03 December 2011

💠SQL Server: Window Functions [new feature]

Introduction

     In the past, in the absence or in parallel with other techniques, aggregate functions proved to be quite useful in order to solve several types of problems that involve the retrieval of first/last record or the display of details together with averages and other aggregates. Typically their use involves two or more joins between a dataset and an aggregation based on the same dataset or a subset of it. An aggregation can involve one or more columns that make the object of analysis. Sometimes it might be needed multiple such aggregations based on different sets of columns. Each such aggregation involves at least a join. Such queries can become quite complex, though they were a price to pay in order to solve such problems.

Partitions

     The introduction of analytic functions in Oracle and of window functions, a similar concept, in SQL Server, allowed the approach of such problems from a different simplified perspective. Central to this feature it’s the partition (of a dataset), its meaning being same as of mathematical partition of a set, defined as a division of a set into non-overlapping and non-empty parts that cover the whole initial set. The introduction of partitions it’s not necessarily something new, as the columns used in a GROUP BY clause determines (implicitly) a partition in a dataset. The difference in analytic/window functions is that the partition is defined explicitly inline together with a ranking or average function evaluated within a partition. If the concept of partition is difficult to grasp, let’s look at the result-set based on two Products (the examples are based on AdventureWorks database):
 
-- Price Details for 2 Products 
SELECT A.ProductID  
, A.StartDate 
, A.EndDate 
, A.StandardCost  
FROM [Production].[ProductCostHistory] A 
WHERE A.ProductID IN (707, 708) 
ORDER BY A.ProductID 
, A.StartDate 

window function - details

   In this case a partition is “created” based on the first Product (ProductId = 707), while a second partition is based on the second Product (ProductId = 708). As a parenthesis, another partitioning could be created based on ProductId and StartDate; considering that the two attributes are a key in the table, this will partition the dataset in partitions of 1 record (each partition will have exactly one record).

Details and Averages

     In order to exemplify the use of simple versus window aggregate functions, let’s consider a problem in which is needed to display Standard Price details together with the Average Standard Price for each ProductId. When a GROUP BY clause is applied in order to retrieve the Average Standard Cost, the query is written under the form: 

-- Average Price for 2 Products 
SELECT A.ProductID  
, AVG(A.StandardCost) AverageStandardCost 
FROM [Production].[ProductCostHistory] A 
WHERE A.ProductID IN (707, 708) 
GROUPBY A.ProductID  
ORDERBY A.ProductID 

window function - GROUP BY 

    In order to retrieve the details, the query can be written with the help of a FULL JOIN as follows:

-- Price Details with Average Price for 2 Products - using JOINs 
SELECT A.ProductID  
, A.StartDate 
, A.EndDate 
, A.StandardCost 
, B.AverageStandardCost 
, A.StandardCost - B.AverageStandardCost DiffStandardCost 
FROM [Production].[ProductCostHistory] A    
  JOIN ( -- average price        
    SELECT A.ProductID         
    , AVG(A.StandardCost) AverageStandardCost         
    FROM [Production].[ProductCostHistory] A        
    WHERE A.ProductID IN (707, 708)        
    GROUP BY A.ProductID      
) B  
    ON A.ProductID = B.ProductID 
WHERE A.ProductID IN (707, 708) 
ORDERBY A.ProductID 
, A.StartDate 

 window function - Average Price JOIN   

    As pointed above the partition is defined by ProductId. The same query written with window functions becomes:

-- Price Details with Average Price for 2 Products - using AVG window function 
SELECT A.ProductID  
, A.StartDate 
, A.EndDate 
, A.StandardCost 
, AVG(A.StandardCost) OVER(PARTITION BY A.ProductID) AverageStandardCost 
, A.StandardCost - AVG(A.StandardCost) OVER(PARTITION BY A.ProductID) DiffStandardCost 
FROM [Production].[ProductCostHistory] A 
WHERE A.ProductID IN (707, 708) 
ORDER BY A.ProductID 
, A.StartDate 

window function - Average Price WF









    As can be seen, in the second example, the AVG function is defined using the OVER clause with PartitionId as partition. Even more, the function is used in a formula to calculate the Difference Standard Cost. More complex formulas can be written making use of multiple window functions.  

The Last Record

     Let’s consider the problem of retrieving the nth record. Because with aggregate functions is easier to retrieve the first or last record, let’s consider that is needed to retrieve the last Standard Price for each ProductId. The aggregate function helps to retrieve the greatest Start Date, which farther helps to retrieve the record containing the Last Standard Price.

-- Last Price Details for 2 Products - using JOINs 
SELECT A.ProductID  
, A.StartDate 
, A.EndDate 
, A.StandardCost 
FROM [Production].[ProductCostHistory] A  
    JOIN ( -- average price          
    SELECT A.ProductID          
    , Max(A.StartDate) LastStartDate          
    FROM [Production].[ProductCostHistory] A          
    WHERE A.ProductID IN (707, 708)          
    GROUP BY A.ProductID      
) B      
   ON A.ProductID = B.ProductID  
  AND A.StartDate = B.LastStartDate 
WHERE A.ProductID IN (707, 708) 
ORDERBY A.ProductID 
,A.StartDate 

window function - Last Price JOIN  

With window functions the query can be rewritten as follows:

-- Last Price Details for 2 Products - using AVG window function 
SELECT * 
FROM (-- ordered prices      
    SELECT A.ProductID      
    , A.StartDate      
    , A.EndDate      
    , A.StandardCost      
    , RANK() OVER(PARTITION BY A.ProductID ORDER BY A.StartDate DESC) Ranking      
    FROM [Production].[ProductCostHistory] A     
    WHERE A.ProductID IN (707, 708) 
  ) A 
WHERE Ranking = 1 
ORDER BY A.ProductID 
, A.StartDate 

window function - Last Price WF  

   As can be seen, in order to retrieve the Last Standard Price, was considered the RANK function, the results being ordered descending by StartDate. Thus, the Last Standard Price will be always positioned on the first record. Because window functions can’t be used in WHERE clauses, it’s needed to encapsulate the initial logic in a subquery. Similarly could be retrieved the First Standard Price, this time ordering ascending the StartDate. The last query can be easily modified to retrieve the nth records (this can prove to be more difficult with simple average functions), the first/last nth records.

Conclusion

    Without going too deep into details, I shown above two representative scenarios in which solutions based on average functions could be simplified by using window functions. In theory the window functions provide greater flexibility but they have their own trade offs too. In the next posts I will attempt to further detail their use, especially in the context of Statistics.

📉Graphical Representation: Power (Just the Quotes)

"But law is no explanation of anything; law is simply a generalization, a category of facts. Law is neither a cause, nor a reason, nor a power, nor a coercive force. It is nothing but a general formula, a statistical table." (Florence Nightingale, "Suggestions for Thought", 1860)

"The wandering of a line is more powerful in its effect on the mind than a tabulated statement; it shows what is happening and what is likely to take place just as quickly as the eye is capable of working." (A Lester Boddington, "Statistics And Their Application To Commerce", 1921)

"Seeing color isn't always as simple as it may seem. Some colors are not easy to see unless the conditions are just right; some are so easy to see that they overpower everything else; some are easy to see but difficult to distinguish. […] Large masses of color become too visible and easily overwhelm the entire chart. The more visible the color the easier it is to use too much of it." (Kenneth W Haemer, "Color in Chart Presentation", The American Statistician Vol. 4" (2) , 1950)

