26 December 2007

🏗️Software Engineering: Skills (Just the Quotes)

"We have seen that computer programming is an art, because it applies accumulated knowledge to the world, because it requires skill and ingenuity, and especially because it produces objects of beauty. A programmer who subconsciously views himself as an artist will enjoy what he does and will do it better. Therefore we can be glad that people who lecture at computer conferences speak of the state of the Art." (Donald E Knuth, "The Art of Computer Programming", 1968)

"Systems program building is an entropy-decreasing process, hence inherently metastable. Program maintenance is an entropy-increasing process, and even its most skillful execution only delays the subsidence of the system into unfixable obsolescence." (Fred P Brooks, "The Mythical Man-Month: Essays", 1975)

"[By understanding] I mean simply a sufficient grasp of concepts, principles, or skills so that one can bring them to bear on new problems and situations, deciding in which ways one's present competencies can suffice and in which ways one may require new skills or knowledge." (Howard Gardner, "The Unschooled Mind", 1991) 

"Even when you have skilled, motivated, hard-working people, the wrong team structure can undercut their efforts instead of catapulting them to success. A poor team structure can increase development time, reduce quality, damage morale, increase turnover, and ultimately lead to project cancellation." (Steve McConnell, "Rapid Development", 1996)

"The real value of tests is not that they detect bugs in the code, but that they detect inadequacies in the methods, concentration, and skills of those who design and produce the code." (Charles A R Hoare, "How Did Software Get So Reliable Without Proof?", Lecture Notes in Computer Science Vol. 1051, 1996)

"Given the choice between an extremely skilled loner and a competent-but-social programmer, XP teams consistently choose the more social candidate. The best interviewing technique is to have the candidate work with the team for a day. Pair programming provides an excellent test of technical and social skills." (Kent Beck, "Extreme Programming Explained: Embrace Change", 1999)

"Computer programming is tremendous fun. Like music, it is a skill that derives from an unknown blend of innate talent and constant practice. Like drawing, it can be shaped to a variety of ends - commercial, artistic, and pure entertainment. Programmers have a well-deserved reputation for working long hours, but are rarely credited with being driven by creative fevers. Programmers talk about software development on weekends, vacations, and over meals not because they lack imagination, but because their imagination reveals worlds that others cannot see." (Larry O'Brien & Bruce Eckel, "Thinking in C#", 2002)

"[Corporate programming] is often done to the point where the individual is completely submerged in corporate 'culture' with no outlet for unique talents and skills. Corporate practices can be directly hostile to individuals with exceptional skills and initiative in technical matters. I consider such management of technical people cruel and wasteful." ( Bjarne Stroustrup, ["The Problem with Programming", MIT Technology Review, [interview] ] 2006)

"Generally, the craft of programming is the factoring of a set of requirements into a a set of functions and data structures." (Douglas Crockford, "JavaScript: The Good Parts", 2008)

"There are two parts to learning craftsmanship: knowledge and work. You must gain the knowledge of principles, patterns, practices, and heuristics that a craftsman knows, and you must also grind that knowledge into your fingers, eyes, and gut by working hard and practicing." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"Treat your code like any other composition, such as a poem, an essay, a public blog, or an important email. Craft what you express carefully, so that it does what it should and communicates as directly as possible what it is doing; so that it still communicates your intention when you are no longer around. Remember that useful code is used much longer than ever intended." (Peter Sommerlad, [in Kevlin Henney’s "97 Things Every Programmer Should Know", 2010])

"In general, software engineers adopt a systematic and organized approach to their work, as this is often the most effective way to produce high-quality software. However, engineering is all about selecting the most appropriate method for a set of circumstances so a more creative, less formal approach to development may be effective in some circumstances. Less formal development is particularly appropriate for the development of web-based systems, which requires a blend of software and graphical design skills." (Ian Sommerville, "Software Engineering" 9th Ed., 2011)

"DevOps is about team play and a collaborative problem-solving approach. If a service goes down, everyone must know what procedures to follow to diagnose the problem and get the system up and running again. Additionally, all of the roles and skills necessary to perform these tasks must be available and able to work together well. Training and effective collaboration are critical here." (Michael Hüttermann et al, "DevOps for Developers", 2013)

"There is common but flawed notion in enterprise IT circles that maintenance work requires less skill than full-scale development. As a result, project sponsors looking to reduce cost opt for a different team of lower-cost people for maintenance work. This is false economy. It hurts the larger business outcome and reduces IT agility." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"Organizations that rely too heavily on org charts and matrixes to split and control work often fail to create the necessary conditions to embrace innovation while still delivering at a fast pace. In order to succeed at that, organizations need stable teams and effective team patterns and interactions. They need to invest in empowered, skilled teams as the foundation for agility and adaptability. To stay alive in ever more competitive markets, organizations need teams and people who are able to sense when context changes and evolve accordingly." (Matthew Skelton & Manuel Pais, "Team Topologies: Organizing Business and Technology Teams for Fast Flow", 2019)

