18 December 2011

📉Graphical Representation: Goals (Just the Quotes)

"If two or more data paths ate to appear on the graph. it is essential that these lines be labeled clearly, or at least a reference should be provided for the reader to make the necessary identifications. While clarity seems to be a most obvious goal, graphs with inadequate or confusing labeling do appear in publications, The user should not find identification of data paths troublesome or subject to misunderstanding. The designer normally should place no more than three data paths on the graph to prevent confusion - particularly if the data paths intersect at one or more points on the Cartesian plane." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"The information on a plot should be relevant to the goals of the analysis. This means that in choosing graphical methods we should match the capabilities of the methods to our needs in the context of each application. [...] Scatter plots, with the views carefully selected as in draftsman's displays, casement displays, and multiwindow plots, are likely to be more informative. We must be careful, however, not to confuse what is relevant with what we expect or want to find. Often wholly unexpected phenomena constitute our most important findings." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"We need [graphic] techniques because figures do not speak for themselves. Numbers alone seldom make a convincing case or polish their author's image - the twin goals of that other great mind bender, rhetoric. While rhetoric deals in qualitative argument, its quantitative equivalent is graphics. As rhetoric has declined in popularity, so graphics have risen along with our acceptance of quantitative arguments. In graphics, figures finally find their own means of expression." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"The main goal of data visualization is its ability to visualize data, communicating information clearly and effectively. It doesn’t mean that data visualization needs to look boring to be functional or extremely sophisticated to look beautiful. To convey ideas effectively, both aesthetic form and functionality need to go hand in hand, providing insights into a rather sparse and complex dataset by communicating its key aspects in a more intuitive way. Yet designers often tend to discard the balance between design and function, creating gorgeous data visualizations which fail to serve its main purpose - communicate information." (Vitaly Friedman, "Data Visualization and Infographics", Smashing Magazine, 2008)

"Communication is the primary goal of data visualization. Any element that hinders - rather than helps - the reader, then, needs to be changed or removed: labels and tags that are in the way, colors that confuse or simply add no value, uncomfortable scales or angles. Each element needs to serve a particular purpose toward the goal of communicating and explaining information. Efficiency matters, because if you’re wasting a viewer’s time or energy, they’re going to move on without receiving your message." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"Graphics, charts, and maps aren’t just tools to be seen, but to be read and scrutinized. The first goal of an infographic is not to be beautiful just for the sake of eye appeal, but, above all, to be understandable first, and beautiful after that; or to be beautiful thanks to its exquisite functionality." (Alberto Cairo, "The Functional Art", 2011)

"The first and main goal of any graphic and visualization is to be a tool for your eyes and brain to perceive what lies beyond their natural reach." (Alberto Cairo, "The Functional Art", 2011)

"Pie charts can be used effectively to summarize a single categorical data set if there are not too many different categories. However, pie charts are not usually the best tool if the goal is to compare groups on the basis of a categorical variable." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"Good design is an important part of any visualization, while decoration (or chart-junk) is best omitted. Statisticians should also be careful about comparing themselves to artists and designers; our goals are so different that we will fare poorly in comparison." (Hadley Wickham, "Graphical Criticism: Some Historical Notes", Journal of Computational and Graphical Statistics Vol. 22(1), 2013) 

"Usually, diagrams contain some noise – information unrelated to the diagram’s primary goal. Noise is decorations, redundant, and irrelevant data, unnecessarily emphasized and ambiguous icons, symbols, lines, grids, or labels. Every unnecessary element draws attention away from the central idea that the designer is trying to share. Noise reduces clarity by hiding useful information in a fog of useless data. You may quickly identify noise elements if you can remove them from the diagram or make them less intense and attractive without compromising the function." (Vasily Pantyukhin, "Principles of Design Diagramming", 2015)

"One of the main problems with the visual approach to statistical data analysis is that it is too easy to generate too many plots: We can easily become totally overwhelmed by the shear number and variety of graphics that we can generate. In a sense, we have been too successful in our goal of making it easy for the user: Many, many plots can be generated, so many that it becomes impossible to understand our data." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"A data story starts out like any other story, with a beginning and a middle. However, the end should never be a fixed event, but rather a set of options or questions to trigger an action from the audience. Never forget that the goal of data storytelling is to encourage and energize critical thinking for business decisions." (James Richardson, 2017)

📉Graphical Representation: Grids (Just the Quotes)

"The number of grid lines should be kept to a minimum. This means that there should be just enough coordinate lines in the field so that the eye can readily interpret the values at any point on the curve. No definite rule can be specified as to the optimum number of lines in a grid. This must be left to the discretion of the chart-maker and can come only from experience. The size of the chart, the type and range of the data. the number of curves, the length and detail of the period covered, as well as other factors, will help to determine the number of grid lines." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"Where the values of a series are such that a large part the grid would be superfluous, it is the practice to break the grid thus eliminating the unused portion of the scale, but at the same time indicating the zero line. Failure to include zero in the vertical scale is a very common omission which distorts the data and gives an erroneous visual impression." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"In line charts the grid structure plays a controlling role in interpreting facts. The number of vertical rulings should be sufficient to indicate the frequency of the plottings, facilitate the reading of the time values on the horizontal scale. and indicate the interval or subdivision of time." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"The impression created by a chart depends to a great extent on the shape of the grid and the distribution of time and amount scales. When your individual figures are a part of a series make sure your own will harmonize with the other illustrations in spacing of grid rulings, lettering, intensity of lines, and planned to take the same reduction by following the general style of the presentation." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"The scales used are important; contracting or expanding the vertical or horizontal scales will change the visual picture. The trend lines need enough grid lines to obviate difficulty in reading the results properly. One must be careful in the use of cross-hatching and shading, both of which can create illusions. Horizontal rulings tend to reduce the appearance. while vertical lines enlarge it. In summary, graphs must be reliable, and reliability depends not only on what is presented but also on how it is presented." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"Scatter charts show the relationships between information, plotted as points on a grid. These groupings can portray general features of the source data, and are useful for showing where correlationships occur frequently. Some scatter charts connect points of equal value to produce areas within the grid which consist of similar features." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Gray grids almost always work well and, with a delicate line, may promote more accurate data reading and reconstruction than a heavy grid. Dark grid lines are chartjunk. When a graphic serves as a look-up table (rare indeed), then a grid may help with reading and interpolation. But even then the grid should be muted relative to the data." (Edward R Tufte, "Envisioning Information", 1990)

"The binders, the charts, the grids may seem formidable, but the meetings themselves are built around informality, trust, emotion and humor." (Jack Welch, "Jack: Straight from the Gut", 2001)

"Usually, diagrams contain some noise – information unrelated to the diagram’s primary goal. Noise is decorations, redundant, and irrelevant data, unnecessarily emphasized and ambiguous icons, symbols, lines, grids, or labels. Every unnecessary element draws attention away from the central idea that the designer is trying to share. Noise reduces clarity by hiding useful information in a fog of useless data. You may quickly identify noise elements if you can remove them from the diagram or make them less intense and attractive without compromising the function." (Vasily Pantyukhin, "Principles of Design Diagramming", 2015)

"It is generally a good idea to avoid gridlines, vertical lines, and double lines. Use single horizontal lines to separate the title, headers, and content. Lines are also employed to identify column spanners, which are used to group particular columns of data." (John Hoffmann, "Principles of Data Management and Presentation", 2017)

17 December 2011

📉Graphical Representation: Misleading (Just the Quotes)

"The zero of the scale should appear on every chart, and should shown by a heavy line carried across the sheet. If this is not done the reader may assume the bottom of the sheet to be zero and so be misled. The scale should be graduated from zero to a little over the maximum figure to be plotted on the charts, so that there will be a space between the highest peak on the curve and the top of the chart." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"Under certain conditions, however, the ordinary form of graphic chart is slightly misleading. It will be conceded that its true function is to portray comparative fluctuations. This result is practically secured when the factors or quantities compared are nearly of the same value or volume, but analysis will show that this is not accomplished when the amounts compared differ greatly in value or volume. [...] The same criticism applies to charts which employ or more scales for various curve. If the different scale are in proper proportion, the result is the same as with one scale, but when two or more scales are used which are not proportional an indication may be given with respect to comparative fluctuations which is absolutely false." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"When plotting any curve the vertical scale should, if possible, be chosen so that the zero of the scale will appear on the chart. Otherwise, the reader may assume the bottom of the chart to be zero and so be grossly misled. Zero should always be indicated by a broad line much wider than the ordinary co-ordinate lines used for the background of the chart." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"Admittedly a chart is primarily a picture, and for presentation purposes should be treated as such; but in most charts it is desirable to be able to read the approximate magnitudes by reference to the scales. Such reference is almost out of the question without some rulings to guide the eye. Second, the picture itself may be misleading without enough rulings to keep the eye 'honest'. Although sight is the most reliable of our senses for measuring" (and most other) purposes, the unaided eye is easily deceived; and there are numerous optical illusions to prove it. A third reason, not vital, but still of some importance, is that charts without rulings may appear weak and empty and may lack the structural unity desirable in any illustration." (Kenneth W Haemer, "Hold That Line. A Plea for the Preservation of Chart Scale Ruling", The American Statistician Vol. 1" (1) 1947)