"To see is to reason. Thus, the use of visual forms of communication has great potential for influencing what a person thinks. Graphic presentation is always much more than a way to present just facts or information. Rather, it is a way to influence thought, and, as such, graphics can be a powerful mode of persuasion." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"An especially effective device for enhancing the explanatory power of time-series displays is to add spatial dimensions to the design of the graphic, so that the data are moving over space (in two or three dimensions) as well as over time. […] Occasionally graphics are belligerently multivariate, advertising the technique rather than the data." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Modern data graphics can do much more than simply substitute for small statistical tables. At their best, graphics are instruments for reasoning about quantitative information. Often the most effective way to describe, explore, and summarize a set of numbers even a very large set - is to look at pictures of those numbers. Furthermore, of all methods for analyzing and communicating statistical information, well-designed data graphics are usually the simplest and at the same time the most powerful." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"The logarithm is an extremely powerful and useful tool for graphical data presentation. One reason is that logarithms turn ratios into differences, and for many sets of data, it is natural to think in terms of ratios. […] Another reason for the power of logarithms is resolution. Data that are amounts or counts are often very skewed to the right; on graphs of such data, there are a few large values that take up most of the scale and the majority of the points are squashed into a small region of the scale with no resolution." (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38" (4) 1984)

"Confusion and clutter are failures of design, not attributes of information. And so the point is to find design strategies that reveal detail and complexity - rather than to fault the data for an excess of complication. Or, worse, to fault viewers for a lack of understanding. Among the most powerful devices for reducing noise and enriching the content of displays is the technique of layering and separation, visually stratifying various aspects of the data." (Edward R Tufte, "Envisioning Information", 1990)

"Sometimes, when visualization thoroughly reveals the structure of a set of data, there is a tendency to underrate the power of the method for the application. Little effort is expended in seeing the structure once the right visualization method is used, so we are mislead into thinking nothing exciting has occurred." (William S Cleveland, "Visualizing Data", 1993)

"Dashboards aren't all that different from some of the other means of presenting information, but when properly designed the single-screen display of integrated and finely tuned data can deliver insight in an especially powerful way." (Richard Brath & Michael Peters, "Dashboard Design: Why Design is Important," DM Direct, 2004)

"Exploratory Data Analysis is more than just a collection of data-analysis techniques; it provides a philosophy of how to dissect a data set. It stresses the power of visualisation and aspects such as what to look for, how to look for it and how to interpret the information it contains. Most EDA techniques are graphical in nature, because the main aim of EDA is to explore data in an open-minded way. Using graphics, rather than calculations, keeps open possibilities of spotting interesting patterns or anomalies that would not be apparent with a calculation" (where assumptions and decisions about the nature of the data tend to be made in advance)." (Alan Graham, "Developing Thinking in Statistics", 2006)

"Most dashboards fail to communicate efficiently and effectively, not because of inadequate technology (at least not primarily), but because of poorly designed implementations. No matter how great the technology, a dashboard's success as a medium of communication is a product of design, a result of a display that speaks clearly and immediately. Dashboards can tap into the tremendous power of visual perception to communicate, but only if those who implement them understand visual perception and apply that understanding through design principles and practices that are aligned with the way people see and think." (Stephen Few, "Information Dashboard Design", 2006)

"Arbitrary category sequence and misplaced pie chart emphasis lead to general confusion and weaken messages. Although this can be used for quite deliberate and targeted deceit, manipulation of the category axis only really comes into its own with techniques that bend the relationship between the data and the optics in a more calculated way. Many of these techniques are just twins of similar ruses on the value axis. but are none the less powerful for that." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"Design has the power to enrich our lives by engaging our emotions through image, form, texture, color, sound, and smell. The intrinsically human-centered nature of design thinking points to the next step: we can use our empathy and understanding of people to design experiences that create opportunities for active engagement and participation." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Histograms are powerful in cases where meaningful class breaks can be defined and classes are used to select intervals and groups in the data. However, they often perform poorly when it comes to the visualization of a distribution." (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009)

"Colour is a very powerful way to draw attention to specific portions of the design. Colour evokes feelings and emotions, making it an essential component in branding." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"Given the important role that correlation plays in structural equation modeling, we need to understand the factors that affect establishing relationships among multivariable data points. The key factors are the level of measurement, restriction of range in data values" (variability, skewness, kurtosis), missing data, nonlinearity, outliers, correction for attenuation, and issues related to sampling variation, confidence intervals, effect size, significance, sample size, and power." (Randall E Schumacker & Richard G Lomax, "A Beginner’s Guide to Structural Equation Modeling" 3rd Ed., 2010)

"An infographic (short for information graphic) is a type of picture that blends data with design, helping individuals and organizations concisely communicate messages to their audience." (Mark Smiciklas, "The Power of Infographics: Using Pictures to Communicate and Connect with Your Audiences", 2012)

"Color can modify - and possibly even contradict - our intuitive response to value, because of its own powerful connotations." (Joel Katz, "Designing Information: Human factors and common sense in information design", 2012)

"The simplicity of the process behavior chart can be deceptive. This is because the simplicity of the charts is based on a completely different concept of data analysis than that which is used for the analysis of experimental data. When someone does not understand the conceptual basis for process behavior charts they are likely to view the simplicity of the charts as something that needs to be fixed.  Out of these urges to fix the charts all kinds of myths have sprung up resulting in various levels of complexity and obstacles to the use of one of the most powerful analysis techniques ever invented." (Donald J Wheeler, "Myths About Data Analysis", International Lean & Six Sigma Conference, 2012)

"A great infographic leads readers on a visual journey, telling them a story along the way. Powerful infographics are able to capture people’s attention in the first few seconds with a strong title and visual image, and then reel them in to digest the entire message. Infographics have become an effective way to speak for the creator, conveying information and image simultaneously." (Justin Beegel, "Infographics For Dummies", 2014)

"Statistical characterization of datasets is a very powerful approach, but it has the intrinsic limitation of losing information through summarization. " (Tamara Munzner, "Visualization Analysis and Design", 2014)

"The most powerful depth cue is occlusion, where some objects can not be seen because they are hidden behind others. The visible objects are interpreted as being closer than the occluded ones. The occlusion relationships between objects change as we move around; this motion parallax allows us to build up an understanding of the relative distances between objects in the world. " (Tamara Munzner, "Visualization Analysis and Design", 2014)

"The power of infographics is that it keeps things short and sweet. [...] The concise, pointed nature of an infographic works well with the fact that people’s attention span is decreasing significantly." (Justin Beegel, "Infographics For Dummies", 2014)

"Maps also have the disadvantage that they consume the most powerful encoding channels in the visualization toolbox - position and size - on an aspect that is held constant. This leaves less effective encoding channels like color for showing the dimension of interest." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"Analysis is a two-step process that has an exploratory and an explanatory phase. In order to create a powerful data story, you must effectively transition from data discovery" (when you’re finding insights) to data communication" (when you’re explaining them to an audience). If you don’t properly traverse these two phases, you may end up with something that resembles a data story but doesn’t have the same effect. Yes, it may have numbers, charts, and annotations, but because it’s poorly formed, it won’t achieve the same results." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Aligning on data ink can be a powerful way to build relationships across charts. It can be used to obscure the lines between charts, making the composition feel more seamless. [....] Alignment paradigms can also influence the layout design needed. [...] The layout added to the alignment further supports this relationship." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"When the colors are dull and neutral, they can communicate a sense of uniformity and an aura of calmness. Grays do a great job of mapping out the context of your story so that the more sharp colors highlight what you’re trying to explain. The power of gray comes in handy for all of our supporting details such as the axis, gridlines, and nonessential data that is included for comparative purposes. By using gray as the primary color in a visualization, we automatically draw our viewers’ eyes to whatever isn’t gray. That way, if we are interested in telling a story about one data point, we can do so quite easily. " (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Graphic design is not just about making things look good. It is a powerful combination of form and function that uses visual elements to communicate a message. Form refers to the physical appearance of a design, such as its shape, color, and typography. Function refers to the purpose of a design, such as what it is trying to communicate or achieve. A good graphic design is both visually appealing and functional. It uses the right combination of form and function to communicate its message effectively. Graphic design is also a strategic and thoughtful craft. It requires careful planning and execution to create a design that is both effective and aesthetically pleasing." (Faith Aderemi, "The Essential Graphic Design Handbook", 2024)