"Beliefs must be reflected in actions to become a part of your leadership style. Your actions develop and strengthen the abilities that support your leadership style. Practicing your beliefs cements them into skills and resources." (Morgan Evans, "Engineering Manager's Handbook", 2023)

"Computer programming is like the ability or skill to see what Picasso saw from all the different angles at once. If it is an art, the crucial element of art is to look at things from an angle that produces new insight or at least has that potential." (Erik Naggum)

"Documentation is not understanding, process is not discipline, formality is not skill." (Jim Highsmith)

"Solving problems is a practical skill like, let us say, swimming. We acquire any practical skill by imitation and practice." (George Polya)

"Finding the right answer is important, of course. But more important is developing the ability to see that problems have multiple solutions, that getting from X to Y demands basic skills and mental agility, imagination, persistence, patience." (Mary H Futrell)

🏗️Software Engineering: Programing Languages (Just the Quotes)

"The establishment of formal standards for proofs about programs [...] and the proposal that the semantics of a programming language may be defined independently of all processors for that language, by establishing standards of rigor for proofs about programs in the language, appears to be novel." (Robert Floyd, "Assigning Meanings to Programs", 1967)

"Computer languages of the future will be more concerned with goals and less with procedures specified by the programmer." (Marvin Minsky, "Form and Content in Computer Science", [Turing Award lecture] 1969)

"There is no programming language, no matter how structured, that will prevent programmers from making bad programs." (Larry Flon, "On research in structured programming", SIGPLAN 10(10), 1975)

"Most programming languages are decidedly inferior to mathematical notation and are little used as tools of thought in ways that would be considered significant by, say, an applied mathematician." (Kenneth E Iverson, "Notation as a Tool of Thought", 1979)

"The properties of executability and universality associated with programming languages can be combined, in a single language, with the well-known properties of mathematical notation which make it such an effective tool of thought." (Kenneth E Iverson, "Notation as a Tool of Thought", 1979)

"A language that doesn't affect the way you think about programming, is not worth knowing." (Alan Perlis, "Epigrams on Programming", 1982)

"A programming language is low level when its programs require attention to the irrelevant." (Alan J Perlis, "Epigrams on Programming", 1982)

"Some programming languages manage to absorb change, but withstand progress." (Alan J Perlis, "Epigrams on Programming", 1982)

"The only way to learn a new programming language is by writing programs in it." (Dennis Ritchie, "C Programming Language", 1988)

"A programming language is like a natural, human language in that it favors certain methaphors, images, and ways of thinking." (Seymour Papert, "Mindstorms: Children, Computers, And Powerful Ideas", 1993) 

"Although mathematical notation undoubtedly possesses parsing rules, they are rather loose, sometimes contradictory, and seldom clearly stated. [...] The proliferation of programming languages shows no more uniformity than mathematics. Nevertheless, programming languages do bring a different perspective. [...] Because of their application to a broad range of topics, their strict grammar, and their strict interpretation, programming languages can provide new insights into mathematical notation." (Kenneth E Iverson, "Math for the Layman", 1999) 

"Programming in an object-oriented language, however, does not ensure that the complexity of an application will be well encapsulated. Applying good programming techniques can improve encapsulation, but the full benefit of object-oriented programming can be realized only if encapsulation is a recognized goal of the design process." (Rebecca Wirfs-Brock, "Object-oriented Design: A responsibility-driven approach", 1989)

"Computer programs are complex by nature. Even if you could invent a programming language that operated exactly at the level of the problem domain, programming would be complicated because you would still need to precisely define relationships between real-world entities, identify exception cases, anticipate all possible state transitions, and so on. Strip away the accidental work involved in representing these factors in a specific programming language and in a specific computing environment, and you still have the essential difficulty of defining the underlying real-world concepts and debugging your understanding of them." (Steve C McConnell," After the Gold Rush : Creating a True Profession of Software Engineering", 1999)

“The precision provided (or enforced) by programming languages and their execution can identify lacunas, ambiguities, and other areas of potential confusion in conventional [mathematical] notation." (Kenneth E Iverson, "Math for the Layman", 1999)

"Programming languages on the whole are very much more complicated than they used to be: object orientation, inheritance, and other features are still not really being thought through from the point of view of a coherent and scientifically well-based discipline or a theory of correctness. My original postulate, which I have been pursuing as a scientist all my life, is that one uses the criteria of correctness as a means of converging on a decent programming language design - one which doesn’t set traps for its users, and ones in which the different components of the program correspond clearly to different components of its specification, so you can reason compositionally about it. [...] The tools, including the compiler, have to be based on some theory of what it means to write a correct program." (Charles A R Hoare, [interview] 2002)

"A programming language is for thinking of programs, not for expressing programs you've already thought of." (Paul Graham, "Hackers and Painters", 2003)

"All OO languages show some tendency to suck programmers into the trap of excessive layering. Object frameworks and object browsers are not a substitute for good design or documentation, but they often get treated as one. Too many layers destroy transparency: It becomes too difficult to see down through them and mentally model what the code is actually doing. The Rules of Simplicity, Clarity, and Transparency get violated wholesale, and the result is code full of obscure bugs and continuing maintenance problems." (Eric S Raymond, "The Art of Unix Programming", 2003)

