28 January 2014

🕸Systems Engineering: Cybernetics (Definitions)

"Cybernetics […] combines under one heading the study of what in a human context is sometimes loosely described as thinking and in engineering is known as control and communication. In other words, cybernetics attempts to find the common elements in the functioning of automatic machines and of the human nervous system, and to develop a theory which will cover the entire field of control and communication in machines and in living organisms." (Norbert Wiener, "Cybernetics", 1948)

The 'cybernetics' of Wiener […] is the science of organization of mechanical and electrical components for stability and purposeful actions." (Qian Xuesen, "Engineering Cybernetics", 1954) 

"[Cybernetics is] the art of ensuring the efficacy of action." (Louis Couffignal, 1958)

"Cybernetics is the science of the process of transmission, processing and storage of information." (Sergei Sobolew, Woprosy Psychology, 1958)

"Cybernetics is the general science of communication. But to refer to communication is consciously or otherwise to refer to distinguishable states of information inputs and outputs and /or to information being processed within some relatively isolated system." (Henryk Greniewski, "Cybernetics without Mathematics", 1960)

"Cybernetics is the science or the art of manipulating defensible metaphors; showing how they may be constructed and what can be inferred as a result of their existence." (Gordon Pask, "The Cybernetics of Human Performance and Learning", 1966)

"Cybernetics is concerned with scientific investigation of systemic processes of a highly varied nature, including such phenomena as regulation, information processing, information storage, adaptation, self-organization, self-reproduction, and strategic behavior. Within the general cybernetic approach, the following theoretical fields have developed: systems theory (system), communication theory, game theory, and decision theory." (Fritz B Simon et al, "Language of Family Therapy: A Systemic Vocabulary and Source Book", 1985)

"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)

"Cybernetics is the study of systems and processes that interact with themselves and produce themselves from themselves." (Louis Kauffman, 2007)

"Cybernetics is the art of creating equilibrium in a world of possibilities and constraints." (Ernst von Glasersfeld, "Partial Memories: Sketches from an Improbable Life", 2010)

"Cybernetics is the study of systems which can be mapped using loops (or more complicated looping structures) in the network defining the flow of information. Systems of automatic control will of necessity use at least one loop of information flow providing feedback." (Alan Scrivener, "A Curriculum for Cybernetics and Systems Theory", 2012)

24 January 2014

🕸Systems Engineering: Chaos Theory (Definitions)

"A scientific approach – research effort which is based on examining behaviors of nonlinear dynamical systems, which are highly sensitive to their initial conditions." (Utku Köse & Ahmet Arslan, "Chaotic Systems and Their Recent Implementations on Improving Intelligent Systems", 2014)

"Study of deterministic behaviours that depend on initial conditions in physical, natural and social sciences." (Ayşe G Gözüm, "Evaluating HRM Functions within the Context of Chaos and Complexity Theory", 2016)

"The mathematical framework for understanding irregular and erratic fluctuations in economic cycles, financial markets, weather, other complex phenomenon, or non-linear systems with many variables." (Kijpokin Kasemsap, "Utilizing Complexity Theory and Complex Adaptive Systems in Global Business", 2016)

"The study of the behavior of dynamical systems that are highly sensitive to initial conditions." (Rohnn B Sanderson, "Understanding Chaos as an Indicator of Economic Stability", 2016)

"The theory that emerged from mathematics and used widely by other disciplines which concentrates on the dynamical systems." (Çağlar Doğru, "Leader-Member Exchange and Transformational Leadership in Chaos and Complexity", 2016)

"A field of study that explains nonlinear or dynamical systems." (Sharon E Norris, "Examining the Strategic Leadership of Organizations Using Metaphor: Brains and Flux-Interconnected and Interlocked", 2017)

"Chaos theory is the branch of mathematics deals with complicated linear dynamic systems." (Anandkumar R &  Kalpana R, "A Review on Chaos-Based Image Encryption Using Fractal Function", 2020)