📉Graphical Representation: Experience (Just the Quotes)

"It is not possible to lay down any hard and fast rules for determining what chart is the best for any given problem. Ordinarily that one is the best which will produce the quickest and clearest results. but unfortunately it is not always possible to construct the clearest one in the least time. Experience is the best guide. Generally speaking, a rectilinear chart is best adapted for equations of the first degree, logarithmic for those other than the first degree and not containing over two variables, and alignment charts where there are three or more variables. However, nearly every person becomes more or less familiar with one type of chart and prefers to adhere to the use of that type because he does not care to take the time and trouble to find out how to use the others. It is best to know what the possibilities of all types are and to be governed accordingly when selecting one or the other for presenting or working out certain data." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"The number of grid lines should be kept to a minimum. This means that there should be just enough coordinate lines in the field so that the eye can readily interpret the values at any point on the curve. No definite rule can be specified as to the optimum number of lines in a grid. This must be left to the discretion of the chart-maker and can come only from experience. The size of the chart, the type and range of the data. the number of curves, the length and detail of the period covered, as well as other factors, will help to determine the number of grid lines." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"The art of using the language of figures correctly is not to be over-impressed by the apparent air of accuracy, and yet to be able to take account of error and inaccuracy in such a way as to know when, and when not, to use the figures. This is a matter of skill, judgment, and experience, and there are no rules and short cuts in acquiring this expertness." (Ely Devons, "Essays in Economics", 1961)

"Nearly all those who produce graphics for mass publication are trained exclusively in the fine arts and have had little experience with the analysis of data. Such experiences are essential for achieving precision and grace in the presence of statistics. [...] Those who get ahead are those who beautified data, never mind statistical integrity." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Design has the power to enrich our lives by engaging our emotions through image, form, texture, color, sound, and smell. The intrinsically human-centered nature of design thinking points to the next step: we can use our empathy and understanding of people to design experiences that create opportunities for active engagement and participation." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Done well, annotation can help explain and facilitate the viewing and interpretive experience. It is the challenge of creating a layer of user assistance and user insight: how can you maximize the clarity and value of engaging with this visualization design?" (Andy Kirk, "Data Visualization: A successful design process", 2012)

"Geographic maps have the advantage of being true to scale - great for walking. Diagrams have the advantage of being easily imaged and remembered, often true to a non-pedestrian experience, and the ability to open up congestion, reduce empty space, and use real estate efficiently. Hybrids 'mapograms' ? - often have the disadvantages of both map and diagram with none of the corresponding advantages." (Joel Katz, "Designing Information: Human factors and common sense in information design", 2012)

"Visual metaphors are about integrating a certain visual quality in your work that somehow conveys that extra bit of connection between the data, the design, and the topic. It goes beyond just the choice of visual variable, though this will have a strong influence. Deploying the best visual metaphor is something that really requires a strong design instinct and a certain amount of experience." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"[...] communicating with data is less often about telling a specific story and more like starting a guided conversation. It is a dialogue with the audience rather than a monologue. While some data presentations may share the linear approach of a traditional story, other data products" (analytical tools, in particular) give audiences the flexibility for exploration. In our experience, the best data products combine a little of both: a clear sense of direction defined by the author with the ability for audiences to focus on the information that is most relevant to them. The attributes of the traditional story approach combined with the self-exploration approach leads to the guided safari analogy." (Zach Gemignani et al, "Data Fluency", 2014)

"People see bar charts and line charts and pie charts all the time, and those charts are often boring. Boring graphs are forgettable. Different shapes and uncommon forms that move beyond the borders of our typical data visualization experience can draw readers in." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"A well-designed dashboard needs to provide a similar experience; information cannot be placed just anywhere on the dashboard. Charts that relate to one another are usually positioned close to one another. Important charts often appear larger and more visually prominent than less important ones. In other words, there are natural sizes for how a dashboard comprises charts based on the task and context." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Maps are a type of chart that can convey relationships about space and relationships between objects that we relate to in the real world. Their effectiveness as a communication medium is strongly influenced by a host of factors: the nature of spatial data, the form and structure of representation, their intended purpose, the experience of the audience, and the context in the time and space in which the map is viewed. In other words, maps are a ubiquitous representation of spatial information that we can understand and relate to." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Using symbols is one common way of applying semantics to help make sense of the world. Symbols provide clues to understanding experiences by conveying recognizable meanings that are shared by societies." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"When deeply complex charts work, we find them effective and beautiful, just as we find a symphony beautiful, which is another marvelously complex arrangement of millions of data points that we experience as a coherent whole." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)


02 December 2011

📉Graphical Representation: Tables (Just the Quotes)

"Information that is imperfectly acquired, is generally as imperfectly retained; and a man who has carefully investigated a printed table, finds, when done, that he has only a very faint and partial idea of what he has read; and that like a figure imprinted on sand, is soon totally erased and defaced." (William Playfair, "The Commercial and Political Atlas", 1786)

"In the course of executing that design, it occurred to me that tables are by no means a good form for conveying such information. [...] Making an appeal to the eye when proportion and magnitude are concerned is the best and readiest method of conveying a distinct idea." (William Playfair, "The Statistical Brewery", 1801)

"Isolated facts, those that can only be obtained by rough estimate and that require development, can only be presented in memoires; but those that can be presented in a body, with details, and on whose accuracy one can rely, may be expounded in tables." (Emmanuel Duvillard, "Memoire sur le travail du Bureau de statistique", 1806)

"Tables are like cobwebs, like the sieve of Danaides; beautifully reticulated, orderly to look upon, but which will hold no conclusion. Tables are abstractions, and the object a most concrete one, so difficult to read the essence of." (Thomas Carlyle, "Chartism", 1840)

"But law is no explanation of anything; law is simply a generalization, a category of facts. Law is neither a cause, nor a reason, nor a power, nor a coercive force. It is nothing but a general formula, a statistical table." (Florence Nightingale, "Suggestions for Thought", 1860)

"The dominant principle which characterizes my graphic tables and my figurative maps is to make immediately appreciable to the eye, as much as possible, the proportions of numeric results. […] Not only do my maps speak, but even more, they count, they calculate by the eye." (Chatles D Minard, "Des tableaux graphiques et des cartes figuratives", 1862) 

"If statistical graphics, although born just yesterday, extends its reach every day, it is because it replaces long tables of numbers and it allows one not only to embrace at glance the series of phenomena, but also to signal the correspondences or anomalies, to find the causes, to identify the laws." (Émile Cheysson, cca. 1877)

"That the ten digits do not occur with equal frequency must be evident to any one making much use of logarithmic tables, and noticing how much faster the first pages wear out than the last ones." (Simon Newcomb, "Note on the frequencies of the different digits in natural numbers", Amer. J. Math 4, 1881)

"To a very striking degree our culture has become a Statistical culture. Even a person who may never have heard of an index number is affected [...] by [...] of those index numbers which describe the cost of living. It is impossible to understand Psychology, Sociology, Economics, Finance or a Physical Science without some general idea of the meaning of an average, of variation, of concomitance, of sampling, of how to interpret charts and tables." (Carrol D Wright, 1887)

"Getting information from a table is like extracting sunlight from a cucumber." (Arthur B. Farquhar & Henry Farquhar, "Economic and Industrial Delusions", 1891)

"The graphical method has considerable superiority for the exposition of statistical facts over the tabular. A heavy bank of figures is grievously wearisome to the eye, and the popular mind is as incapable of drawing any useful lessons from it as of extracting sunbeams from cucumbers." (Arthur B Farquhar & Henry Farquhar, "Economic and Industrial Delusions", 1891)