"Few classical programmers found prototypal inheritance to be acceptable, and classically inspired syntax obscures the language’s true prototypal nature. It is the worst of both worlds." (Douglas Crockford, "JavaScript: The Good Parts", 2008)

"Most programming languages contain good parts and bad parts. I discovered that I could be better programmer by using only the good parts and avoiding the bad parts." (Douglas Crockford, "JavaScript: The Good Parts", 2008)

"Programmers need to be fluent in the language of the machine, whether real or virtual, and in the abstractions that can be related to that language via development tools. It is important to learn many different abstractions, otherwise some ideas become incredibly hard to express. Good programmers need to be able to stand outside their daily routine, to be aware of other languages that are expressive for other purposes. The time always comes when this pays off." (Klaus Marquardt, [in Kevlin Henney’s "97 Things Every Programmer Should Know", 2010])

25 December 2007

🏗️Software Engineering: Documentation (Just the Quotes)

"Amid a wash of paper, a small number of documents become the critical pivots around which every project's management revolves. These are the manager's chief personal tools." (William Bengough, "Scene in the old Congressional Library", 1897)

"Notice that even the data is commented. One of the most effective ways to document a program is simply to describe the data layout in detail. If you can specify for each important variable what values it can assume and how it gets changed, you have gone a long way to describing the program. [...] Document your data layouts." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"The best documentation for a computer program is a clean structure. It also helps if the code is well formatted, with good mnemonic identifiers and labels (if any are needed), and a smattering of enlightening comments. Flowcharts and program descriptions are of secondary importance; the only reliable documentation of a computer program is the code itself. The reason is simple -whenever there are multiple representations of a program, the chance for discrepancy exists. If the code is in error, artistic flowcharts and detailed comments are to no avail. Only by reading the code can the programmer know for sure what the program does." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Writing a computer program eventually boils down to writing a sequence of statements in the language at hand. How each of those statements is expressed determines in large measure the intelligibility of the whole; no amount of commenting, formatting, or supplementary documentation can entirely replace well expressed statements. After all, they determine what the program actually does." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"There is nothing in the programming field more despicable than an undocumented program." (Edward Yourdon, "Techniques of program structure and design", 1975)

"The representation of knowledge in symbolic form is a matter that has pre-occupied the world of documentation since its origin. The problem is now relevant in many situations other than documents and indexes. The structure of records and files in databases: data structures in computer programming; the syntactic and semantic structure of natural language; knowledge representation in artificial intelligence; models of human memory: in all these fields it is necessary to decide how knowledge may be represented so that the representations may be manipulated." (Brian C Vickery, "Concepts of Documentation", 1978)

"Even though it is better if the system can be used without documentation, it may be necessary to provide help and documentation. Any such information should be easy to search, focused on the user's task, list concrete steps to be carried out, and not be too large." (Jakob Nielsen, "Usability Engineering", 1994)

"The following two statements are usually both true: 
There's not enough documentation. 
There's too much documentation." (Larry Wall, [Usenet article], 1997)

"But code as a design document does have its limits. It can overwhelm the reader with detail. Although its behavior is unambiguous, that doesn’t mean it is obvious. And the meaning behind a behavior can be hard to convey. […] A document shouldn’t try to do what the code already does well. The code already supplies the detail. It is an exact specification of program behavior. Other documents need to illuminate meaning, to give insight into large-scale structures, and to focus attention on core elements. Documents can clarify design intent when the programming language does not support a straightforward implementation of a concept. Written documents should complement the code and the talking." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"Good code is its own best documentation." (Steve McConnell, "Code Complete", 2004)

"Documentation is a love letter that you write to your future self." (Damian Conway, "Perl Best Practices", 2005)

"Developing fewer features allows you to conserve development resources and spend more time refining those features that users really need. Fewer features mean fewer things to confuse users, less risk of user errors, less description and documentation, and therefore simpler Help content. Removing any one feature automatically increases the usability of the remaining ones." (Jakob Nielsen, "Prioritizing Web Usability", 2006)

"Any comment that forces you to look in another module for the meaning of that comment has failed to communicate to you and is not worth the bits it consumes." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008) 

"Features have a specification cost, a design cost, and a development cost. There is a testing cost and a reliability cost. […] Features have a documentation cost. Every feature adds pages to the manual increasing training costs." (Douglas Crockford, "JavaScript: The Good Parts: The Good Parts", 2008)

Software is usually accompanied by documentation in the form of big fat scary manuals that nobody ever reads. (Dave Barry, "Dave Barry in Cyberspace", 2010)

"In addition to developing the proper culture, invest in your testing infrastructure by developing linters, documentation, or other assistance that makes it more difficult to write bad tests." (Titus Winters, "Software Engineering at Google: Lessons Learned from Programming Over Time", 2020)

