolution by employing a population–based approach, labeling each individual of the population with a fitness and including elements of random, albeit the random is directed through a selection process." (Ivan Zelinka & Hendrik Richter, "Evolutionary Algorithms for Chaos Researchers", Studies in Computational Intelligence Vol. 267, 2010)

"Population-based optimization algorithms in which each member of the population represents a candidate solution. In an iterative process the population members evolve and are then evaluated by a fitness function. Genetic Algorithms and Particle Swarm Optimization are examples of evolutionary algorithms." (Efstathios Kirkos, "Composite Classifiers for Bankruptcy Prediction", 2014)

"A collective term for all variants of (probabilistic) optimization and approximation algorithms that are inspired by Darwinian evolution. Optimal states are approximated by successive improvements based on the variation-selection paradigm. Thereby, the variation operators produce genetic diversity and the selection directs the evolutionary search." (Harish Garg, "A Hybrid GA-GSA Algorithm for Optimizing the Performance of an Industrial System by Utilizing Uncertain Data", 2015)

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.