"The essential quality of graphic representations is clarity. If the diagram fails to give a clearer impression than the tables of figures it replaces, it is useless. To this end, we will avoid complicating the diagram by including too much data." (Armand Julin, "Summary for a Course of Statistics, General and Applied", 1910)

"Since a table is a collection of certain sets of data, a chart with one curve representing each set of data can be made to take the place of the table. Wherever a chart can be plotted by straight lines, the speed of this is infinitely greater than making out a table, and where the curvilinear law is known, or can be approximated by the use of the empiric law, the speed is but little less." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"Although, the tabular arrangement is the fundamental form for presenting a statistical series, a graphic representation - in a chart or diagram - is often of great aid in the study and reporting of statistical facts. Moreover, sometimes statistical data must be taken, in their sources, from graphic rather than tabular records." (William L Crum et al, "Introduction to Economic Statistics", 1938)

"When numbers in tabular form are taboo and words will not do the work well as is often the case. There is one answer left: Draw a picture. About the simplest kind of statistical picture or graph, is the line variety. It is very useful for showing trends, something practically everybody is interested in showing or knowing about or spotting or deploring or forecasting." (Darell Huff, "How to Lie with Statistics", 1954)

"We must emphasize that such terms as 'select at random', 'choose at random', and the like, always mean that some mechanical device, such as coins, cards, dice, or tables of random numbers, is used." (Frederick Mosteller et al, "Principles of Sampling", Journal of the American Statistical Association Vol. 49 (265), 1954)

"A statistical table is the logical listing of related quantitative data in vertical columns and horizontal rows of numbers with sufficient explanatory and qualifying words, phrases and statements in the form of titles, headings and notes to make clear the full meaning of data and their origin." (Alva M Tuttle, "Elementary Business and Economic Statistics", 1957)

"However informative and well designed a statistical table may be, as a medium for conveying to the reader an immediate and clear impression of its content, it is inferior to a good chart or graph. Many people are incapable of comprehending large masses of information presented in tabular form; the figures merely confuse them. Furthermore, many such people are unwilling to make the effort to grasp the meaning of such data. Graphs and charts come into their own as a means of conveying information in easily comprehensible form." (Alfred R Ilersic, "Statistics", 1959)

"All the evidence obtained from the reproduction of the study mentioned here indicates that the graphic method is 'better' than the tabular. Tables, since graphs are based on them, are necessary, but they are like background rocks, heavy and uninteresting. Graphs, on the other hand, spice the reports; clarify them, and make them interesting and palatable." (Karl M Dallenbach, 1963)

"The statistician has no magic touch by which he may come in at the stage of tabulation and make something of nothing. Neither will his advice, however wise in the early stages of a study, ensure successful execution and conclusion. Many a study, launched on the ways of elegant statistical design, later boggled in execution, ends up with results to which the theory of probability can contribute little." (W Edwards Deming, "Principles of Professional Statistical Practice", Annals of Mathematical Statistics, 36(6), 1965)

"The problem that still remains to be solved is that of the orderable matrix, that needs the use of imagination […] When the two components of a data table are orderable, the normal construction is the orderable matrix. Its permutations show the analogy and the complementary nature that exist between the algorithmic treatments and the graphical treatments." (Jacques Bertin, "Semiology of graphics" ["Semiologie Graphique"], 1967)

"A statistical table is a systematic arrangement of numerical data in columns and rows. Its purpose is to show quantitative facts clearly, concisely, and effectively. It should facilitate an understanding of the logical relationships among the numbers presented. Tables are used in the compilation of raw data, in the summarizing and analytic processes, and in the presentation of statistics in final form. A good table is the product of careful thinking and hard work. It is not just a package of figures put into neat compartments and ruled to make it look more attractive. It contains carefully selected data put together with thought and ingenuity to serve a specific purpose." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"Tables are [...] the backbone of most statistical reports. They provide the basic substance and foundation on which conclusions can be based. They are considered valuable for the following reasons: (1) Clarity - they present many items of data in an orderly and organized way. (2) Comprehension - they make it possible to compare many figures quickly. (3) Explicitness - they provide actual numbers which document data presented in accompanying text and charts. (4) Economy - they save space, and words. (5) Convenience - they offer easy and rapid access to desired items of information." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"We would wish ‘numerate’ to imply the possession of two attributes. The first of these is an ‘at-homeness’ with numbers and an ability to make use of mathematical skills which enable an individual to cope with the practical mathematical demands of his everyday life. The second is ability to have some appreciation and understanding of information which is presented in mathematical terms, for instance in graphs, charts or tables or by reference to percentage increase or decrease." (Cockcroft Committee, "Mathematics Counts: A Report into the Teaching of Mathematics in Schools", 1982)

"The basic principle which should be observed in designing tables is that of grouping related data, either by the use of space or, if necessary, rules. Items which are close together will be seen as being more closely related than items which are farther apart, and the judicious use of space is therefore vitally important. Similarly, ruled lines can be used to relate and divide information, and it is important to be sure which function is required. Rules should not be used to create closed compartments; this is time-wasting and it interferes with scanning." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"We are not saying that the primary purpose of a graph is to convey numbers with as many decimal places as possible. We agree with Ehrenberg (1975) that if this were the only goal, tables would be better. The power of a graph is its ability to enable one to take in the quantitative information, organize it, and see patterns and structure not readily revealed by other means of studying the data." (William Cleveland & Robert McGill, "Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Models", Journal of the American Statistical Association 79, 1984)

"The ease and speed with which tables can be understood depends very much on the tabulation logic. The author must ask himself what information the reader already has when he consults a particular table, and what information he is seeking from it. The row and column headings should relate to the information he already has, thus leading him to the information he seeks which is displayed in the body of the table." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"Wherever possible, numerical tables should be explicit rather than implicit, i.e. the information should be given in full. In an implicit table, the reader may be required to add together two values in order to obtain a third which is not explicitly stated in the table. […] Implicit tables save space, but require more effort on the part of the reader and may cause confusion and errors. They are particularly unsuitable for slides and other transient displays." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"This is why a 'web' of notes with links (like references) between them is far more useful than a fixed hierarchical system. When describing a complex system, many people resort to diagrams with circles and arrows. Circles and arrows leave one free to describe the interrelationships between things in a way that tables, for example, do not. The system we need is like a diagram of circles and arrows, where circles and arrows can stand for anything." (Tim Berners-Lee, "Information Management: A Proposal", 1989)

"A good way to evaluate a model is to look at a visual representation of it. After all, what is easier to understand - a table full of mathematical relationships or a graphic displaying a decision tree with all of its splits and branches?" (Seth Paul et al. "Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis", 2002)

"Computers are able to multiply useless images without taking into account that, by definition, every graphic corresponds to a table. This table allows you to think about three basic questions that go from the particular to the general level. When this last one receives an answer, you have answers for all of them. Understanding means accessing the general level and discovering significant grouping (patterns). Consequently, the function of a graphic is answering the three following questions:
Which are the X,Y, Z components of the data table? (What it’s all about?)
What are the groups in X, in Y that Z builds? (What the information at the general level is?
What are the exceptions?