"[….] double-scale charts are likely to be misleading unless the two zero values coincide" (either on or off the chart). To insure an accurate comparison of growth the scale intervals should be so chosen that both curves meet at some point. This treatment produces the effect of percentage relatives or simple index numbers with the point of juncture serving as the base point. The principal advantage of this form of presentation is that it is a short-cut method of comparing the relative change of two or more series without computation. It is especially useful for bringing together series that either vary widely in magnitude or are measured in different units and hence cannot be compared conveniently on a chart having only one absolute-amount scale. In general, the double scale treatment should not be used for presenting growth comparisons to the general reader." (Kenneth W Haemer, "Double Scales Are Dangerous", The American Statistician Vol. 2" (3) , 1948)

"An important rule in the drafting of curve charts is that the amount scale should begin at zero. In comparisons of size the omission of the zero base, unless clearly indicated, is likely to give a misleading impression of the relative values and trend." (Rufus R Lutz, "Graphic Presentation Simplified", 1949)

"Percentages offer a fertile field for confusion. And like the ever-impressive decimal they can lend an aura of precision to the inexact. […] Any percentage figure based on a small number of cases is likely to be misleading. It is more informative to give the figure itself. And when the percentage is carried out to decimal places, you begin to run the scale from the silly to the fraudulent." (Darell Huff, "How to Lie with Statistics", 1954)

"Just like the spoken or written word, statistics and graphs can lie. They can lie by not telling the full story. They can lead to wrong conclusions by omitting some of the important facts. [...] Always look at statistics with a critical eye, and you will not be the victim of misleading information." (Dyno Lowenstein, "Graphs", 1976)

"Probably one of the most common misuses" (intentional or otherwise) of a graph is the choice of the wrong scale - wrong, that is, from the standpoint of accurate representation of the facts. Even though not deliberate, selection of a scale that magnifies or reduces - even distorts - the appearance of a curve can mislead the viewer." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"Graphs are used to meet the need to condense all the available information into a more usable quantity. The selection process of combining and condensing will inevitably produce a less than complete study and will lead the user in certain directions, producing a potential for misleading." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"Reliability is highly valued by accountants and has been defined as 'the faithfulness with which it" (information) represents what it purports to represent'. The reason reliability is so important is that an essential characteristic of an accounting report is its acceptance, and if a report is considered to be misleading or superfluous, it and future reports will be disregarded." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"There are two kinds of misrepresentation. In one. the numerical data do not agree with the data in the graph, or certain relevant data are omitted. This kind of misleading presentation. while perhaps hard to determine, clearly is wrong and can be avoided. In the second kind of misrepresentation, the meaning of the data is different to the preparer and to the user." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"The bar of a bar chart has two aspects that can be used to visually decode quantitative information-size" (length and area) and the relative position of the end of the bar along the common scale. The changing sizes of the bars is an important and imposing visual factor; thus it is important that size encode something meaningful. The sizes of bars encode the magnitudes of deviations from the baseline. If the deviations have no important interpretation, the changing sizes are wasted energy and even have the potential to mislead." (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38 (4) 1984) 

"Comparing normal distributions reduces to comparing only means and standard deviations. If standard deviations are the same, the task even simpler: just compare means. On the other hand, means and standard deviations may be incomplete or misleading as summaries for nonnormal distributions." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Sometimes, when visualization thoroughly reveals the structure of a set of data, there is a tendency to underrate the power of the method for the application. Little effort is expended in seeing the structure once the right visualization method is used, so we are mislead into thinking nothing exciting has occurred." (William S Cleveland, "Visualizing Data", 1993)

"The rule is that a graph of a change in a variable with time should always have a vertical scale that starts with zero. Otherwise, it is inherently misleading." (Douglas A Downing & Jeffrey Clark, "Forgotten Statistics: A Self-Teaching Refresher Course", 1996)

"Averages, ranges, and histograms all obscure the time-order for the data. If the time-order for the data shows some sort of definite pattern, then the obscuring of this pattern by the use of averages, ranges, or histograms can mislead the user. Since all data occur in time, virtually all data will have a time-order. In some cases this time-order is the essential context which must be preserved in the presentation." (Donald J Wheeler," Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000

"Displaying numerical information always involves selection. The process of selection needs to be described so that the reader will not be misled." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"[...] when data is presented in certain ways, the patterns can be readily perceived. If we can understand how perception works, our knowledge can be translated into rules for displaying information. Following perception‐based rules, we can present our data in such a way that the important and informative patterns stand out. If we disobey the rules, our data will be incomprehensible or misleading." (Colin Ware, "Information Visualization: Perception for Design" 2nd Ed., 2004)

"Comparing series visually can be misleading […]. Local variation is hidden when scaling the trends. We first need to make the series stationary" (removing trend and/or seasonal components and/or differences in variability) and then compare changes over time. To do this, we log the series" (to equalize variability) and difference each of them by subtracting last year’s value from this year’s value." (Leland Wilkinson, "The Grammar of Graphics" 2nd Ed., 2005)

"[…] a graph is nothing but a visual metaphor. To be truthful, it must correspond closely to the phenomena it depicts: longer bars or bigger pie slices must correspond to more, a rising line must correspond to an increasing amount. If a graphical depiction of data does not faithfully follow this principle, it is almost sure to be misleading. But the metaphoric attachment of a graphic goes farther than this. The character of the depiction ism a necessary and sufficient condition for the character of the data. When the data change, so too must their depiction; but when the depiction changes very little, we assume that the data, likewise, are relatively unchanging. If this convention is not followed, we are usually misled." (Howard Wainer, "Graphic Discovery: A trout in the milk and other visuals" 2nd, 2008)

"Good graphic design is not a panacea for bad copy, poor layout or misleading statistics. If any one of these facets are feebly executed it reflects poorly on the work overall, and this includes bad graphs and charts." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"It is tempting to make charts more engaging by introducing fancy graphics or three dimensions so they leap of f the page, but doing so obscures the real data and misleads people, intentionally or not." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

The best advice for guiding your decisions about using color is to refer to the two key rules [...] - make sure it is used unobtrusively and it does not mislead by implying representation when it shouldn't be. As with all design layers, the sensible objective here should be to strive for elegance rather than novelty, eye-candy, or attractiveness. To achieve this, it is important to be aware of the different functions, choices, and potential issues surrounding color deployment." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"Your goal when designing a scattr plot is to make the relationship between two variables as clear as possible, including the overall level of association but also revealing clusters and outliers. This is easier said than done. The data and a few bad design choices can make reading a scatter plot too complex or misleading." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"Calculating the percent change between two percentages is not completely inaccurate, but it can be very misleading. Instead, you should use the absolute change when you are working with percentages and want to show the difference between two points in time." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"With skewed data, quantiles will reflect the skew, while adding standard deviations assumes symmetry in the distribution and can be misleading." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"The way we explore data today, we often aren't constrained by rigid hypothesis testing or statistical rigor that can slow down the process to a crawl. But we need to be careful with this rapid pace of exploration, too. Modern business intelligence and analytics tools allow us to do so much with data so quickly that it can be easy to fall into a pitfall by creating a chart that misleads us in the early stages of the process." (Ben Jones, "Avoiding Data Pitfalls: How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations", 2020) 

"There are many ways for error to creep into facts and figures that seem entirely straightforward. Quantities can be miscounted. Small samples can fail to accurately reflect the properties of the whole population. Procedures used to infer quantities from other information can be faulty. And then, of course, numbers can be total bullshit, fabricated out of whole cloth in an effort to confer credibility on an otherwise flimsy argument. We need to keep all of these things in mind when we look at quantitative claims. They say the data never lie - but we need to remember that the data often mislead." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"Data literacy empowers us to know the usage of data and how an algorithm can potentially be misleading, biased, and so forth; data literacy empowers us with the right type of skepticism that is needed to question everything." (Jordan Morrow, "Be Data Literate: The data literacy skills everyone needs to succeed", 2021)