"Suggests a randomness of understanding around complex patterns. These may be described as dynamic systems that reflect irregularities and is extremely sensitive to negligible fluctuations or moderations in situation." (Caroline M Crawford et al, "Social Learning Through a Participative Storytelling Framework: Rethinking the Essence of Course Engagement", 2021)

"Chaos theory is a branch of mathematics focusing on the study of chaos - dynamical systems whose random states of disorder and irregularities are governed by underlying patterns and deterministic laws that are highly sensitive to initial conditions." (Nima Norouzi, "Criminal Policy, Security, and Justice in the Time of COVID-19", 2022)

19 January 2014

🕸Systems Engineering: Complex Systems (Definitions)

"Roughly, by a complex system I mean one made up of a large number of parts that interact in a nonsimple way." (Herbert Simon, "The Architecture of Complexity", Proceedings of the American Philosophical Society Vol. 106 (6), 1962)

"A complex system is one which possesses mathematical images which are not dynamical systems." (Robert Rosen, On complex systems, European Journal of Operational Research Vol. 30 (2), 1987)

"A complex system is a system formed out of many components whose behavior is emergent, that is, the behavior of the system cannot be simply inferred from the behavior of its components." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"A system may be called complex here if its dimension (order) is too high and its model (if available) is nonlinear, interconnected, and information on the system is uncertain such that classical techniques can not easily handle the problem." (M Jamshidi, Autonomous Control on Complex Systems: Robotic Applications, Current Advances in Mechanical Design and Production VII, 2000)

"A highly coupled system where the outcomes of the system are the result of the interactions that occur between its different components." (David Lyell et al, "Health Systems Simulation", Encyclopedia of Healthcare Information Systems, 2008)

"Network-based systems characterized by feedback-driven flow of information, openness, self-organization, and emergence. (Ani Calinescu & Janet Efstathiou, "Measures of Network Structure", Encyclopedia of Networked and Virtual Organizations, 2008) 

"[a complex system is] a system in which large networks of components with no central control and simple rules of operation give rise to complex collective behavior, sophisticated information processing, and adaptation via learning or evolution." (Melanie Mitchell, "Complexity: A Guided Tour", 2009)

"Systems made of several interconnected simple parts which altogether exhibit a high degree of complexity from each emerges a higher order behaviour." (Radu Mutihac, "Mathematical Modeling of Artificial Neural Networks", Encyclopedia of Artificial Intelligence, 2009)

"CS [complex system] is a system composed of many heterogeneous agents, which are nonlinearly interconnected, while the final emergence of the system is completely different than the individual element`s performance." (Shahrooz V Manesha & Massimo Tadi, "Sustainable urban morphology emergence via complex adaptive system analysis: sustainable design in existing contex", Procedia Engineering 21, 2011)

"A system that exhibits a mutual interdependency of components and for which a change in the input parameter(s) can result in a non-proportional large or small change of the system output." (Alexander Kolker, Management Science for Healthcare Applications, Encyclopedia of Business Analytics and Optimization, 2014) 

"A system whose intricacy impedes the forecasting of its behaviour." (Valentina M Ghinea, "Modelling and Simulation of the Need for Harmonizing the European Higher Education Systems", Handbook of Research on Trends in European Higher Education Convergence, 2014)

"A system which is usually composed of large number of possibly heterogeneous interacting agents, which are seen to exhibit emergent behavior." (Stephen E Glavin & Abhijit Sengupta, "Modelling of Consumer Goods Markets: An Agent-Based Computational Approach", Handbook of Research on Managing and Influencing Consumer Behavior, 2015)

"Complex systems are networks made of a number of components that interact with each other, typically in a nonlinear fashion. Complex systems may arise and evolve through self-organization, such that they are neither completely regular nor completely random, permitting the development of emergent behavior at macroscopic scales." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"The occurrence of new phenomena generated unpredictably by the interaction of simple rules and individual mechanisms that are in constant flux and interaction. Emergence suggests something novel is perpetually emerging at a systems/global level as the world and environment constantly shifts and changes at a mechanistic/local level." (Kathy Sanford & Tim Hopper, "Digital Media in the Classroom: Emergent Perspectives for 21st Century Learners", Handbook of Research on Digital Media and Creative Technologies, 2015)