"Documentation is a practice concerned with all the processes involved in transferring documents from sources to users." (Brian C Vickery)

"Documentation is not understanding, process is not discipline, formality is not skill." (Jim Highsmith)

"The guy who knows about computers is the last person you want to have creating documentation for people who don't understand computers." (Adam Osborne)

"This is generally true: any sizeable piece of program, or even a complete program package, is only a useful tool that can be used in a reliable fashion, provided that the documentation pertinent for the user is much shorter than the program text. If any machine or system requires a very thick manual, its usefulness becomes for that very circumstance subject to doubt!" (Edsger W. Dijkstra, "On the reliability of programs")

🏗️Software Engineering: Object-Oriented Programming [OOP] (Just the Quotes)

"Object-oriented programming languages support encapsulation, thereby improving the ability of software to be reused, refined, tested, maintained, and extended. The full benefit of this support can only be realized if encapsulation is maximized during the design process. […] design practices which take a data-driven approach fail to maximize encapsulation because they focus too quickly on the implementation of objects." (Rebecca Wirfs-Brock, "Object-oriented Design: A. responsibility-driven approach", 1989)

"Perhaps the greatest strength of an object-oriented approach to development is that it offers a mechanism that captures a model of the real world." (Grady Booch, "Software Engineering with Ada", 1986)

"Object-oriented programming increases the value of these metrics by managing this complexity. The most effective tool available for dealing with complexity is abstraction. Many types of abstraction can be used, but encapsulation is the main form of abstraction by which complexity is managed in object-oriented programming. Programming in an object-oriented language, however, does not ensure that the complexity of an application will be well encapsulated. Applying good programming techniques can improve encapsulation, but the full benefit of object-oriented programming can be realized only if encapsulation is a recognized goal of the design process." (Rebecca Wirfs-Brock," Object-Oriented Design: A responsibility-driven approach", 1989)

"Programming in an object-oriented language, however, does not ensure that the complexity of an application will be well encapsulated. Applying good programming techniques can improve encapsulation, but the full benefit of object-oriented programming can be realized only if encapsulation is a recognized goal of the design process." (Rebecca Wirfs-Brock, "Object-oriented Design: A responsibility-driven approach", 1989)

"In object-oriented analysis, we seek to model the world by identifying the classes and objects that form the vocabulary of the problem domain, and in object-oriented design, we invent the abstractions and mechanisms that provide the behavior that this model requires." (Grady Booch, "Object-Oriented Design: With Applications", 1991) 

"Object-oriented analysis is a method of analysis that examines requirements from the perspective of the classes and objects found in the vocabulary of the problem domain."(Grady Booch, "Object-oriented design: With Applications", 1991)

"[Object-oriented analysis is] the challenge of understanding the problem domain and then the system's responsibilities in that light." (Edward Yourdon, "Object-Oriented Design", 1991) 

"Object-oriented programming is a method of implementation in which programs are organized as cooperative collections of objects, each of which represents an instance of some class, and whose classes are all members of a hierarchy of classes united via inheritance relationships." (Grady Booch, "Object-oriented design: With Applications", 1991)

"Structured design does not scale up well for extremely complex systems, and this method is largely inappropriate for use with object-based and object-oriented programming languages." (Grady Booch, "Object-oriented design: With Applications", 1991) 

"The object-oriented paradigm is useful when building software systems where there is a hierarchy defined as a ranking or ordering of abstractions. (Grady Booch, "Object-Oriented Design: With Applications", 1991)

"Whereas object-oriented analysis typically focuses upon one specific problem at a time, domain analysis seeks to identify the classes and objects that are common to all applications within a given domain, such as missile avionics systems, compilers, or accounting software." (Grady Booch, "Object-oriented design: With Applications", 1991)

"Object-oriented methods tend to focus on the lowest-level building block: the class and its objects." (Peter Coad, "Object-oriented patterns", 1992)

"Object-oriented domain analysis seeks to identify reusable items localized around objects e. g., classes, instances, systems of interacting objects, and kits." (Edward V Berard, "Essays on object-oriented software engineering", 1993)

"All OO languages show some tendency to suck programmers into the trap of excessive layering. Object frameworks and object browsers are not a substitute for good design or documentation, but they often get treated as one. Too many layers destroy transparency: It becomes too difficult to see down through them and mentally model what the code is actually doing. The Rules of Simplicity, Clarity, and Transparency get violated wholesale, and the result is code full of obscure bugs and continuing maintenance problems." (Eric S. Raymond, "The Art of Unix Programming", 2003)

"Objects are the real and conceptual things we find in the world around us. An object may be hardware, software, a concept (e. g., velocity), or even 'flesh and blood'. Objects are complete entities, i. e., they are not 'simply information' or 'simply information and actions'. Software objects strive to capture as completely as possible the characteristics of the 'real world' objects which they represent. Finally, objects are 'black boxes', i. e., their internal implementations are hidden from the outside world, and all interactions with an object take place via a well-defined interface." (Edward V Berard, "Essays onObject-Oriented Software Engineering", 1993) 