These questions can be applied to every kind of problem. They measure the usefulness of whatever construction or graphical invention allowing you to avoid useless graphics." (Jacques Bertin, [interview] 2003)

"Graphs are for the forest and tables are for the trees. Graphs give you the big picture and show you the trends; tables give you the details." (Naomi B Robbins, "Creating More effective Graphs", 2005)

"What distinguishes data tables from graphics is explicit comparison and the data selection that this requires. While a data table obviously also selects information, this selection is less focused than a chart's on a particular comparison. To the extent that some figures in a table are visually emphasised. say in colour or size and style of print. the table is well on its way to becoming a chart. If you're making no comparisons - because you have no particular message and so need no selection (in other words, if you are simply providing a database, number quarry or recycling facility) - tables are easier to use than charts." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"Data visualization [...] expresses the idea that it involves more than just representing data in a graphical form (instead of using a table). The information behind the data should also be revealed in a good display; the graphic should aid readers or viewers in seeing the structure in the data. The term data visualization is related to the new field of information visualization. This includes visualization of all kinds of information, not just of data, and is closely associated with research by computer scientists." (Antony Unwin et al, "Introduction" [in "Handbook of Data Visualization"], 2008) 

"Plotting data is a useful first stage to any analysis and will show extreme observations together with any discernible patterns. In addition the relative sizes of categories are easier to see in a diagram (bar chart or pie chart) than in a table. Graphs are useful as they can be assimilated quickly, and are particularly helpful when presenting information to an audience. Tables can be useful for displaying information about many variables at once, while graphs can be useful for showing multiple observations on groups or individuals. Although there are no hard and fast rules about when to use a graph and when to use a table, in the context of a report or a paper it is often best to use tables so that the reader can scrutinise the numbers directly." (Jenny Freeman et al, "How to Display Data", 2008)

"When displaying information visually, there are three questions one will find useful to ask as a starting point. Firstly and most importantly, it is vital to have a clear idea about what is to be displayed; for example, is it important to demonstrate that two sets of data have different distributions or that they have different mean values? Having decided what the main message is, the next step is to examine the methods available and to select an appropriate one. Finally, once the chart or table has been constructed, it is worth reflecting upon whether what has been produced truly reflects the intended message. If not, then refine the display until satisfied; for example if a chart has been used would a table have been better or vice versa?" (Jenny Freeman et al, "How to Display Data", 2008)

"Tables work in a variety of situations because they convey large amounts of data in a condensed fashion. Use tables in the following situations: (1) to structure data so the reader can easily pick out the information desired, (2) to display in a chart when the data contains too many variables or values, and (3) to display exact values that are more important than a visual moment in time." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)

"The data [in tables] should not be so spaced out that it is difficult to follow or so cramped that it looks trapped. Keep columns close together; do not spread them out more than is necessary. If the columns must be spread out to fit a particular area, such as the width of a page, use a graphic device such as a line or screen to guide the reader’s eye across the row." (Dennis K Lieu & Sheryl Sorby, "Visualization, Modeling, and Graphics for Engineering Design", 2009)

"By giving numbers a proper shape, by visually encoding them, the graphic has saved you time and energy that you would otherwise waste if you had to use a table that was not designed to aid your mind." (Alberto Cairo, "The Functional Art", 2011)

"A common mistake is that all visualization must be simple, but this skips a step. You should actually design graphics that lend clarity, and that clarity can make a chart 'simple' to read. However, sometimes a dataset is complex, so the visualization must be complex. The visualization might still work if it provides useful insights that you wouldn’t get from a spreadsheet. […] Sometimes a table is better. Sometimes it’s better to show numbers instead of abstract them with shapes. Sometimes you have a lot of data, and it makes more sense to visualize a simple aggregate than it does to show every data point." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"With fast computers and plentiful data, finding statistical significance is trivial. If you look hard enough, it can even be found in tables of random numbers." (Gary Smith, "Standard Deviations", 2014)

"One thing to keep in mind with a table is that you want the design to fade into the background, letting the data take center stage. Don’t let heavy borders or shading compete for attention. Instead, think of using light borders or simply white space to set apart elements of the table." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"[...] tables interact with our verbal system, graphs interact with our visual system, which is faster at processing information." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"Using a table in a live presentation is rarely a good idea. As your audience reads it, you lose their ears and attention to make your point verbally." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"A useful way to think about tables and graphics is to visualize layers. Just as photographic files may be manipulated in photo editing software using layers, data presentations are constructed by imagining that layers of an image are placed one on top of another. There are three general layers that apply to visual data presentations: (a) a frame that is typically a rectangle or matrix, (b) axes and coordinate systems (for graphics), and (c) data presented as numbers or geometric objects." (John Hoffmann, "Principles of Data Management and Presentation", 2017)

"Most of us have difficulty figuring probabilities and statistics in our heads and detecting subtle patterns in complex tables of numbers. We prefer vivid pictures, images, and stories. When making decisions, we tend to overweight such images and stories, compared to statistical information. We also tend to misunderstand or misinterpret graphics." (Daniel J Levitin, "Weaponized Lies", 2017)

"Reference tables show a lot of data with a high degree of precision. They are designed generally to provide users with a way to find particular pieces of data. […] Summary tables provide some type of extraction of data from a reference table or a spreadsheet. The data are usually manipulated, analyzed, or summarized in some way, such as by sorting or providing summary statistics (means, percentages, ranges). The results of statistical models are usually presented in research reports using this type of table." (John Hoffmann, "Principles of Data Management and Presentation", 2017)

"The most accurate but least interpretable form of data presentation is to make a table, showing every single value. But it is difficult or impossible for most people to detect patterns and trends in such data, and so we rely on graphs and charts. Graphs come in two broad types: Either they represent every data point visually (as in a scatter plot) or they implement a form of data reduction in which we summarize the data, looking, for example, only at means or medians." (Daniel J Levitin, "Weaponized Lies", 2017)

"The main differences between Bayesian networks and causal diagrams lie in how they are constructed and the uses to which they are put. A Bayesian network is literally nothing more than a compact representation of a huge probability table. The arrows mean only that the probabilities of child nodes are related to the values of parent nodes by a certain formula (the conditional probability tables) and that this relation is sufficient. That is, knowing additional ancestors of the child will not change the formula. Likewise, a missing arrow between any two nodes means that they are independent, once we know the values of their parents. [...] If, however, the same diagram has been constructed as a causal diagram, then both the thinking that goes into the construction and the interpretation of the final diagram change." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"Apart from the technical challenge of working with the data itself, visualization in big data is different because showing the individual observations is just not an option. But visualization is essential here: for analysis to work well, we have to be assured that patterns and errors in the data have been spotted and understood. That is only possible by visualization with big data, because nobody can look over the data in a table or spreadsheet." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"When visuals are applied to data, they can enlighten the audience to insights that they wouldn’t see without charts or graphs. Many interesting patterns and outliers in the data would remain hidden in the rows and columns of data tables without the help of data visualizations. They connect with our visual nature as human beings and impart knowledge that couldn’t be obtained as easily using other approaches that involve just words or numbers." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

📉Graphical Representation: Narratives (Just the Quotes)

"Graphic charts are ways of presenting quantitative as well as qualitative information in an efficient and effective visual form. Numbers and ideas presented graphically are often more easily understood. remembered. and integrated than when they are presented in narrative or tabular form. Descriptions. trends. relationships, and comparisons can be made more apparent. Less time is required to present and comprehend information when graphic methods are employed. As the old truism states, 'One picture is worth a thousand words.'" (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"If you want to dramatize comparisons in relation to the whole. use a pie chart. If you want to add coherence to the narrative, the pie chart also helps because it depicts a whole. If your main interest is in stressing the relationship of one factor to another, use bar charts. If you wish to achieve all these effects. you can use either type of chart. and decide on the basis of which one is more aesthetically or pictorially interesting." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"It should be noted that graphics for the purpose of clarity should not be a substitute for words and numbers in the narrative text. The graphics presentation is used to supplement the narrative; otherwise. there wouldn't be anything to clarify." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"Most techniques for displaying evidence are inherently multimodal, bringing verbal, visual. and quantitative elements together. Statistical graphics and maps arc visual-numerical fields labeled with words and framed by numbers. Even an austere image may evoke other images, new or remembered narrative, and perhaps a sense of scale and quantity. Words can simultaneously convey semantic and visual content, as the nouns on a map both name places and locate them in the two - space of latitude and longitude." (Edward R Tufte, "Beautiful Evidence", 2006)