"A system characterized by the number of the elements that constitute it, and by the nature of the interactions between these elements." (Manuela Piscitelli, "Application of Complexity Theory in Representation of the City", Handbook of Research on Chaos and Complexity Theory in the Social Sciences, 2016)

"A complex system means a system whose perceived complicated behaviors can be attributed to one or more of the following characteristics: large number of element, large number of relationships among elements, non-linear and discontinuous relationship, and uncertain characteristics of elements." (Chunfang Zhou, "Fostering Creative Problem Solvers in Higher Education: A Response to Complexity of Societies", Handbook of Research on Creative Problem-Solving Skill Development in Higher Education, 2017)

"System made up of many interconnected elements on various levels; interactions on lower levels give rise to events on higher levels." (Naomi Thompson & Joshua Danish, "Designing BioSim: Playfully Encouraging Systems Thinking in Young Children", Handbook of Research on Serious Games for Educational Applications, 2017)

18 January 2014

🕸Systems Engineering: Emergence (Definitions)

"Emergence is the phenomenon of properties, capabilities and behaviours evident in the whole system that are not exclusively ascribable to any of its parts." (Derek Hitchins, "Advanced Systems Thinking, Engineering and Management", 2003)

"The process of complex pattern formation from simpler rules; emergent properties are neither properties had by any parts of the system taken in isolation nor a resultant of a mere summation of properties of parts of the system." (Ani Calinescu & Janet Efstathiou, "Measures of Network Structure", Encyclopedia of Networked and Virtual Organizations, 2008) 

"A process where phenomena at a certain level arise from interactions at lower levels. The term is sometimes used to denote a property of a system not contained in any one of its parts." (Max Lungarella & Gabriel Gómez, "Developmental Robotics", Encyclopedia of Artificial Intelligence, 2009)

"Emergence is defined as the occurrence of new processes operating at a higher level of abstraction then is the level at which the local rules operate." (Jirí Kroc & Peter M A Sloot, "Complex Systems Modeling by Cellular Automata", Encyclopedia of Artificial Intelligence, 2009)

"Phenomenon through which complex systems and patterns emerge from multiple simple and local interactions. Emergence is central to the theory of complex systems." (Marielba Zacarias et al, "Modeling Human Resources in the Emergent Organization", Handbook of Research on E-Transformation and Human Resources Management Technologies, 2009)

"Refers to new unexpected behaviors and patterns that arise out of a multiplicity of relatively simple interactions. An emergent behavior can appear when a number of simple entities (agents) operate in an environment while forming more complex behaviors as a community."  (Andrew Kuznetsov, "Synthetic Biology as a Proof of Systems Biology", Handbook of Research on Systems Biology Applications in Medicine, 2009)

"The process of coherent patterns of behavior arising from the self-organizing aspects of complex systems." (Brian L Heath & Raymond R. Hill, "Agent-Based Modeling: A Historical Perspective and a Review of Validation and Verification Efforts", Handbook of Research on Discrete Event Simulation Environments: Technologies and Applications, 2010)

"The notion of emergence is used in a variety of disciplines such as evolutionary biology, the philosophy of mind and sociology, as well as in computational and complexity theory. It is associated with non-reductive naturalism, which claims that a hierarchy of levels of reality exist. While the emergent level is constituted by the underlying level, it is nevertheless autonomous from the constituting level. As a naturalistic theory, it excludes non-natural explanations such as vitalistic forces or entelechy. As non-reductive naturalism, emergence theory claims that higher-level entities cannot be explained by lower-level entities." (Martin Neumann, "An Epistemological Gap in Simulation Technologies and the Science of Society", 2011)