"The combination of threads, remote-procedure-call interfaces, and heavyweight object-oriented design is especially dangerous [...] if you are ever invited onto a project that is supposed to feature all three, fleeing in terror might well be an appropriate reaction." (Eric S Raymond, "The Art of UNIX Programming", 2003)

"Abstraction is the ability to engage with a concept while safely ignoring some of its details - handling different details at different levels. Any time you work with an aggregate, you're working with an abstraction. […] From a complexity point of view, the principal benefit of abstraction is that it allows you to ignore irrelevant details. Most real-world objects are already abstractions of some kind." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"Coupling describes how tightly a class or routine is related to other classes or routines. The goal is to create classes and routines with small, direct, visible, and flexible relations to other classes and routines, which is known as "loose coupling." The concept of coupling applies equally to classes and routines […] Good coupling between modules is loose enough that one module can easily be used by other modules." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"Encapsulation picks up where abstraction leaves off. Abstraction says, ‘You're allowed to look at an object at a high level of detail’. Encapsulation says, ‘Furthermore, you aren't allowed to look at an object at any other level of detail’." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"Object-oriented design is the roman numerals of computing." (Rob Pike, 2004)

"On a related topic, let me say that I'm not much of a fan of object-oriented design. I've seen some beautiful stuff done with OO, and I've even done some OO stuff myself, but it's just one way to approach a problem. For some problems, it's an ideal way; for others, it's not such a good fit. […] OO is great for problems where an interface applies naturally to a wide range of types, not so good for managing polymorphism (the machinations to get collections into OO languages are astounding to watch and can be hellish to work with), and remarkably ill-suited for network computing. That's why I reserve the right to match the language to the problem, and even - often - to coordinate software written in several languages towards solving a single problem. It's that last point - different languages for different subproblems - that sometimes seems lost to the OO crowd." (Rob Pike, [interview] 2004) 

"The steps in designing with objects are
- Identify the objects and their attributes (methods and data).
- Determine what can be done to each object.
- Determine what each object is allowed to do to other objects.
- Determine the parts of each object that will be visible to other objects—which parts will be public and which will be private.
- Define each object's public interface. 
These steps aren't necessarily performed in order, and they're often repeated. Iteration is important." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"Every system is built from a domain-specific language designed by the programmers to describe that system. Functions are the verbs of that language, and classes are the nouns."  (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"I find OOP methodologically wrong. It starts with classes. It is as if mathematicians would start with axioms. You do not start with axioms - you start with proofs. Only when you have found a bunch of related proofs, can you come up with axioms. You end with axioms. The same thing is true in programming: you have to start with interesting algorithms. Only when you understand them well, can you come up with an interface that will let them work." (Alexander Stepanov, [Interview with A. Stepanov] 2008)

"We do not want to expose the details of our data. Rather we want to express our data in abstract terms. This is not merely accomplished by using interfaces and/or getters and setters. Serious thought needs to be put into the best way to represent the data that an object contains. The worst option is to blithely add getters and setters." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"Polymorphism is one of the grand ideas that is fundamental to OO. The word, taken from Greek, means many (poly) forms (morph). In the context of programming, polymorphism refers to many forms of a particular class of objects or method. But polymorphism isn’t simply about alternate implementations. Used carefully, polymorphism creates tiny localized execution contexts that let us work without the need for verbose if-then-else blocks. Being in a context allows us to do the right thing directly, whereas being outside of that context forces us to reconstruct it so that we can then do the right thing. With careful use of alternate implementations, we can capture context that can help us produce less code that is more readable." (Kirk Pepperdine, [in Kevlin Henney’s "97 Things Every Programmer Should Know", 2010])

"More generally, each unit of code, from a block to a library, should have a narrow interface. Less communication reduces the reasoning required. This means that getters that return internal state are a liability - don’t ask an object for information to work with. Instead, ask the object to do the work with the information it already has. In other words, encapsulation is all - and only - about narrow interfaces." (Yechiel Kimchi [in Kevlin Henney’s "97 Things Every Programmer Should Know", 2010])

"[Object-oriented analysis is] the challenge of understanding the problem domain and then the system's responsibilities in that light." (Ed Yourdon)

"Strive for class interfaces that are complete and minimal." (Scott Meyers) 

🏗️Software Engineering: Code (Just the Quotes)