"Data art is characterized by a lack of structured narrative and absence of any visual analysis capability. Instead, the motivation is much more about creating an artifact, an aesthetic representation or perhaps a technical/technique demonstration. At the extreme end, a design may be more guided by the idea of fun or playfulness or maybe the creation of ornamentation." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"Designers must tell stories - they must ascribe narrative underpinnings to their designs or the work of others. Indeed, their designs must have a narrative. Context is everything, and writing helps establish the story that design wants to tell. Where once it was enough simply (and it is never simple) to make objects of design, now designers are encouraged to wrap their respective works in blankets of words that add an additional dimension to their output." (Steven Heller, "Writing and Research for Graphic Designers: A Designer's Manual to Strategic Communication and Presentation", 2012) 

"Explanatory data visualization is about conveying information to a reader in a way that is based around a specific and focused narrative. It requires a designer-driven, editorial approach to synthesize the requirements of your target audience with the key insights and most important analytical dimensions you are wishing to convey." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"Nonetheless, storytelling and narrative are essential to the design writing process. Without story - or plot, if you will - what have you got? Even a factual business report can tell a tale, albeit often in a neutral manner. Not all stories have to be dramatic or melodramatic. Storytelling is simply the expres sion of something you, as the writer, believe is of interest to you, as the reader. Indeed, you may well be representative of your average reader." (Steven Heller, "Writing and Research for Graphic Designers: A Designer's Manual to Strategic Communication and Presentation", 2012) 

"Visualization is a medium: a way to explore, present, and express meaning in data. […] Visualization is often framed as a medium for storytelling. The numbers are the source material, and the graphs are how you describe the source. When referring to stories or data narrative, I don’t mean novels (but great if that’s what you’re after). Rather, I mean statistical stories […]" (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Infographics combine art and science to produce something that is not unlike a dashboard. The main difference from a dashboard is the subjective data and the narrative or story, which enhances the data-driven visual and engages the audience quickly through highlighting the required context." (Travis Murphy, "Infographics Powered by SAS®: Data Visualization Techniques for Business Reporting", 2018)

"Data storytelling can be defined as a structured approach for communicating data insights using narrative elements and explanatory visuals." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Data storytelling involves the skillful combination of three key elements: data, narrative, and visuals. Data is the primary building block of every data story. It may sound simple, but a data story should always find its origin in data, and data should serve as the foundation for the narrative and visual elements of your story." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"When narrative is coupled with data, it helps to explain to your audience what’s happening in the data and why a particular insight is important. Ample context and commentary are often needed to fully appreciate an analysis finding. The narrative element adds structure to the data and helps to guide the audience through the meaning of what’s being shared." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Beyond the design of individual charts, the sequence of data visualizations creates grammar within the exposition. Cohesive visualizations follow common narrative structures to fully express their message. Order matters. " (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Data becomes more useful once it’s transformed into a data visualization or used in a data story. Data storytelling is the ability to effectively communicate insights from a dataset using narratives and visualizations. It can be used to put data insights into context and inspire action from your audience. Color can be very helpful when you are trying to make information stand out within your data visualizations." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Data storytelling is a method of communicating information that is custom-fit for a specific audience and offers a compelling narrative to prove a point, highlight a trend, make a sale, or all of the above. [...] Data storytelling combines three critical components, storytelling, data science, and visualizations, to create not just a colorful chart or graph, but a work of art that carries forth a narrative complete with a beginning, middle, and end." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Good data stories have three key components: data, narrative, and visuals. [...] The data part is fairly obvious - data has to be accurate for the correct insights to be achieved. The narrative has to give a voice to the data in simple language, turning each data point into a character in the story with its own tale to tell. The visuals are what we are most concerned about. They have to allow us to be able to find trends and patterns in our datasets and do so easily and specifically. The last thing we want is for the most important points to be buried in rows and columns." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

01 December 2011

📉Graphical Representation: Percentages (Just the Quotes)

"[…] statistical literacy. That is, the ability to read diagrams and maps; a 'consumer' understanding of common statistical terms, as average, percent, dispersion, correlation, and index number."  (Douglas Scates, "Statistics: The Mathematics for Social Problems", 1943)

"Percentages offer a fertile field for confusion. And like the ever-impressive decimal they can lend an aura of precision to the inexact. […] Any percentage figure based on a small number of cases is likely to be misleading. It is more informative to give the figure itself. And when the percentage is carried out to decimal places, you begin to run the scale from the silly to the fraudulent." (Darell Huff, "How to Lie with Statistics", 1954)

"Charts not only tell what was, they tell what is; and a trend from was to is (projected linearly into the will be) contains better percentages than clumsy guessing." (Robert A Levy, "The Relative Strength Concept of Common Stock Forecasting", 1968)

"We would wish ‘numerate’ to imply the possession of two attributes. The first of these is an ‘at-homeness’ with numbers and an ability to make use of mathematical skills which enable an individual to cope with the practical mathematical demands of his everyday life. The second is ability to have some appreciation and understanding of information which is presented in mathematical terms, for instance in graphs, charts or tables or by reference to percentage increase or decrease." (Cockcroft Committee, "Mathematics Counts: A Report into the Teaching of Mathematics in Schools", 1982) 

"The ease with which somewhat complex statistics can produce confusion is important, because we live in a world in which complex numbers are becoming more common. Simple statistical ideas - fractions, percentages, rates - are reasonably well understood by many people. But many social problems involve complex chains of cause and effect that can be understood only through complicated models developed by experts. [...] environment has an influence. Sorting out the interconnected causes of these problems requires relatively complicated statistical ideas - net additions, odds ratios, and the like. If we have an imperfect understanding of these ideas, and if the reporters and other people who relay the statistics to us share our confusion - and they probably do - the chances are good that we'll soon be hearing - and repeating, and perhaps making decisions on the basis of - mutated statistics." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Precision and recall are ways of monitoring the power of the machine learning implementation. Precision is a metric that monitors the percentage of true positives. […] Recall is the ratio of true positives to true positive plus false negatives." (Matthew Kirk, "Thoughtful Machine Learning", 2015)

"The most ubiquitous graph is the pie chart. It is a staple of the business world. [...] Never use a pie chart. Present a simple list of percentages, or whatever constitutes the divisions of the pie chart." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"Why does representing information in terms of natural frequencies rather than probabilities or percentages foster insight? For two reasons. First, computational simplicity: The representation does part of the computation. And second, evolutionary and developmental primacy: Our minds are adapted to natural frequencies." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)

"Numbers are often useful in stories because they record a recent change in some amount, or because they are being compared with other numbers. Percentages, ratios and proportions are often better than raw numbers in establishing a context." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)

"The percentage is one of the best (mathematical) friends a journalist can have, because it quickly puts numbers into context. And it's a context that the vast majority of readers and viewers can comprehend immediately." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)

"Generally pie charts are to be avoided, as they can be difficult to interpret particularly when the number of categories is greater than five. Small proportions can be very hard to discern […] In addition, unless the percentages in each of the individual categories are given as numbers it can be much more difficult to estimate them from a pie chart than from a bar chart […]." (Jenny Freeman et al, "How to Display Data", 2008)

"Another way to obscure the truth is to hide it with relative numbers. […] Relative scales are always given as percentages or proportions. An increase or decrease of a given percentage only tells us part of the story, however. We are missing the anchoring of absolute values." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"Comparisons are the lifeblood of empirical studies. We can’t determine if a medicine, treatment, policy, or strategy is effective unless we compare it to some alternative. But watch out for superficial comparisons: comparisons of percentage changes in big numbers and small numbers, comparisons of things that have nothing in common except that they increase over time, comparisons of irrelevant data. All of these are like comparing apples to prunes." (Gary Smith, "Standard Deviations", 2014)