"Emergence is a nontrivial relationship between the properties of a system at microscopic and macroscopic scales. Macroscopic properties are called emergent when it is hard to explain them simply from microscopic properties." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"Process whereby global patterns arise through interactions between local and simple entities that themselves do not exhibit such patterns." (Carlos M Fernandes & Ivo D de Sousa, "Digital Swarms: Social Interaction and Emergent Phenomena in Personal Communications Networks, 2017)

"The insurgence, in a group or collective of individuals, of properties that are not shared by any single individual. It is the 'more' in the expression 'the whole is more than just the sum of its constituent parts'." (Alessio Erioli, "Anexact Paths: Computation, Continuity, and Tectonics in the Design Process", Handbook of Research on Form and Morphogenesis in Modern Architectural Contexts, 2018)

"Unexpected phenomena appearing (and often having a regularity or pattern) from a collection of apparently unrelated elements and where the elements themselves do not have the characteristics of the phenomena and that phenomena itself is not contained deductively within the elements." (Jeremy Horne, "Visualizing Big Data From a Philosophical Perspective", Handbook of Research on Big Data Storage and Visualization Techniques, 2018)

"A feature in a complex system that is generated through the dynamic interactions between the parts of a system at one level, and is realized at the next level of organization without intentionality or causality." (A Faye Bres, "Integral Post-Analysis of Design-Based Research of an Organizational Learning Process for Strategic Renewal of Environmental Management", Integral Theory and Transdisciplinary Action Research in Education, 2019)

"Feature of complex systems, meaning that the interactions between system’s components lead to unexpected behavioral properties, resulting from system’s self-organizational processes." (Francesca Costanza, "Managing Patients' Organizations to Improve Healthcare: Emerging Research and Opportunities", 2020)

"The capacity for a system to produce outputs which were unexpected by the original designers." (Kenneth Chen, "The Fallacies of MDA for Novice Designers: Overusing Mechanics and Underusing Aesthetics", Interactivity and the Future of the Human-Computer Interface, 2020)

🕸Systems Engineering: Self-Organization (Definitions)

"Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local interactions." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"Self-organization refers to the spontaneous formation of patterns and pattern change in open, nonequilibrium systems." (J A Scott Kelso, "Dynamic Patterns : The Self-organization of Brain and Behavior", 1995)

"[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations." (Fritjof  Capra, "The web of life: a new scientific understanding of living  systems", 1996)

"A system described as self-organizing is one in which elements interact in order to achieve dynamically a global function or behavior." (Carlos Gershenson, "A general methodology for designing self-organizing systems", 2006)

"In engineering, a self-organizing system would be one in which elements are designed to dynamically and autonomously solve a problem or perform a function at the system level." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"The components of a system make local decisions that have a coherent, organizing impact on the system as a whole. Therefore, the system displays organization without any external organizing principle being applied." (Ani Calinescu & Janet Efstathiou, "Measures of Network Structure", Encyclopedia of Networked and Virtual Organizations, 2008) 

"The process by which a system chooses way at a bifurcation point as a result of both individual variability and communication between individuals." (Tomas Backström & Marianne Döös, "Relatonics as a Key Concept for Networked Organizations", Encyclopedia of Networked and Virtual Organizations, 2008)

"A characteristic of complex and adaptive systems that display emergent behavior. A structure that self-organizes and gets its smarts from below; agents residing on a scale start producing behavior that lies one scale above them (e.g., ants create colonies, learners create learning communities)." (Daniel Burgos et al, Design Guidelines for Collaboration and Participation with Examples from the LN4LD, Handbook of Research on Learning Design and Learning Objects, 2009)

"It is a process in which the internal organization of a system, normally an open system, increases in complexity without being guided or managed by an outside source. Self-organizing systems typically exhibit emergent behavior." (Vineet R Khare & Frank Z Wang, "Bio-Inspired Grid Resource Management", Handbook of Research on Grid Technologies and Utility Computing, 2009)