In truth, no one knows how much bad data quality costs a company – even companies with mature data quality initiatives in place, who are measuring hundreds of data points for their quality struggle to accurately measure quantitative impact. This is often a deal-breaker for senior leaders when trying to get approval for a budget for data quality work. Data quality initiatives often seek substantial budgets and are up against projects with more tangible benefits." (Robert Hawker, "Practical Data Quality", 2023)

📉Graphical Representation: Pie Charts (Just the Quotes)

"Comparison between circles of different size should be absolutely avoided. It is inexcusable when we have available simple methods of charting so good and so convenient from every point of view as the horizontal bar." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"In general, the comparison of two circles of different size should be strictly avoided. Many excellent works on statistics approve the comparison of circles of different size, and state that the circles should always be drawn to represent the facts on an area basis rather than on a diameter basis. The rule, however, is not always followed and the reader has no way of telling whether the circles compared have been drawn on a diameter basis or on an area basis, unless the actual figures for the data are given so that the dimensions may be verified." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"Although the pie or sector chart ranks very high in popular appeal, it is held in rather low esteem by many specialists in graphic presentation. Since the pie chart possesses more weaknesses perhaps than most graphic forms, it is especially important to observe proper discretion in its construction and application. The pie chart is used to portray component relations. The various sectors of a circle represent component parts of an aggregate or total." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"First, it is generally inadvisable to attempt to portray a series of more than four or five categories by means of pie charts. If, for example, there are six, eight, or more categories, it may be very confusing to differentiate the relative values portrayed, especially if several small sectors are of approximately the same size. Second, the pie chart may lose its effectiveness if an attempt is made to compare the component values of several circles, as might be found in a temporal or geographical series. In such case the one-hundred percent bar or column chart is more appropriate. Third, although the proportionate values portrayed in a pie chart are measured as distances along arcs about the circle, actually there is a tendency to estimate values in terms of areas of sectors or by the size of subtended angles at the center of the circle." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"Circles of different size, however cannot properly be used to compare the size of different totals. This is because the reader does not know whether to compare the diameters or the areas (which vary as the squares of the diameters), and is likely to misjudge the comparison in either ease. Usually the circles are drawn so that their diameters are in correct proportion to each other; but then the area comparison is exaggerated. Component bars should be used to show totals of different size since their one dimension lengths can be easily judged not only for the totals themselves but for the component parts as well. Circles, therefore, can show proportions properly by variations in angles of sectors but not by variations in diameters."  (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Pie charts have weaknesses and dangers inherent in their design and application. First, it is generally inadvisable to attempt to portray more than four or five categories in a circle chart, especially if several small sectors are of approximately the same size.  It may be very confusing to differentiate the relative values. Secondly, the pie chart loses effectiveness if an effort is made to compare the component values of several circles, as might occur in a temporal or geographical series. [...] Thirdly, although values are measured by distances along the arc of the circle, there is a tendency to estimate values in terms of areas by size of angle. The 100-percent bar chart is often preferable to the circle chart's angle and area comparison as it is easier to divide into parts, more convenient to use, has sections that may be shaded for contrast with grouping possible by bracketing, and has an easily readable percentage scale outside the bars." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Data should not be forced into an uncomfortable or improper mold. For example, data that is appropriate for line graphs is not usually appropriate for circle charts and in any case not without some arithmetic transformation. Only graphs that are designed to fit the data can be used profitably." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"The varieties of circle charts are necessarily limited by the lack of basic design variation - a circle is a circle! Also, a circle can be considered as representing only one unit of area. regardless of its size. Thus, circle charts have limited applications, i.e., to show how a given quantity (area) is divided among its component parts,' or to show changes in the variable by showing area changes. A circle chart almost always presents some form of a part-to-total relationship." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"While circle charts are not likely to present especially new or creative ideas, they do help the user to visualize relationships. The relationships depicted by circle charts do not tend to be very complex, in contrast to those of some line graphs. Normally, the circle chart is used to portray a common type of relationship (namely. part-to-total) in an attractive manner and to expedite the message transfer from designer to user." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"A pie graph is a circle that is divided into wedges, like slices of a pie. It is particularly useful when statistics show as a half or a quarter of a total. The human eye can recognize half of a circle much more easily than half a length of a bar." (Dyno Lowenstein, "Graphs", 1976)

"Pie charts are awkward to label and do not fit as well on a report page as bar comparisons (vertical or horizontal). Thus a series of pies is less effective than a series of subdivided bars (or columns) for comparing a group of subdivided totals. Several pies require much more space than several bars. Moreover, the comparable components often are in a different location in each pie and so are hard to compare." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"The circle graph, or pie chart, appears to simple and 'nonstatistical', so it is a popular form of presentation for general readers. However, since the eye can compare linear distances more easily and accurately than angles or areas, the component parts of a total usually can be shown more effectively in a chart using linear measurement." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"A pie chart is comprised of a circle that is divided into segments by straight lines within the circle. The circle represents the total or whole amount. Each segment or wedge of the circle represents the proportion that a particular factor is of the total or whole amount. Thus, a pie chart in its entirety always represents whole amounts of either 100% or a total absolute number, such as 100 cents or 5,000 people. All of the segments of the pie when taken together (that is, in the aggregate) must add up to the total." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"If you want to dramatize comparisons in relation to the whole. use a pie chart. If you want to add coherence to the narrative, the pie chart also helps because it depicts a whole. If your main interest is in stressing the relationship of one factor to another, use bar charts. If you wish to achieve all these effects. you can use either type of chart. and decide on the basis of which one is more aesthetically or pictorially interesting." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"[…] the only worse design than a pie chart is several of them, for then the viewer is asked to compare quantities located in spatial disarray both within and between pies. […] Given their low data-density and failure to order numbers along a visual dimension, pie charts should never be used." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Pie charts have severe perceptual problems. Experiments in graphical perception have shown that compared with dot charts, they convey information far less reliably. But if you want to display some data, and perceiving the information is not so important, then a pie chart is fine." (Richard Becker & William S Cleveland," S-Plus Trellis Graphics User's Manual", 1996)

"The most ubiquitous graph is the pie chart. It is a staple of the business world. [...] Never use a pie chart. Present a simple list of percentages, or whatever constitutes the divisions of the pie chart." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"This pie chart violates several of the rules suggested by the question posed in the introduction. First, immediacy: the reader has to turn to the legend to find out what the areas represent; and the lack of color makes it very difficult to determine which area belongs to what code. Second, the underlying structure of the data is completely ignored. Third, a tremendous amount of ink is used to display eight simple numbers." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"We make angle judgments when we read a pie chart, but we don't judge angles very well. These judgments are biased; we underestimate acute angles (angles less than 90°) and overestimate obtuse angles (angles greater than 90°). Also, angles with horizontal bisectors (when the line dividing the angle in two is horizontal) appear larger than angles with vertical bisectors." (Naomi B Robbins, "Creating More effective Graphs", 2005)

"But here’s the contradictory thing about pie charts. A common argument in favor of pie charts is that reading the labels compensates for what really are our difficulties in reading them accurately. […] this is not an argument in favor of pie charts; rather, it’s an argument to the detriment of visualization. Shouldn’t we be able to read the chart without deciphering all the labels? If we have to read both the labels and the chart, the chart becomes pointless, as labels should complement rather than entirely support it." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"The donut, its spelling betrays its origins, is nearly always more deceit friendly than the pie, despite being modelled on a life-saving ring. This is because the hole destroys the second most important value- defining element, by hiding the slice angles in the middle." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"There are some chart types that occasionally appear in print but are so bad that they serve neither honesty nor deceit. Among these monuments to human ingenuity at the expense of common sense are the concentric donut and overlapping segments. The concentric donut is really just a bar or column chart bent back on itself to save space. However as anyone who has ever watched a two or four hundred metre race will know, to make sense of the order of arrival at the tape you have to stagger the start to take account of the bend in the track. Blithely ignoring this problem, the concentric donut uses to diminish the difference between the inner and the outer absolute values by anything up to 2.5 times." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"[…] a graph is nothing but a visual metaphor. To be truthful, it must correspond closely to the phenomena it depicts: longer bars or bigger pie slices must correspond to more, a rising line must correspond to an increasing amount. If a graphical depiction of data does not faithfully follow this principle, it is almost sure to be misleading. But the metaphoric attachment of a graphic goes farther than this. The character of the depiction ism a necessary and sufficient condition for the character of the data. When the data change, so too must their depiction; but when the depiction changes very little, we assume that the data, likewise, are relatively unchanging. If this convention is not followed, we are usually misled." (Howard Wainer, "Graphic Discovery: A trout in the milk and other visuals" 2nd, 2008)