"How good the data quality is can be looked at both subjectively and objectively. The subjective component is based on the experience and needs of the stakeholders and can differ by who is being asked to judge it. For example, the data managers may see the data quality as excellent, but consumers may disagree. One way to assess it is to construct a survey for stakeholders and ask them about their perception of the data via a questionnaire. The other component of data quality is objective. Measuring the percentage of missing data elements, the degree of consistency between records, how quickly data can be retrieved on request, and the percentage of incorrect matches on identifiers (same identifier, different social security number, gender, date of birth) are some examples." (Aileen Rothbard, "Quality Issues in the Use of Administrative Data Records", 2015)

"Where there is no natural ordering to the categories it can be helpful to order them by size, as this can help you to pick out any patterns or compare the relative frequencies across groups. As it can be difficult to discern immediately the numbers represented in each of the categories it is good practice to include the number of observations on which the chart is based, together with the percentages in each category." (Jenny Freeman et al, "How to Display Data", 2008)

"Reporting numbers as percentages can obscure important changes in net values. […] Percentage calculations can give strange answers when any of the numbers involved are negative." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"While the individual man is an insoluble puzzle, in the aggregate he becomes a mathematical certainty. You can, for example, never foretell what anyone man will be up to, but you can say with precision what an average number will be up to. Individuals vary, but percentages remain constant. So says the statistician." (Sir Arthur C Doyle)

📉Graphical Representation: Dot Plots/Charts (Just the Quotes)

"Dot charts are suggested as replacements for bar charts. The replacements allow more effective visual decoding of the quantitative information and can be used for a wider variety of data sets." (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38 (4) 1984)

"[...] error bars are more effectively portrayed on dot charts than on bar charts. […] On the bar chart the upper values of the intervals stand out well, but the lower values are visually deemphasized and are not as well perceived as a result of being embedded in the bars. This deemphasis does not occur on the dot chart." (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38 (4) 1984)

"Pie charts have severe perceptual problems. Experiments in graphical perception have shown that compared with dot charts, they convey information far less reliably. But if you want to display some data, and perceiving the information is not so important, then a pie chart is fine." (Richard Becker & William S Cleveland," S-Plus Trellis Graphics User's Manual", 1996)

"A bar graph typically presents either averages or frequencies. It is relatively simple to present raw data (in the form of dot plots or box plots). Such plots provide much more information. and they are closer to the original data. If the bar graph categories are linked in some way - for example, doses of treatments - then a line graph will be much more informative. Very complicated bar graphs containing adjacent bars are very difficult to grasp. If the bar graph represents frequencies. and the abscissa values can be ordered, then a line graph will be much more informative and will have substantially reduced chart junk." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"The plot tells us the data are granular in the data source, something we could not ascertain with the histogram. There is an important lesson here. Statistics texts and statistical packages that recommend the histogram as the graphical starting point for a data analysis are giving bad advice. The same goes for kernel density estimates. These are appropriate second stages for graphical data analysis. The best starting point for getting a sense of the distribution of a variable is a tally, stem-and-leaf, or a dot plot. A dot plot is a special case of a tally (perhaps best thought of as a delta-neighborhood tally). Once we see that the data are not granular, we may move on to a histogram or kernel density, which smooths the data more than a dot plot." (Leland Wilkinson, "The Grammar of Graphics" 2nd Ed., 2005)

"Area can also make data seem more tangible or relatable, because physical objects take up space. A circle or a square uses more space than a dot on a screen or paper. There’s less abstraction between visual cue and real world." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Visualization is what happens when you make the jump from raw data to bar graphs, line charts, and dot plots. […] In its most basic form, visualization is simply mapping data to geometry and color. It works because your brain is wired to find patterns, and you can switch back and forth between the visual and the numbers it represents. This is the important bit. You must make sure that the essence of the data isn’t lost in that back and forth between visual and the value it represents because if you can’t map back to the data, the visualization is just a bunch of shapes." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Another word of caution for dot plots that show changes over time. The dot plot is, by definition, a summary chart. It does not show all of the data in the intervening years. If the data between the two dots generally move in the same direction, a dot plot is sufficient. But if the data contain sharp variations year by year, a dot plot will obscure that pattern (as it also does for bar charts)." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

📉Graphical Representation: Results (Just the Quotes)

"They [diagrams] are designed not so much to allow of reference to particular numbers, which can be better had from printed tables of figures, as to exhibit to the eye the general results of large masses of figures which it is hopeless to attack in any other way than by graphical representation." (William S Jevons, [letter to Richard Hutton] 1863)

"In many presentations it is not a question of saving time to the reader but a question of placing the arguments in such form that results may surely be obtained. For matters affecting public welfare, it is hard to estimate the benefits which may accrue if a little care be used in presenting data so that they will be convincing to the reader." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"It is not possible to lay down any hard and fast rules for determining what chart is the best for any given problem. Ordinarily that one is the best which will produce the quickest and clearest results, but unfortunately it is not always possible to construct the clearest one in the least time. Experience is the best guide. Generally speaking, a rectilinear chart is best adapted for equations of the first degree, logarithmic for those other than the first degree and not containing over two variables, and alignment charts where there are three or more variables. However, nearly every person becomes more or less familiar with one type of chart and prefers to adhere to the use of that type because he does not care to take the time and trouble to find out how to use the others. It is best to know what the possibilities of all types are and to be governed accordingly when selecting one or the other for presenting or working out certain data." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"Though accurate data and real facts are valuable, when it comes to getting results the manner of presentation is ordinarily more important than the facts themselves. The foundation of an edifice is of vast importance. Still, it is not the foundation but the structure built upon the foundation which gives the result for which the whole work was planned. As the cathedral is to its foundation so is an effective presentation of facts to the data." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"A graph is a pictorial representation or statement of a series of values all drawn to scale. It gives a mental picture of the results of statistical examination in one case while in another it enables calculations to be made by drawing straight lines or it indicates a change in quantity together with the rate of that change. A graph then is a picture representing some happenings and so designed as to bring out all points of significance in connection with those happenings. When the curve has been plotted delineating these happenings a general inspection of it shows the essential character of the table or formula from which it was derived." (William C Marshall, "Graphical methods for schools, colleges, statisticians, engineers and executives", 1921)

"If significance tests are required for still larger samples, graphical accuracy is insufficient, and arithmetical methods are advised. A word to the wise is in order here, however. Almost never does it make sense to use exact binomial significance tests on such data - for the inevitable small deviations from the mathematical model of independence and constant split have piled up to such an extent that the binomial variability is deeply buried and unnoticeable. Graphical treatment of such large samples may still be worthwhile because it brings the results more vividly to the eye." (Frederick Mosteller & John W Tukey, "The Uses and Usefulness of Binomial Probability Paper?", Journal of the American Statistical Association 44, 1949)

"The use of two or more amount scales for comparisons of series in which the units are unlike and, therefore, not comparable [...] generally results in an ineffective and confusing presentation which is difficult to understand and to interpret. Comparisons of this nature can be much more clearly shown by reducing the components to a comparable basis as percentages or index numbers." (Rufus R Lutz, "Graphic Presentation Simplified", 1949)

"Recognize effective results. Does the type of chart selected give a comprehensive picture of the situation? Does the size of chart and visual aid used satisfy all audience requirements? Do materials meet all reproduction problems? Is the layout well balanced and style of lettering uniform? Does the chart as a whole accurately present the facts? Is the projected idea an effective visual tool?" (Mary E Spear, "Charting Statistics", 1952)