"Self-organization is a process typically occurring within complex systems where a system is continuously fed by energy, which is transformed into a new system state or operational mode by a dissipation of energy and/or information." (Jirí Kroc & Peter M A Sloot, "Complex Systems Modeling by Cellular Automata", Encyclopedia of Artificial Intelligence, 2009)

"The ability of a system to arrange and organize itself spontaneously under appropriate circumstances in a purposeful (non-random) manner without any help of external agencies." (Ali Diab & Andreas Mitschele-Thiel, "Self-Organization Activities in LTE-Advanced Networks", Handbook of Research on Progressive Trends in Wireless Communications and Networking, 2014)

"Self-organization is a dynamical process by which a system spontaneously forms nontrivial macroscopic structures and/or behaviors over time." (Hiroki Sayama, "Introduction to the Modeling and Analysis of Complex Systems", 2015)

"Refers to how a system of agents organizes itself into a higher order and emerges from a set of simple rules in an interconnected network." (Wassim J Aloulou, "Understanding Entrepreneurship through Chaos and Complexity Perspectives", Handbook of Research on Chaos and Complexity Theory in the Social Sciences, 2016)

"The ability of a system to spontaneously arrange its components in a purposeful (non-random) manner, under appropriate conditions but without the help of an external agency." (Kijpokin Kasemsap, "Utilizing Complexity Theory and Complex Adaptive Systems in Global Business", Handbook of Research on Chaos and Complexity Theory in the Social Sciences, 2016)

"A process where a form of global order in a system (emergence of patterns at the global scale) arises by means and as a consequence of local interactions." (Alessio Erioli, "Anexact Paths: Computation, Continuity, and Tectonics in the Design Process", Handbook of Research on Form and Morphogenesis in Modern Architectural Contexts, 2018)

"This is a phenomenon, where elements self-organize under the influence of stimuli. In an organisation for self-organisation three elements are crucial: the purpose, values (principles) and the motivation of employees that is results from their responsibility." (Edyta Abramek, "Training Company Self-Organization", Handbook of Research on Autopoiesis and Self-Sustaining Processes for Organizational Success, 2021)

16 January 2014

🕸Systems Engineering: System (Definitions)

"A system is an imaginary machine invented to connect together in the fancy those different movements and effects which are already in reality performed." (Adam Smith, "The Wealth of Nations", 1776)

"A system is a methodical arrangement of propositions and proofs; and without such arrangement, no distinct and certain knowlege of any subject can be obtained." (Johann G Burckhardt, 1797) 

"A system is a set of objects compromising all that stands to one another in a group of connected relations." (Charles S Peirce, "Cambridge Lectures on Reasoning and the Logic of Things: Detached Ideas on Vitally Important Topics", 1898)

"A system is a whole which is composed of various parts. But it is not the same thing as an aggregate or heap. In an aggregate or heap, no essential relation exists between the units of which it is composed. In a heap of grain, or pile of stones, one may take away part without the other part being at all affected thereby. But in a system, each part has a fixed and necessary relation to the whole and to all the other parts." (James E Creighton, "An Introductory Logic"‎, 1909)

"A system is any portion of the universe set aside for certain specified purposes. For our concern, a system is set aside from the universe in a manner that will enable this system to be built without having to consider the total universe. Therefore, the system is set aside from the universe by its inputs and outputs - its boundaries." (Kay Inaba et al, "A rational method for applying behavioral technology to man-machine system design", 1956)

"A System is a set of elements in interaction." (Ludwig von Bertalanffy, "General System Theory", 1968)

"A system is a set of two or more elements that satisfies the following three conditions. (1) The behavior of each element has an effect on the behavior of the whole. (2) The behavior of the elements and their effects on the whole are interdependent. the way each element behaves and the way it affects the whole depends on how at least one other element behaves. (3) However subgroups of the elements are formed, each has an effect on the behavior of the whole and none has an independent effect on it." (Russell L Ackoff, "Creating the Corporate Future", 1981) 