"Generally pie charts are to be avoided, as they can be difficult to interpret particularly when the number of categories is greater than five. Small proportions can be very hard to discern […] In addition, unless the percentages in each of the individual categories are given as numbers it can be much more difficult to estimate them from a pie chart than from a bar chart […]." (Jenny Freeman et al, "How to Display Data", 2008)

"Dealing with a circular visualization and trying to compare its radial portions is always problematic. When designing with data, the story should always be told as clearly as possible. To do so, it is often best to avoid round charts and graphs." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"Sometimes itʼs better to have fewer choices and focus on the charts that best convey the story. A doughnut chart is not one of these. By removing the centre of a pie chart, it further hinders the ability to judge the weight of each segment. Moving from a healthy wedge to two arcs makes it harder for people to comprehend what value is represented. We know that a full pie chart is one hundred per cent and that any wedge is a fraction of that; if we are presented with only an arc, is it equivalent to the wedge, or is it less because it is missing a portion?" (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"Pie charts can be used effectively to summarize a single categorical data set if there are not too many different categories. However, pie charts are not usually the best tool if the goal is to compare groups on the basis of a categorical variable." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"The unique thing you get with a pie chart is the concept of there being a whole and, thus, parts of a whole. But if the visual is difficult to read, is it worth it?" (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"When it comes to presenting categorical data, pie charts allow an impression of the size of each category relative to the whole pie, but are often visually confusing, especially if they attempt to show too many categories in the same chart, or use a three-dimensional representation that distorts areas. [...] Multiple pie charts are generally not a good idea, as comparisons are hampered by the difficulty in assessing the relative sizes of areas of different shapes. Comparisons are better based on height or length alone in a bar chart." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"A great visual metaphor for representing structure is the pie chart. We divide it into slices and examine who got the largest piece [...] The emphasis is not on quantitative comparison (bigger or smaller), as with bar charts, but on the part of the whole (percentages)." (Alex Kolokolov & Maxim Zelensky, "Data Visualization with Microsoft Power BI", 2024)

"A pie chart is quite simple to create, and sometimes you may want to add a unique feature or 'cherry on the pie'. However, experiments with such traditional visualizations often lead to unsuccessful results. For classic visualizations, it’s best to follow the principle of 'one thought, one chart'.” (Alex Kolokolov & Maxim Zelensky, "Data Visualization with Microsoft Power BI", 2024)

"Pie and donut charts have the same purpose - visualizing the structure for a small number of categories (usually no more than six). These charts are built using the same parameters, with the only difference being that the donut chart has an inner space. They don’t have x-and yaxes, and for customization, you need to follow simple steps." (Alex Kolokolov & Maxim Zelensky, "Data Visualization with Microsoft Power BI", 2024)

"Pie charts, donut charts, and meter charts are really just stacked bar charts that have been bent—but remember that they should always add up to 100%. Radar charts use angle to show categories and position to show amounts. You can also use angle with position to create charts that show movement, direction, or change - on maps and on graphs with number axes, as well as on visualizations with category axes."  (Nancy Organ, "Data Visualization for People of All Ages", 2024)

📉Graphical Representation: Style (Just the Quotes)

"Graphic presentation is a functional form of art as much as modern painting or architectural design. The painter studies his subject to determine what colors and style and design will best express his ideas. The same kind of imagination is exercised by the graphic artist and analyst.  In addition, the graphic analyst has some of the same problems as the architect. The modern architect studies the family, its hobbies, interests, ambitions, and financial status, among other things, before he designs the new home. The graphic analyst should make just as thorough a study of the characteristics of the data and file uses for which it is intended before he designs his project. In the same way that the architect must know his materials and how they can best be used both in traditional ways and in new ways of his own devising, so must the graphic analyst be familiar with materials and techniques." (Mary E Spear, "Charting Statistics", 1952)

"Recognize effective results. Does the type of chart selected give a comprehensive picture of the situation? Does the size of chart and visual aid used satisfy all audience requirements? Do materials meet all reproduction problems? Is the layout well balanced and style of lettering uniform? Does the chart as a whole accurately present the facts? Is the projected idea an effective visual tool?" (Mary E Spear, "Charting Statistics", 1952)

"The impression created by a chart depends to a great extent on the shape of the grid and the distribution of time and amount scales. When your individual figures are a part of a series make sure your own will harmonize with the other illustrations in spacing of grid rulings, lettering, intensity of lines, and planned to take the same reduction by following the general style of the presentation." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Graphical competence demands three quite different skills: the substantive, statistical, and artistic. Yet now most graphical work, particularly at news publications, is under the direction of but a single expertise-the artistic. Allowing artist-illustrators to control the design and content of statistical graphics is almost like allowing typographers to control the content, style, and editing of prose. Substantive and quantitative expertise must also participate in the design of data graphics, at least if statistical integrity and graphical sophistication are to be achieved." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Good graphics can be spoiled by bad annotation. Labels must always be subservient to the information to be conveyed, and legibility should never be sacrificed for style. All the information on the sheet should be easy to read, and more important, easy to interpret. The priorities of the information should be clearly expressed by the use of differing sizes, weights and character of letters." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"The prevailing style of management must undergo transformation. A system cannot understand itself. The transformation requires a view from outside. The aim [...] is to provide an outside view - a lens - that I call a system of profound knowledge. It provides a map of theory by which to understand the organizations that we work in." (Dr. W. Edwards Deming, "The New Economics for Industry, Government, Education", 1994)

"The principles of analytical design are universal - like mathematics, the laws of Nature, the deep structure of language - and are not tied to any particular language, culture, style, century, gender, or technology of information display." (Edward R Tufte, "Beautiful Evidence", 2006)

"What distinguishes data tables from graphics is explicit comparison and the data selection that this requires. While a data table obviously also selects information, this selection is less focused than a chart's on a particular comparison. To the extent that some figures in a table are visually emphasised. say in colour or size and style of print. the table is well on its way to becoming a chart. If you're making no comparisons - because you have no particular message and so need no selection" (in other words, if you are simply providing a database, number quarry or recycling facility) - tables are easier to use than charts." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"For a given dataset there is not a great deal of advice which can be given on content and context. Those who know their own data should know best for their specific purposes. It is advisable to think hard about what should be shown and to check with others if the graphic makes the desired impression. Design should be let to designers, though some basic guidelines should be followed: consistency is important (sets of graphics should be in similar style and use equivalent scaling); proximity is helpful (place graphics on the same page, or on the facing page, of any text that refers to them); and layout should be checked" (graphics should be neither too small nor too large and be attractively positioned relative to the whole page or display)." (Antony Unwin, "Good Graphics?" [in "Handbook of Data Visualization"], 2008)

"There is often no one 'best' visualization, because it depends on context, what your audience already knows, how numerate or scientifically trained they are, what formats and conventions are regarded as standard in the particular field you’re working in, the medium you can use, and so on. It’s also partly scientific and partly artistic, so you get to express your own design style in it, which is what makes it so fascinating." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"A semantic approach to visualization focuses on the interplay between charts, not just the selection of charts themselves. The approach unites the structural content of charts with the context and knowledge of those interacting with the composition. It avoids undue and excessive repetition by instead using referential devices, such as filtering or providing detail-on-demand. A cohesive analytical conversation also builds guardrails to keep users from derailing from the conversation or finding themselves lost without context. Functional aesthetics around color, sequence, style, use of space, alignment, framing, and other visual encodings can affect how users follow the script." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Colors and numbers are much more similar than we think. Using contrasting colors on different forms of information allows your audience to make a very clear delineation between the two, even when the setup and style are completely the same." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

16 December 2011

📉Graphical Representation: Objectivity (Just the Quotes)

"Indeed the language of statistics is rarely as objective as we imagine. The way statistics are presented, their arrangement in a particular way in tables, the juxtaposition of sets of figures, in itself reflects the judgment of the author about what is significant and what is trivial in the situation which the statistics portray." (Ely Devons, "Essays in Economics", 1961)