"A clean design is more easily modified as requirements change or as more is learned about what parts of the code consume significant amounts of execution time. A 'clever' design that fails to work or to run fast enough can often be salvaged only at great cost. Efficiency does not have to be sacrificed in the interest of writing readable code - rather, writing readable code is often the only way to ensure efficient programs that are also easy to maintain and modify." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Choosing a better data structure is often an art, which we cannot teach. Often you must write a preliminary draft of the code before you can determine what changes in the data structure will help simplify control. [...] Choose a data representation that makes the program simple." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Don't comment bad code - rewrite it." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Don't just echo the code with comments make every comment count." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Jumping around unnecessarily in a computer program has proved to be a fruitful source of errors, and usually indicates that the programmer is not entirely in control of the code." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Make sure comments and code agree." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"The best documentation for a computer program is a clean structure. It also helps if the code is well formatted, with good mnemonic identifiers and labels" (if any are needed), and a smattering of enlightening comments. Flowcharts and program descriptions are of secondary importance; the only reliable documentation of a computer program is the code itself. The reason is simple -whenever there are multiple representations of a program, the chance for discrepancy exists. If the code is in error, artistic flowcharts and detailed comments are to no avail. Only by reading the code can the programmer know for sure what the program does." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"The fundamental problem with software maintenance is that fixing a defect has a substantial (20-50 percent) chance of introducing another. So the whole process is two steps forward and one step back. Why aren't defects fixed more cleanly? First, even a subtle defect shows itself as a local failure of some kind. In fact it often has system-wide ramifications, usually nonobvious. Any attempt to fix it with minimum effort will repair the local and obvious, but unless the structure is pure or the documentation very fine, the far-reaching effects of the repair will be overlooked. Second, the repairer is usually not the man who wrote the code, and often he is a junior programmer or trainee." (Frederick P. Brooks, The Mythical Man-Month" , 1975)

"Elements (lines of code) in a coincidentally-cohesive module have no relationship. Typically occurs as the result of modularizing existing code, to separate out redundant code." (Edward Yourdon & Larry L Constantine, "Structured Design: Fundamentals of a discipline of computer program and systems design", 1978)

"The major distinguishing feature of the spiral model is that it creates a risk-driven approach to the software process rather than a primarily document-driven or code-driven process. It incorporates many of the strengths of other models and resolves many of their difficulties." (Barry Boehm, "A spiral model of software development and enhancement", IEEE, 1988)

"Code migrates to data. Because of this law there is increasing awareness that bugs in code are only half the battle and that data problems should be given equal attention."" (Boris Beizer, "Software Testing Techniques", 1990)

"More than the act of testing, the act of designing tests is one of the best bug preventers known. The thinking that must be done to create a useful test can discover and eliminate bugs before they are coded - indeed, test-design thinking can discover and eliminate bugs at every stage in the creation of software, from conception to specification, to design, coding and the rest."" (Boris Beizer, "Software Testing Techniques", 1990)

"Third law: Code migrates to data. Because of this law there is increasing awareness that bugs in code are only half the battle and that data problems should be given equal attention."" (Boris Beizer, "Software Testing Techniques", 1990)

"Shipping first time code is like going into debt. A little debt speeds development so long as it is paid back promptly with a rewrite [...] The danger occurs when the debt is not repaid. Every minute spent on not-quite-right code counts as interest on that debt." (Ward Cunningham, "The WyCash Portfolio Management System", OOPSLA, 1992)

"From time to time, a complex algorithm will lead to a longer routine, and in those circumstances, the routine should be allowed to grow organically up to 100-200 lines." (A line is a noncomment, nonblank line of source code.) Decades of evidence say that routines of such length are no more error prone than shorter routines. Let issues such as the routine's cohesion, depth of nesting, number of variables, number of decision points, number of comments needed to explain the routine, and other complexity-related considerations dictate the length of the routine rather than imposing a length restriction per se." (Steve C McConnell," Code Complete: A Practical Handbook of Software Construction", 1993)

"Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to create simpler code by defining a base class that specifies common elements of two or more derived classes. The common elements can be routine interfaces, implementations, data members, or data types. Inheritance helps avoid the need to repeat code and data in multiple locations by centralizing it within a base class. When you decide to use inheritance, you have to make several decisions: For each member routine, will the routine be visible to derived classes? Will it have a default implementation? Will the default implementation be overridable? For each data member" (including variables, named constants, enumerations, and so on), will the data member be visible to derived classes?" (Steve C McConnell," Code Complete: A Practical Handbook of Software Construction", 1993)

"Modularity's goal is to make each routine or class like a 'black box': You know what goes in, and you know what comes out, but you don't know what happens inside." (Steve C McConnell," Code Complete: A Practical Handbook of Software Construction", 1993)

"The source code is often the only accurate description of the software. On many projects, the only documentation available to programmers is the code itself. Requirements specifications and design documents can go out of date, but the source code is always up to date. Consequently, it's imperative that the code be of the highest possible quality." (Steve C McConnell," Code Complete: A Practical Handbook of Software Construction", 1993) 

"The real value of tests is not that they detect bugs in the code, but that they detect inadequacies in the methods, concentration, and skills of those who design and produce the code." (Charles A R Hoare, "How Did Software Get So Reliable Without Proof?", Lecture Notes in Computer Science Vol. 1051, 1996)

"Any fool can write code that a computer can understand. Good programmers write code that humans can understand." (Martin Fowler, "Refactoring: Improving the Design of Existing Code", 1999)

"Bug tracking will allow you to uncover 'smells' in code" (to use a refactoring phrase). If there are a large number of problems in a particular segment of your project then you may want to really focus on that segment and stabilize it. How do you identify this clustering unless you keep track of the errors.(Ken Beck, 1999)