"A system is a network of interdependent components that work together to try to accomplish the aim of the system.” (William E Deming, "The New Economics for Industry, Government, Education”, 1993)

"In the most abstract sense, a system is a set of objects together with relationships among the objects. Such a definition implies that a system has properties, functions, and dynamics distinct from its constituent objects and relationships." (Tom R. Burns, "System Theories", 2006) 

"A complex entity that comprises a set of components, along with their properties, relationships and processes, which is described by an equivalent mathematical model." (Evangelos C Papakitsos et al, "The Challenges of Work-Based Learning via Systemic Modelling in the European Union", 2020)

"A group of elements or parts that are organized and interrelated in a pattern of structures that design a specific set of behaviors, often classified as its 'function' or 'purpose'." (Tatiana C Valencia & Stephanie J Valencia, "Cultivating Flow and Happiness in Children", 2020)

"Any notion or physical entity, comprising of mutually interlinked and interacting parts; a set of elements and relationships between them capable of realizing specified objectives; set of elements with specified structure and enabling logically ordered whole, arranged set of statements, views." (Jaroslaw Zelinski, "Synthesis of MOF, MDA, PIM, MVC, and BCE Notations and Patterns", 2020)

12 January 2014

🕸Systems Engineering: Systems Theory (Definitions)

"Systems theory pursues the scientific exploration and understanding of systems that exist in the various realms of experience, in order to arrive at a general theory of systems: an organized expressing of sets of interrelated concepts and principles that apply to all systems." (Béla H Bánáthy, "Systems Design of Education", 1991)

"Systems theory is an interdisciplinary field of science concerned with the nature of complex systems, be they physical or natural or purely mathematical." (Thomas B Sheridan, The System Perspective on Human Factors in Aviation, 2010) 

"Systems theory is the interdisciplinary study of systems in general, with the goal of elucidating principles that can be applied to all types of systems at all nesting levels in all fields of research. The term does not yet have a well-established, precise meaning, but systems theory can reasonably be considered a specialization of systems thinking; alternatively as a goal output of systems science and systems engineering, with an emphasis on generality useful across a broad range of systems (versus the particular models of individual fields)." (Gabriela Walker & Elizabeth Pattison, "Using Bronfenbrenner's Ecological Framework to Design Support Systems for Education and Special Education: Learning About Thought Systems", 2016)

"The assumption that quality of a part of a system can only be understood in its relationship to the whole and investigating the parts in isolation cannot explain their combined effect on the whole system." (Margaret S Suubi, "Education for Sustainable Development (ESD) in Higher Education", 2019) 

"Framework of describing how smaller, multiple units and components work together to create a larger system that is designed to carry out a particular function or meet a certain goal." (RaMonda Horton, "Systems-Based Approaches to Speech-Language Pathology Service Delivery for School Age Children", 2020)

"Is an interdisciplinary study of systems that takes a holistic approach to analysis that focuses on the elements within a system, how they interrelate, how they work over time and within the context of larger systems (e.g., natural or man-made)." (Tatiana C Valencia & Stephanie J Valencia, "Cultivating Flow and Happiness in Children", 2020)

"Systems theory is an interdisciplinary theory about the nature of complex systems in nature, society, and science. It is a framework by which one can use to study, investigate and describe any group of objects that work in collaboration towards a common purpose/goal."
(Cheryl M Cordeiro et al, "Culture From a Value Systems Perspective", 2020)

"The domain of systems inquiry that explores the principles and the description models of the abstract organization of phenomena, in an interdisciplinary manner and independently of their nature (natural or social systems) or scale of existence." (Evangelos C Papakitsos et al, "The Challenges of Work-Based Learning via Systemic Modelling in the European Union", 2020)

"Theory that holds that systems in nature are holistic, interconnected and interdependent. If a change occurs in one part of a system, other parts of the system are affected as well." (Joe Monaco & Edward W Schneider, "Building Performance Systems That Last", 2020)
Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.