"The use of statistical methods to analyze data does not make a study any more 'scientific', 'rigorous', or 'objective'. The purpose of quantitative analysis is not to sanctify a set of findings. Unfortunately, some studies, in the words of one critic, 'use statistics as a drunk uses a street lamp, for support rather than illumination'. Quantitative techniques will be more likely to illuminate if the data analyst is guided in methodological choices by a substantive understanding of the problem he or she is trying to learn about. Good procedures in data analysis involve techniques that help to (a) answer the substantive questions at hand, (b) squeeze all the relevant information out of the data, and (c) learn something new about the world." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974

"The more complex the shape of any object. the more difficult it is to perceive it. The nature of thought based on the visual apprehension of objective forms suggests, therefore, the necessity to keep all graphics as simple as possible. Otherwise, their meaning will be lost or ambiguous, and the ability to convey the intended information and to persuade will be inhibited." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"Making a presentation is a moral act as well as an intellectual activity. The use of corrupt manipulations and blatant rhetorical ploys in a report or presentation - outright lying, flagwaving, personal attacks, setting up phony alternatives, misdirection, jargon-mongering, evading key issues, feigning disinterested objectivity, willful misunderstanding of other points of view - suggests that the presenter lacks both credibility and evidence. To maintain standards of quality, relevance, and integrity for evidence, consumers of presentations should insist that presenters be held intellectually and ethically responsible for what they show and tell. Thus consuming a presentation is also an intellectual and a moral activity." (Edward R Tufte, "Beautiful Evidence", 2006)

"The main difference between journalistic and artistic infographics is that, while in the first information must try to be as objective as possible, the second supports a complete subjectivity and can lend itself to different interpretations, all of them valid. That’s the concept of 'subjective infographic', something apparently contradictory." (Jaime Serra, [interviewed] 2012)

"Measurement is often associated with the objectivity and neatness of numbers, and performance measurement efforts are typically accompanied by hope, great expectations and promises of change; however, these are then often followed by disbelief, frustration and what appears to be sheer madness." (Dina Gray et al, "Measurement Madness: Recognizing and avoiding the pitfalls of performance measurement", 2015)

" Another problem is that while data visualizations may appear to be objective, the designer has a great deal of control over the message a graphic conveys. Even using accurate data, a designer can manipulate how those data make us feel. She can create the illusion of a correlation where none exists, or make a small difference between groups look big." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"Numbers are ideal vehicles for promulgating bullshit. They feel objective, but are easily manipulated to tell whatever story one desires. Words are clearly constructs of human minds, but numbers? Numbers seem to come directly from Nature herself. We know words are subjective. We know they are used to bend and blur the truth. Words suggest intuition, feeling, and expressivity. But not numbers. Numbers suggest precision and imply a scientific approach. Numbers appear to have an existence separate from the humans reporting them." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"As data communicators, it is therefore our responsibility to treat our work and our data as carefully and objectively as possible. It is also our responsibility to recognize where our data may suffer from underlying bias or error, or even implicit bias that data creators may themselves not even be aware of." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

📉Graphical Representation: Criticality (Just the Quotes)

"Graphic forms help us to perform and influence two critical functions of the mind: the gathering of information and the processing of that information. Graphs and charts are ways to increase the effectiveness and the efficiency of transmitting information in a way that enhances the reader's ability to process that information. Graphics are tools to help give meaning to information because they go beyond the provision of information and show relationships, trends, and comparisons. They help to distinguish which numbers and which ideas are more important than others in a presentation." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"The logarithm is one of many transformations that we can apply to univariate measurements. The square root is another. Transformation is a critical tool for visualization or for any other mode of data analysis because it can substantially simplify the structure of a set of data. For example, transformation can remove skewness toward large values, and it can remove monotone increasing spread. And often, it is the logarithm that achieves this removal." (William S Cleveland, "Visualizing Data", 1993)

"Understanding how maps work and why maps work" (or do not work) as representations in their own right and as prompts to further representations, and what it means for a map to work, are critical issues as we embark on a visual information age." (Alan MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"When visualization tools act as a catalyst to early visual thinking about a relatively unexplored problem, neither the semantics nor the pragmatics of map signs is a dominant factor. On the other hand, syntactics" (or how the sign-vehicles, through variation in the visual variables used to construct them, relate logically to one another) are of critical importance." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"Many of us feel intimidated by numbers and so we blindly accept the numbers we’re handed. This can lead to bad decisions and faulty conclusions. We also have a tendency to apply critical thinking only to things we disagree with. In the current information age, pseudo-facts masquerade as facts, misinformation can be indistinguishable from true information, and numbers are often at the heart of any important claim or decision. Bad statistics are everywhere." (Daniel J Levitin, "Weaponized Lies", 2017)

"The rise of graphicacy and broader data literacy intersects with the technology that makes it possible and the critical need to understand information in ways current literacies fail. Like reading and writing, data literacy must become mainstream to fully democratize information access." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"[...] to support a conversation, charts need to provide cohesive and relevant responses to a user's intent. Sometimes the interface needs to respond by changing the visual encoding of existing charts, while in other cases, it is necessary to create a new chart to support the analytical conversation. In addition to appropriate visualization responses, it is critical to help the user understand how the system has interpreted their intent by producing appropriate feedback and allowing them to clarify if necessary." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Data storytelling is a method of communicating information that is custom-fit for a specific audience and offers a compelling narrative to prove a point, highlight a trend, make a sale, or all of the above. [...] Data storytelling combines three critical components, storytelling, data science, and visualizations, to create not just a colorful chart or graph, but a work of art that carries forth a narrative complete with a beginning, middle, and end." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Dataviz has become a competitive imperative for companies. Those that don’t have a critical mass of managers capable of thinking visually will lag behind the ones that do." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"The biggest mistake that can be made in a data quality initiative is focusing on the wrong data. If you fix data that does not impact a critical business process or drive important decisions, your initiative simply will not make the difference that you want it to." (Robert Hawker, "Practical Data Quality", 2023)

15 December 2011

📉Graphical Representation: Aesthetics (Just the Quotes)

"Good design looks right. It is simple (clear and uncomplicated). Good design is also elegant, and does not look contrived. A map should be aesthetically pleasing, thought provoking, and communicative."  (Arthur H Robinson, "Elements of Cartography", 1953)

"The practice of framing an illustration with a drawn rectangle is not recommended. This kind of typographic detailing should never be added purely for aesthetic reasons or for decoration. A simple, purely functional drawing will automatically be aesthetically pleasing. Unnecessary lines usually reduce both legibility and attractiveness." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"The main goal of data visualization is its ability to visualize data, communicating information clearly and effectively. It doesn’t mean that data visualization needs to look boring to be functional or extremely sophisticated to look beautiful. To convey ideas effectively, both aesthetic form and functionality need to go hand in hand, providing insights into a rather sparse and complex dataset by communicating its key aspects in a more intuitive way. Yet designers often tend to discard the balance between design and function, creating gorgeous data visualizations which fail to serve its main purpose - communicate information." (Vitaly Friedman, "Data Visualization and Infographics", Smashing Magazine, 2008)

"For a visual to qualify as beautiful, it must be aesthetically pleasing, yes, but it must also be novel, informative, and efficient. [...] For a visual to truly be beautiful, it must go beyond merely being a conduit for information and offer some novelty: a fresh look at the data or a format that gives readers a spark of excitement and results in a new level of understanding. Well-understood formats (e.g., scatterplots) may be accessible and effective, but for the most part they no longer have the ability to surprise or delight us. Most often, designs that delight us do so not because they were designed to be novel, but because they were designed to be effective; their novelty is a byproduct of effectively revealing some new insight about the world." (Noah Iliinsky, "On Beauty", [in "Beautiful Visualization"] 2010)

"[...] the form of a technological object must depend on the tasks it should help with. This is one of the most important principles to remember when dealing with infographics and visualizations: The form should be constrained by the functions of your presentation. There may be more than one form a data set can adopt so that readers can perform operations with it and extract meanings, but the data cannot adopt any form. Choosing visual shapes to encode information should not be based on aesthetics and personal tastes alone." (Alberto Cairo, "The Functional Art", 2011)