"Treating your users as co-developers is your least-hassle route to rapid code improvement and effective debugging." (Eric S Raymond, "The Cathedral & the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary", 1999)

"When you feel the need to write a comment, first try to refactor the code so that any comment becomes superfluous." (Kent Beck, "Refactoring: Improving the Design of Existing Code", 1999)

"When you find you have to add a feature to a program, and the program's code is not structured in a convenient way to add the feature, first refactor the program to make it easy to add the feature, then add the feature."" (Kent Beck, "Refactoring: Improving the Design of Existing Code", 1999)

"Bugs are things that creep into your software against your will. Every defect in your code was put there by one of the programmers. Two of the programmers, with pair programming. With the customers we visit, when something goes wrong, they think it's a defect." (Ron Jeffries, "Extreme Programming Installed", 2001)

"Do build perfectly for today. Do the simple thing that solves today's problem, but do it well. Keep the code of high quality, just perfect for today's needs." (Ron Jeffries, "Extreme Programming Installed", 2001)

"Smart data structures and dumb code works a lot better than the other way around." (Eric S Raymond, "The Cathedral & the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary", 2001)

"XP isn't slash and burn programming, not code and fix, not at all. Extreme Programming is about careful and continuous design, rapid  feedback from extensive testing, and the maintenance of relentlessly clear and high-quality code." (Ron Jeffries, "Extreme Programming Installed, 2001)

"Refactoring is the process of changing a software system in such a way that it does not alter the external behavior of the code yet improves its internal structure. It is a disciplined way to clean up code that minimizes the chances of introducing bugs. In essence when you refactor you are improving the design of the code after it has been written." (Martin Fowler et al, "Refactoring: Improving the Design of Existing Code", 2002)

"Without refactoring, the design of the program will decay. As people change code - changes to realize short-term goals or changes made without a full comprehension of the design of the code - the code loses its structure. It becomes harder to see the design by reading the code. Refactoring is rather like tidying up the code. Work is done to remove bits that aren't really in the right place. Loss of the structure of code has a cumulative effect. The harder it is to see the design in the code, the harder it is to preserve it, and the more rapidly it decays. Regular refactoring helps code retain its shape." (Martin Fowler et al, "Refactoring: Improving the Design of Existing Code", 2002)

"All OO languages show some tendency to suck programmers into the trap of excessive layering. Object frameworks and object browsers are not a substitute for good design or documentation, but they often get treated as one. Too many layers destroy transparency: It becomes too difficult to see down through them and mentally model what the code is actually doing. The Rules of Simplicity, Clarity, and Transparency get violated wholesale, and the result is code full of obscure bugs and continuing maintenance problems." (Eric S Raymond, "The Art of Unix Programming", 2003)

"But code as a design document does have its limits. It can overwhelm the reader with detail. Although its behavior is unambiguous, that doesn't mean it is obvious. And the meaning behind a behavior can be hard to convey. [...] A document shouldn't try to do what the code already does well. The code already supplies the detail. It is an exact specification of program behavior. Other documents need to illuminate meaning, to give insight into large-scale structures, and to focus attention on core elements. Documents can clarify design intent when the programming language does not support a straightforward implementation of a concept. Written documents should complement the code and the talking." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"If the architecture isolates the domain-related code in a way that allows a cohesive domain design loosely coupled to the rest of the system, then that architecture can probably support domain-driven DESIGN." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"Models come in many varieties and serve many roles, even those restricted to the context of a software development project. Domain-driven design calls for a model that doesn't just aid early analysis but is the very foundation of the design [...]  Tightly relating the code to an underlying model gives the code meaning and makes the model relevant." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"The effectiveness of an overall design is very sensitive to the quality and consistency of fine-grained design and implementation decisions. With a MODEL-DRIVEN DESIGN, a portion of the code is an expression of the model; changing that code changes the model. Programmers are modelers, whether anyone likes it or not. So it is better to set up the project so that the programmers do good modeling work." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"Good code is its own best documentation." (Steve McConnell, "Code Complete", 2004)

"On small, informal projects, a lot of design is done while the programmer sits at the keyboard. 'Design' might be just writing a class interface in pseudocode before writing the details. It might be drawing diagrams of a few class relationships before coding them. It might be asking another programmer which design pattern seems like a better choice. Regardless of how it's done, small projects benefit from careful design just as larger projects do, and recognizing design as an explicit activity maximizes the benefit you will receive from it." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"A commitment to simplicity of design means addressing the essence of design - the abstractions on which software is built - explicitly and up front. Abstractions are articulated, explained, reviewed and examined deeply, in isolation from the details of the implementation. This doesn't imply a waterfall process, in which all design and specification precedes all coding. But developers who have experienced the benefits of this separation of concerns are reluctant to rush to code, because they know that an hour spent on designing abstractions can save days of refactoring." (Daniel Jackson, "Software Abstractions", 2006)