"Almost all efforts at data analysis seek, at some point, to generalize the results and extend the reach of the conclusions beyond a particular set of data. The inferential leap may be from past experiences to future ones, from a sample of a population to the whole population, or from a narrow range of a variable to a wider range. The real difficulty is in deciding when the extrapolation beyond the range of the variables is warranted and when it is merely naive. As usual, it is largely a matter of substantive judgment - or, as it is sometimes more delicately put, a matter of 'a priori nonstatistical considerations'." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"Typically, data analysis is messy, and little details clutter it. Not only confounding factors, but also deviant cases, minor problems in measurement, and ambiguous results lead to frustration and discouragement, so that more data are collected than analyzed. Neglecting or hiding the messy details of the data reduces the researcher's chances of discovering something new." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"Unlike some art forms. good graphics should be as concrete, geometrical, and representational as possible. A rectangle should be drawn as a rectangle, leaving nothing to the reader's imagination about what you are trying to portray. The various lines and shapes used in a graphic chart should be arranged so that it appears to be balanced. This balance is a result of the placement of shapes and lines in an orderly fashion." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"Missing data values pose a particularly sticky problem for symbols. For instance, if the ray corresponding to a missing value is simply left off of a star symbol, the result will be almost indistinguishable from a minimum" (i.e., an extreme) value. It may be better either" (i) to impute a value, perhaps a median for that variable, or a fitted value from some regression on other variables," (ii) to indicate that the value is missing, possibly with a dashed line, or" (iii) not to draw the symbol for a particular observation if any value is missing." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"The scales used are important; contracting or expanding the vertical or horizontal scales will change the visual picture. The trend lines need enough grid lines to obviate difficulty in reading the results properly. One must be careful in the use of cross-hatching and shading, both of which can create illusions. Horizontal rulings tend to reduce the appearance. while vertical lines enlarge it. In summary, graphs must be reliable, and reliability depends not only on what is presented but also on how it is presented." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"When magnitudes are graphed on a logarithmic scale, percents and factors are easier to judge since equal multiplicative factors and percents result in equal distances throughout the entire scale." (William S Cleveland, "The Elements of Graphing Data", 1985)

"In everyday life, 'estimation' means a rough and imprecise procedure leading to a rough and imprecise result. You 'estimate' when you cannot measure exactly. In statistics, on the other hand, 'estimation' is a technical term. It means a precise and accurate procedure, leading to a result which may be imprecise, but where at least the extent of the imprecision is known. It has nothing to do with approximation. You have some data, from which you want to draw conclusions and produce a 'best' value for some particular numerical quantity" (or perhaps for several quantities), and you probably also want to know how reliable this value is, i.e. what the error is on your estimate." (Roger J Barlow, "Statistics: A guide to the use of statistical methods in the physical sciences", 1989)

"Statistics is a tool. In experimental science you plan and carry out experiments, and then analyse and interpret the results. To do this you use statistical arguments and calculations. Like any other tool - an oscilloscope, for example, or a spectrometer, or even a humble spanner - you can use it delicately or clumsily, skillfully or ineptly. The more you know about it and understand how it works, the better you will be able to use it and the more useful it will be." (Roger J Barlow, "Statistics: A guide to the use of statistical methods in the physical sciences", 1989)

"Every statistical analysis is an interpretation of the data, and missingness affects the interpretation. The challenge is that when the reasons for the missingness cannot be determined there is basically no way to make appropriate statistical adjustments. Sensitivity analyses are designed to model and explore a reasonable range of explanations in order to assess the robustness of the results." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"By showing recent change in relation to many past changes, sparklines provide a context for nuanced analysis - and, one hopes, better decisions. [...] Sparklines efficiently display and narrate binary data" (presence/absence, occurrence/non-occurrence, win/loss). [...] Sparklines can simultaneously accommodate several variables. [...] Sparklines can narrate on-going results detail for any process producing sequential binary outcomes." (Edward R Tufte, "Beautiful Evidence", 2006)

"Most dashboards fail to communicate efficiently and effectively, not because of inadequate technology (at least not primarily), but because of poorly designed implementations. No matter how great the technology, a dashboard's success as a medium of communication is a product of design, a result of a display that speaks clearly and immediately. Dashboards can tap into the tremendous power of visual perception to communicate, but only if those who implement them understand visual perception and apply that understanding through design principles and practices that are aligned with the way people see and think." (Stephen Few, "Information Dashboard Design", 2006)

"Numerical precision should be consistent throughout and summary statistics such as means and standard deviations should not have more than one extra decimal place" (or significant digit) compared to the raw data. Spurious precision should be avoided although when certain measures are to be used for further calculations or when presenting the results of analyses, greater precision may sometimes be appropriate." (Jenny Freeman et al, "How to Display Data", 2008)

"For a visual to qualify as beautiful, it must be aesthetically pleasing, yes, but it must also be novel, informative, and efficient. [...] For a visual to truly be beautiful, it must go beyond merely being a conduit for information and offer some novelty: a fresh look at the data or a format that gives readers a spark of excitement and results in a new level of understanding. Well-understood formats" (e.g., scatterplots) may be accessible and effective, but for the most part they no longer have the ability to surprise or delight us. Most often, designs that delight us do so not because they were designed to be novel, but because they were designed to be effective; their novelty is a byproduct of effectively revealing some new insight about the world." (Noah Iliinsky, "On Beauty", [in "Beautiful Visualization"] 2010)

"Once these different measures of performance are consolidated into a single number, that statistic can be used to make comparisons […] The advantage of any index is that it consolidates lots of complex information into a single number. We can then rank things that otherwise defy simple comparison […] Any index is highly sensitive to the descriptive statistics that are cobbled together to build it, and to the weight given to each of those components. As a result, indices range from useful but imperfect tools to complete charades." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)

"The big problems with statistics, say its best practitioners, have little to do with computations and formulas. They have to do with judgment - how to design a study, how to conduct it, then how to analyze and interpret the results. Journalists reporting on statistics have many chances to do harm by shaky reporting, and so are also called on to make sophisticated judgments. How, then, can we tell which studies seem credible, which we should report?" (Victor Cohn & Lewis Cope, "News & Numbers: A writer’s guide to statistics" 3rd Ed, 2012)

"Readability in visualization helps people interpret data and make conclusions about what the data has to say. Embed charts in reports or surround them with text, and you can explain results in detail. However, take a visualization out of a report or disconnect it from text that provides context" (as is common when people share graphics online), and the data might lose its meaning; or worse, others might misinterpret what you tried to show." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"The biggest thing to know is that data visualization is hard. Really difficult to pull off well. It requires harmonization of several skills sets and ways of thinking: conceptual, analytic, statistical, graphic design, programmatic, interface-design, story-telling, journalism - plus a bit of ‘gut feel.’ The end result is often simple and beautiful, but the process itself is usually challenging and messy." (David McCandless, 2013)

"Visualization can be appreciated purely from an aesthetic point of view, but it’s most interesting when it’s about data that’s worth looking at. That’s why you start with data, explore it, and then show results rather than start with a visual and try to squeeze a dataset into it. It’s like trying to use a hammer to bang in a bunch of screws. […] Aesthetics isn’t just a shiny veneer that you slap on at the last minute. It represents the thought you put into a visualization, which is tightly coupled with clarity and affects interpretation." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Essentially, magnitude is the size of the effect. It’s a way to determine if the results are meaningful. Without magnitude, it’s hard to get a sense of how much something matters. […] the magnitude of an effect can change, depending on the relationship." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)

"Analysis is a two-step process that has an exploratory and an explanatory phase. In order to create a powerful data story, you must effectively transition from data discovery" (when you’re finding insights) to data communication" (when you’re explaining them to an audience). If you don’t properly traverse these two phases, you may end up with something that resembles a data story but doesn’t have the same effect. Yes, it may have numbers, charts, and annotations, but because it’s poorly formed, it won’t achieve the same results." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.