"Data art is characterized by a lack of structured narrative and absence of any visual analysis capability. Instead, the motivation is much more about creating an artifact, an aesthetic representation or perhaps a technical/technique demonstration. At the extreme end, a design may be more guided by the idea of fun or playfulness or maybe the creation of ornamentation." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"Good visualization is a winding process that requires statistics and design knowledge. Without the former, the visualization becomes an exercise only in illustration and aesthetics, and without the latter, one of only analyses. On their own, these are fine skills, but they make for incomplete data graphics. Having skills in both provides you with the luxury - which is growing into a necessity - to jump back and forth between data exploration and storytelling." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Visualization can be appreciated purely from an aesthetic point of view, but it’s most interesting when it’s about data that’s worth looking at. That’s why you start with data, explore it, and then show results rather than start with a visual and try to squeeze a dataset into it. It’s like trying to use a hammer to bang in a bunch of screws. […] Aesthetics isn’t just a shiny veneer that you slap on at the last minute. It represents the thought you put into a visualization, which is tightly coupled with clarity and affects interpretation." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Color is just a complicated physiological phenomenon associated with symbolic, aesthetic, and emotional qualities. Each of these qualities is enough by itself to wreak havoc in data visualizations if not treated with care. Together, they make disaster almost inevitable […]" (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"From a functional point of view, colors per se don’t really matter, and if you can avoid strong symbolic meanings, it doesn’t matter if you pick them randomly. Data visualization deals with discriminating among visual stimuli, defining their relationships, and establishing the intensity of these stimuli. The colors you pick just need to meet these requirements. Realizing this helps us overcome our fears of aesthetic catastrophe." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"A semantic approach to visualization focuses on the interplay between charts, not just the selection of charts themselves. The approach unites the structural content of charts with the context and knowledge of those interacting with the composition. It avoids undue and excessive repetition by instead using referential devices, such as filtering or providing detail-on-demand. A cohesive analytical conversation also builds guardrails to keep users from derailing from the conversation or finding themselves lost without context. Functional aesthetics around color, sequence, style, use of space, alignment, framing, and other visual encodings can affect how users follow the script." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Data that is well prepared makes the analysis easier and allows a deeper exploration of patterns. It helps the analyst sift through the data with less friction. Data that is well crafted holds up to rigorous analysis and presentation. It removes the wall between us and the data and allows us to see the patterns. Well-shaped data isn't only functional, it's also aesthetic." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"When integrating written text with charts in a functionally aesthetic way, the reader should be able to find the key takeaways from the chart or dashboard, taking into account the context, constraints, and reading objectives of the overall message."  (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"As beautiful as data can be, it’s not an al fresco painting that should be open to interpretation from anyone who walks by its section of the museum. Make bold, smart color choices that leave no doubt what the purpose of the data is." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

📉Graphical Representations: Storytelling (Just the Quotes)

"A plot is a piece of ground, a plan (as in the plan of a building), or a scheme; to plot is to make a plan or, in geometry, to graph points on a grid. When we create a story, even a character-rather than event-based story, we make a plot or map out the narrative’s essential moments." (Peter Turchi, "Maps of the Imagination: The writer as cartographer", 2004)

"But there is also beauty in the telling detail, the provocative glimpse, the perfectly framed snapshot. The question of what to include, how much to include, can only be answered with regard to what, precisely, we mean to create. A story isn’t as utilitarian as a map of bicycle paths, but like that map, it is defined by its purpose. To serve its purpose, a story might very well be stripped down to a few spare glittering parts; alternately, it might require, or benefit from, apparently useless observations, conversations, and excursions. Perhaps the only answer is that we can’t know what needs to be in, what needs to be out, until we know what it is that we’re making, toward what end." (Peter Turchi, "Maps of the Imagination: The writer as cartographer", 2004)

"It is indisputable that successful communication with the increasingly important group of non-professional customers requires that statistical offices go far beyond the simple provision of tables and other purely static information. The visual presentation of data through comprehensible and flexible graphical tools, possibly embedded in a storytelling environment and connected with maps for the presentation of spatial data, crucially contributes to meeting the needs of the non-expert." (Hans-Joachim Mittag "Educating the Public, The Role of E-Learning and Visual Communication of Official Data", ECE/CES, 2006)

"Graphics should be planned, written and developed to stand alone. Even when a graphic is accompanied by a story, we can’t always count on the reader to get that far. Scanning readers often don’t engage with stories at all. Rather, they browse the page, often reading only display type and visual elements. And, even those who intend to read the story often engage with the graphics first because they tend to be more eye-catching. In both cases, you simply can’t create a graphic that isn’t complete without the story. Readers should finish an information graphic feeling confident that they understand the information it presents. This isn’t to say that you must tell the entire story with the graphic. However, the portions of the story that are represented in the graphic must be complete and clear." (Jennifer George-Palilonis," A Practical Guide to Graphics Reporting: Information Graphics for Print, Web & Broadcast", 2006)

"Don’t rush to write a headline or an entire story or to design a visualization immediately after you find an interesting pattern, data point, or fact. Stop and think. Look for other sources and for people who can help you escape from tunnel vision and confirmation bias. Explore your information at multiple levels of depth and breadth, looking for extraneous factors that may help explain your findings. Only then can you make a decision about what to say, and how to say it, and about what amount of detail you need to show to be true to the data." (Alberto Cairo, "The Functional Art", 2011)

"All good design is storytelling. All good storytelling is design." (Steven Heller, "Writing and Research for Graphic Designers: A Designer's Manual to Strategic Communication and Presentation", 2012)

"Nonetheless, storytelling and narrative are essential to the design writing process. Without story - or plot, if you will - what have you got? Even a factual business report can tell a tale, albeit often in a neutral manner. Not all stories have to be dramatic or melodramatic. Storytelling is simply the expres sion of something you, as the writer, believe is of interest to you, as the reader. Indeed, you may well be representative of your average reader." (Steven Heller, "Writing and Research for Graphic Designers: A Designer's Manual to Strategic Communication and Presentation", 2012) 

"Good visualization is a winding process that requires statistics and design knowledge. Without the former, the visualization becomes an exercise only in illustration and aesthetics, and without the latter, one of only analyses. On their own, these are fine skills, but they make for incomplete data graphics. Having skills in both provides you with the luxury - which is growing into a necessity - to jump back and forth between data exploration and storytelling." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"At its most basic level, a story is a description of something happening that contains some form of sensation, or drama. It is, in other words, an explanation of cause and effect that is soaked in emotion (...) We are natural-born storytellers who have a propension to believe our own tales." (Will Storr, "The Unpersuadables", 2014)

"Data stories are a subset of the much broader concept (or buzzword) of storytelling. […] Stories, or narratives, are useful in data visualization because they force us to recognize the limited value of a single chart in a complex environment. Stories also force us to recognize the need for a better integration of our displays, as we move away from strings of siloed charts." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"A data story starts out like any other story, with a beginning and a middle. However, the end should never be a fixed event, but rather a set of options or questions to trigger an action from the audience. Never forget that the goal of data storytelling is to encourage and energize critical thinking for business decisions." (James Richardson, 2017)

"All human storytellers bring their subjectivity to their narratives. All have bias, and possibly error. Acknowledging and defusing that bias is a vital part of successfully using data stories. By debating a data story collaboratively and subjecting it to critical thinking, organizations can get much higher levels of engagement with data and analytics and impact their decision making much more than with reports and dashboards alone." (James Richardson, 2017)

"Data storytelling can be defined as a structured approach for communicating data insights using narrative elements and explanatory visuals." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Data storytelling gives your insight the best opportunity to capture attention, be understood, be remembered, and be acted on. An effective data story helps your insight reach its full potential: inspiring others to act and drive change." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Data storytelling involves the skillful combination of three key elements: data, narrative, and visuals. Data is the primary building block of every data story. It may sound simple, but a data story should always find its origin in data, and data should serve as the foundation for the narrative and visual elements of your story." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Data storytelling is transformative. Many people don’t realize that when they share insights, they’re not just imparting information to other people. The natural consequence of sharing an insight is change. Stop doing that, and do more of this. Focus less on them, and concentrate more on these people. Spend less there, and invest more here. A poignant insight will drive an enlightened audience to think or act differently. So, as a data storyteller, you’re not only guiding the audience through the data, you’re also acting as a change agent. Rather than just pointing out possible enhancements, you’re helping your audience fully understand the urgency of the changes and giving them the confidence to move forward." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"While visuals are an essential part of data storytelling, data visualizations can serve a variety of purposes from analysis to communication to even art. Most data charts are designed to disseminate information in a visual manner. Only a subset of data compositions is focused on presenting specific insights as opposed to just general information. When most data compositions combine both visualizations and text, it can be difficult to discern whether a particular scenario falls into the realm of data storytelling or not." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Data becomes more useful once it’s transformed into a data visualization or used in a data story. Data storytelling is the ability to effectively communicate insights from a dataset using narratives and visualizations. It can be used to put data insights into context and inspire action from your audience. Color can be very helpful when you are trying to make information stand out within your data visualizations." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Data storytelling is a method of communicating information that is custom-fit for a specific audience and offers a compelling narrative to prove a point, highlight a trend, make a sale, or all of the above. [...] Data storytelling combines three critical components, storytelling, data science, and visualizations, to create not just a colorful chart or graph, but a work of art that carries forth a narrative complete with a beginning, middle, and end." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Data, I think, is one of the most powerful mechanisms for telling stories. I take a huge pile of data and I try to get it to tell stories." (Steven Levitt)

More quotes on "Storytelling" at the-web-of-knowledge.blogspot.com.

📉Graphical Representation: Limits (Just the Quotes)

"Correct emphasis is basic to effective graphic presentation. Intensity of color is the simplest method of obtaining emphasis. For most reproduction purposes black ink on a white page is most generally used.  Screens, dots and lines can, of course, be effectively used to give a gradation of tone from light grey to solid black. When original charts are the subjects of display presentation, use of colors is limited only by the subject and the emphasis desired." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"A chart without a border line has several advantages. It is not limited to a designated area. The irregular white space surrounding it makes it more adaptable to any page size. It may be more readily placed either horizontally or vertically on the page, so long as the reduction in the size of the chart does not destroy legibility of lettering." (Mary E Spear, "Charting Statistics", 1952)

"The varieties of circle charts are necessarily limited by the lack of basic design variation - a circle is a circle! Also, a circle can be considered as representing only one unit of area. regardless of its size. Thus, circle charts have limited applications, i.e., to show how a given quantity" (area) is divided among its component parts,' or to show changes in the variable by showing area changes. A circle chart almost always presents some form of a part-to-total relationship." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"A graph presents a limited number of figures in a bold and forceful manner. To do this it usually must omit a large number of figures available on the subject. The choice of what graphic format to use is largely a matter of deciding what figures have the greatest significance to the intended reader and what figures he can best afford to skip." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"The quantile plot is a good general display since it is fairly easy to construct and does a good job of portraying many aspects of a distribution. Three convenient features of the plot are the following: First, in constructing it, we do not make any arbitrary choices of parameter values or cell boundaries [...] and no models for the data are fitted or assumed. Second, like a table, it is not a summary but a display of all the data. Third, on the quantile plot every point is plotted at a distinct location, even if there are duplicates in the data. The number of points that can be portrayed without overlap is limited only by the resolution of the plotting device. For a high resolution device several hundred points distinguished." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"There are some who argue that a graph is a success only if the important information in the data can be seen within a few seconds. While there is a place for rapidly-understood graphs, it is too limiting to make speed a requirement in science and technology, where the use of graphs ranges from, detailed, in-depth data analysis to quick presentation." (William S Cleveland, "The Elements of Graphing Data", 1985)

"Binning has two basic limitations. First, binning sacrifices resolution. Sometimes plots of the raw data will reveal interesting fine structure that is hidden by binning. However, advantages from binning often outweigh the disadvantage from lost resolution. [...] Second, binning does not extend well to high dimensions. With reasonable univariate resolution, say 50 regions each covering 2% of the range of the variable, the number of cells for a mere 10 variables is exceedingly large. For uniformly distributed data, it would take a huge sample size to fill a respectable fraction of the cells. The message is not so much that binning is bad but that high dimensional space is big. The complement to the curse of dimensionality is the blessing of large samples. Even in two and three dimensions having lots of data can bc very helpful when the observations are noisy and the structure non-trivial." (Daniel B Carr, "Looking at Large Data Sets Using Binned Data Plots", [in "Computing and Graphics in Statistics"] 1991)

"Many of the applications of visualization in this book give the impression that data analysis consists of an orderly progression of exploratory graphs, fitting, and visualization of fits and residuals. Coherence of discussion and limited space necessitate a presentation that appears to imply this. Real life is usually quite different. There are blind alleys. There are mistaken actions. There are effects missed until the very end when some visualization saves the day. And worse, there is the possibility of the nearly unmentionable: missed effects." (William S Cleveland, "Visualizing Data", 1993)

"Technically, there is no limit as to the number of data series that can be plotted on a single graph. Practically, if the number goes above three or four the graph becomes confusing." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996) 

"Using colour, itʼs possible to increase the density of information even further. A single colour can be used to represent two variables simultaneously. The difficulty, however, is that there is a limited amount of information that can be packed into colour without confusion." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"All graphics present data and allow a certain degree of exploration of those same data. Some graphics are almost all presentation, so they allow just a limited amount of exploration; hence we can say they are more infographics than visualization, whereas others are mostly about letting readers play with what is being shown, tilting more to the visualization side of our linear scale. But every infographic and every visualization has a presentation and an exploration component: they present, but they also facilitate the analysis of what they show, to different degrees." (Alberto Cairo, "The Functional Art", 2011)

"Bear in mind is that the use of color doesn’t always help. Use it sparingly and with a specific purpose in mind. Remember that the reader’s brain is looking for patterns, and will expect both recurrence itself and the absence of expected recurrence to carry meaning. If you’re using color to differentiate categorical data, then you need to let the reader know what the categories are. If the dimension of data you’re encoding isn’t significant enough to your message to be labeled or explained in some way - or if there is no dimension to the data underlying your use of difference colors - then you should limit your use so as not to confuse the reader." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"Data visualization is a means to an end, not an end in itself. It's merely a bridge connecting the messenger to the receiver and its limitations are framed by our own inherent irrationalities, prejudices, assumptions, and irrational tastes. All these factors can undermine the consistency and reliability of any predicted reaction to a given visualization, but that is something we can't realistically influence." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"The first rule of communication is to shut up and listen, so that you can get to know about the audience for your communication, whether it might be politicians, professionals or the general public. We have to understand their inevitable limitations and any misunderstandings, and fight the temptation to be too sophisticated and clever, or put in too much detail." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"Visualisation is fundamentally limited by the number of pixels you can pump to a screen. If you have big data, you have way more data than pixels, so you have to summarise your data. Statistics gives you lots of really good tools for this." (Hadley Wickham)

📉Graphical Representation: Research (Just the Quotes)

"One of the greatest values of the graphic chart is its use in the analysis of a problem. Ordinarily, the chart brings up many questions which require careful consideration and further research before a satisfactory conclusion can be reached. A properly drawn chart gives a cross-section picture of the situation. While charts may bring out. hidden facts in tables or masses of data, they cannot take the place of careful, analysis. In fact, charts may be dangerous devices when in the hands of those unwilling to base their interpretations upon careful study. This, however, does not detract from their value when they are properly used as aids in solving statistical problems." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1938)

"Although flow charts are not used to portray or interpret statistical data, they possess definite utility for certain kinds of research and administrative problems. With a well-designed flow chart it is possible to present a large number of facts and relationships simply, clearly, and accurately, without resorting to extensive or involved verbal description." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Graphic representation constitutes one of the basic sign-systems conceived by the human mind for the purposes of storing, understanding, and communicating essential information. As a "language" for the eye, graphics benefits from the ubiquitous properties of visual perception. As a monosemic system, it forms the rational part of the world of images. […] Graphics owes its special significance to its double function as a storage mechanism and a research instrument."  (Jacques Bertin, "Semiology of graphics" ["Semiologie Graphique"], 1967)

"The great difference between the graphic representation of yesterday, which was poorly dissociated from the figurative image, and the graphics of tomorrow, is the disappearance of the congential fixity of the image. […] When one can superimpose, juxtapose, transpose, and permute graphic images in ways that lead to groupings and classings, the graphic image passes from the dead image, the 'illustration,' to the living image, the widely accessible research instrument it is now becoming. The graphic is no longer only the 'representation' of a final simplification, it is a point of departure for the discovery of these simplifications and the means for their justification. The graphic has become, by its manageability, an instrument for information processing." (Jacques Bertin, "Semiology of graphics" ["Semiologie Graphique"], 1967)

"[…] fitting lines to relationships between variables is often a useful and powerful method of summarizing a set of data. Regression analysis fits naturally with the development of causal explanations, simply because the research worker must, at a minimum, know what he or she is seeking to explain." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"Typically, data analysis is messy, and little details clutter it. Not only confounding factors, but also deviant cases, minor problems in measurement, and ambiguous results lead to frustration and discouragement, so that more data are collected than analyzed. Neglecting or hiding the messy details of the data reduces the researcher's chances of discovering something new." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"Of course, false graphics are still with us. Deception must always be confronted and demolished, even if lie detection is no longer at the forefront of research. Graphical excellence begins with telling the truth about the data." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Data analysis is rarely as simple in practice as it appears in books. Like other statistical techniques, regression rests on certain assumptions and may produce unrealistic results if those assumptions are false. Furthermore it is not always obvious how to translate a research question into a regression model." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Data analysis [...] begins with a dataset in hand. Our purpose in data analysis is to learn what we can from those data, to help us draw conclusions about our broader research questions. Our research questions determine what sort of data we need in the first place, and how we ought to go about collecting them. Unless data collection has been done carefully, even a brilliant analyst may be unable to reach valid conclusions regarding the original research questions." (Lawrence C Hamilton, "Data Analysis for Social Scientists: A first course in applied statistics", 1995)

"Good design protects you from the need for too many highly accurate components in the system. But such design principles are still, to this date, ill-understood and need to be researched extensively. Not that good designers do not understand this intuitively, merely it is not easily incorporated into the design methods you were taught in school. Good minds are still needed in spite of all the computing tools we have developed." (Richard Hamming, "The Art of Doing Science and Engineering: Learning to Learn", 1997)

"Data visualization [...] expresses the idea that it involves more than just representing data in a graphical form" (instead of using a table). The information behind the data should also be revealed in a good display; the graphic should aid readers or viewers in seeing the structure in the data. The term data visualization is related to the new field of information visualization. This includes visualization of all kinds of information, not just of data, and is closely associated with research by computer scientists." (Antony Unwin et al, "Introduction" [in "Handbook of Data Visualization"], 2008)

"Presentation graphics face the challenge to depict a key message in - usually a single - graphic which needs to fit very many observers at a time, without the chance to give further explanations or context. Exploration graphics, in contrast, are mostly created and used only by a single researcher, who can use as many graphics as necessary to explore particular questions. In most cases none of these graphics alone gives a comprehensive answer to those questions, but must be seen as a whole in the context of the analysis." (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009)

"Being able to express, analyze, and report on the issues of design practice demands facts, data, and research. Understanding how to turn information into valuable strategic assets is one of the key talents the design writer and researcher must possess." (Steven Heller, "Writing and Research for Graphic Designers: A Designer's Manual to Strategic Communication and Presentation, 2012) 

"Great research is partly police work. You find clues that lead to more clues that lead to a hot trail that leads to conclusive evidence. Often you may instinctively 'feel' something exists somewhere, but finding it is the result of luck and serendipity. You stumble over a document that leads you to an archive that provides you with a key, and so on. Despite that thrill of discovery, having a plan that takes you from point A to point B is useful." (Steven Heller, "Writing and Research for Graphic Designers: A Designer's Manual to Strategic Communication and Presentation", 2012) 

"Diagrams furnish only approximate information. They do not add anything to the meaning of the data and, therefore, are not of much use to a statistician or research worker for further mathematical treatment or statistical analysis. On the other hand, graphs are more obvious, precise and accurate than the diagrams and are quite helpful to the statistician for the study of slopes, rates of change and estimation," (interpolation and extrapolation), wherever possible." (S C Gupta & Indra Gupta, "Business Statistics", 2013)

"Collecting data through sampling therefore becomes a never-ending battle to avoid sources of bias. [...] While trying to obtain a random sample, researchers sometimes make errors in judgment about whether every person or thing is equally likely to be sampled." (Daniel J Levitin, "Weaponized Lies", 2017)

"Samples give us estimates of something, and they will almost always deviate from the true number by some amount, large or small, and that is the margin of error. […] The margin of error does not address underlying flaws in the research, only the degree of error in the sampling procedure. But ignoring those deeper possible flaws for the moment, there is another measurement or statistic that accompanies any rigorously defined sample: the confidence interval." (Daniel J Levitin, "Weaponized Lies", 2017)

"To be any good, a sample has to be representative. A sample is representative if every person or thing in the group you’re studying has an equally likely chance of being chosen. If not, your sample is biased. […] The job of the statistician is to formulate an inventory of all those things that matter in order to obtain a representative sample. Researchers have to avoid the tendency to capture variables that are easy to identify or collect data on - sometimes the things that matter are not obvious or are difficult to measure." (Daniel J Levitin, "Weaponized Lies", 2017)




14 December 2011

📉Graphical Representation: Criticism (Just the Quotes)

"An exact knowledge of conditions, and consequent timely application of praise or of constructive criticism, is one of the chief forces of the executive in securing satisfactory results. Undeserved criticism is unjust and destroys-initiative, while unmerited praise tends to render the executive ridiculous in the eyes of his subordinates; both are detrimental to discipline and weaken the power of the executive." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"It is desirable in all chart work to have certain conventions by which colors would be understood to have certain definite meanings. Thus, following railroad practice, red could generally be used in chart work to indicate dangerous or unfavorable conditions, and green to indicate commended features or favorable conditions. Where neither commendation nor adverse criticism is intended, colors such as blue, yellow, brown, etc., could be used." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"Under certain conditions, however, the ordinary form of graphic chart is slightly misleading. It will be conceded that its true function is to portray comparative fluctuations. This result is practically secured when the factors or quantities compared are nearly of the same value or volume, but analysis will show that this is not accomplished when the amounts compared differ greatly in value or volume. [...] The same criticism applies to charts which employ or more scales for various curve. If the different scale are in proper proportion, the result is the same as with one scale, but when two or more scales are used which are not proportional an indication may be given with respect to comparative fluctuations which is absolutely false." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"[…] it is not enough to say: 'There's error in the data and therefore the study must be terribly dubious'. A good critic and data analyst must do more: he or she must also show how the error in the measurement or the analysis affects the inferences made on the basis of that data and analysis." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"Just like the spoken or written word, statistics and graphs can lie. They can lie by not telling the full story. They can lead to wrong conclusions by omitting some of the important facts. [...] Always look at statistics with a critical eye, and you will not be the victim of misleading information." (Dyno Lowenstein, "Graphs", 1976)

"Changing measures are a particularly common problem with comparisons over time, but measures also can cause problems of their own. [...] We cannot talk about change without making comparisons over time. We cannot avoid such comparisons, nor should we want to. However, there are several basic problems that can affect statistics about change. It is important to consider the problems posed by changing - and sometimes unchanging - measures, and it is also important to recognize the limits of predictions. Claims about change deserve critical inspection; we need to ask ourselves whether apples are being compared to apples - or to very different objects." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Graphical illustrations should be simple and pleasing to the eye, but the presentation must remain scientific. In other words, we want to avoid those graphical features that are purely decorative while keeping a critical eye open for opportunities to enhance the scientific inference we expect from the reader. A good graphical design should maximize the proportion of the ink used for communicating scientific information in the overall display." (Phillip I Good & James W Hardin, "Common Errors in Statistics" (and How to Avoid Them)", 2003)

"Criticism expands knowledge by revealing otherwise hidden meanings. The so-called 'positive' method examines a maker’s intent and rationale; a work’s structure is scrutinized and the factors that inform it are contextualized, providing the basis for balanced analysis and historical categorization. Conversely, the so-called 'negative' method is a kind of fault-finding exposé of flaws in a process or result. The purpose is ostensibly to reinforce a set of standards used to judge success or failure. Both methods are useful in addressing the form and function of design." (Steven Heller, Writing and Research for Graphic Designers: A Designer's Manual to Strategic Communication and Presentation", 2012)

"There is no reason why criticism has to follow set paths. Analysis of the designed world can, and should, take visual forms." (Steven Heller, "Writing and Research for Graphic Designers: A Designer's Manual to Strategic Communication and Presentation", 2012) 

"A data story starts out like any other story, with a beginning and a middle. However, the end should never be a fixed event, but rather a set of options or questions to trigger an action from the audience. Never forget that the goal of data storytelling is to encourage and energize critical thinking for business decisions." (James Richardson, 2017)

"Just because there’s a number on it, it doesn’t mean that the number was arrived at properly. […] There are a host of errors and biases that can enter into the collection process, and these can lead millions of people to draw the wrong conclusions. Although most of us won’t ever participate in the collection process, thinking about it, critically, is easy to learn and within the reach of all of us." (Daniel J Levitin, "Weaponized Lies", 2017)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.