"In fact, I'm a huge proponent of designing your code around the data, rather than the other way around, and I think it's one of the reasons git has been fairly successful. [...] I will, in fact, claim that the difference between a bad programmer and a good one is whether he considers his code or his data structures more important. Bad programmers worry about the code. Good programmers worry about data structures and their relationships." (Linus Torvalds, [email] 2006)

"The picture of digital progress that so many ardent boosters paint ignores the painful record of actual programmers' epic struggles to bend brittle code into functional shape. That record is of one disaster after another, marking the field's historical time line like craters. Anyone contemplating the start of a big software development project today has to contend with this unfathomably discouraging burden of experience. It mocks any newcomer with ambitious plans, as if to say, What makes you think you're any different?" (Scott Rosenberg, "Dreaming in Code", 2007)

"There is almost always something you can pull off the shelf that will satisfy many of your needs. But usually the parts of what you need done that your off-the-shelf code won���t handle are the very parts that make your new project different, unique, innovative - and they're why you're building it in the first place." (Scott Rosenberg, "Dreaming in Code", 2007)

"To programmers, refactoring means rewriting a chunk of code to make it briefer, clearer, and easier to read without changing what it actually does. Refactoring is often compared to gardening; it is never finished." (Scott Rosenberg, "Dreaming in Code", 2007)

"Well-commented code is one hallmark of good programming practice; it shows that you care about what you're doing, and it is considerate to those who will come after you to fix your bugs. But comments also serve as a kind of back channel for programmer-to-programmer communication and even occasionally as a competitive arena or an outlet for silliness." (Scott Rosenberg, "Dreaming in Code", 2007)

"Clearly, the search for a dividing line between code and data is fruitlesand not particularly flattering to our egos. Let's abandon any attempt to find a higher truth here, and settle for a pragmatic definition. If a piece of generated text simply instantiates and provides values for a data structure, it's data; otherwise, it's code." (Steven Kelly & Juha-Pekka Tolvanen, "Domain-specific Modeling", 2008)

"Good software designs accommodate change without huge investments and rework. When we use code that is out of our control, special care must be taken to protect our investment and make sure future change is not too costly." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"If the discipline of requirements specification has taught us anything, it is that well-specified requirements are as formal as code and can act as executable tests of that code!"" (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"In an ideal system, we incorporate new features by extending the system, not by making modifications to existing code." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"It is a myth that we can get systems 'right the first time'. Instead, we should implement only today's stories, then refactor and expand the system to implement new stories tomorrow. This is the essence of iterative and incremental agility. Test-driven development, refactoring, and the clean code they produce make this work at the code level." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"It is not enough for code to work. Code that works is often badly broken. Programmers who satisfy themselves with merely working code are behaving unprofessionally. They may fear that they don't have time to improve the structure and design of their code, but I disagree. Nothing has a more profound and long-term degrading effect upon a development project than bad code." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"It is unit tests that keep our code flexible, maintainable, and reusable. The reason is simple. If you have tests, you do not fear making changes to the code! Without tests every change is a possible bug."" (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"Nothing has a more profound and long-term degrading effect upon a development project than bad code. Bad schedules can be redone, bad requirements can be redefined. Bad team dynamics can be repaired. But bad code rots and ferments, becoming an inexorable weight that drags the team down." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"The majority of the cost of a software project is in long-term maintenance. In order to minimize the potential for defects as we introduce change, it's critical for us to be able to understand what a system does. As systems become more complex, they take more and more time for a developer to understand, and there is an ever greater opportunity for a misunderstanding. Therefore, code should clearly express the intent of its author. The clearer the author can make the code, the less time others will have to spend understanding it. This will reduce defects and shrink the cost of maintenance." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"You should choose a set of simple rules that govern the format of your code, and then you should consistently apply those rules. If you are working on a team, then the team should agree to a single set of formatting rules and all members should comply." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"But remember that refactoring should never be combined with modifying the functionality of the code, and that very definitely includes fixing bugs." (Paul Butcher, "Debug It! Find, Repair, and Prevent Bugs in Your Code", 2009)

"Every piece of code is built upon a platform of myriad assumptions - things that have to be true for it to behave as expected. More often than not, bugs arise because one or more of these assumptions are violated or turn out to be mistaken." (Paul Butcher, "Debug It! Find, Repair, and Prevent Bugs in Your Code", 2009)

"Refactoring is the process of improving the design of existing code without changing its behavior. [...] Bug fixing often uncovers opportunities for refactoring. The very fact that you're working with code that contains a bug indicates that there is a chance that it could be clearer or better structured." (Paul Butcher, "Debug It! Find, Repair, and Prevent Bugs in Your Code", 2009)

"Although it is focused on the code, refactoring has a large impact on the design of a system. It is vital for senior designers and architects to understand the principles of refactoring and to use them in their projects." (Jay Fields et al, "Refactoring: Ruby Edition", 2010)

"Treat your code like any other composition, such as a poem, an essay, a public blog, or an important email. Craft what you express carefully, so that it does what it should and communicates as directly as possible what it is doing; so that it still communicates your intention when you are no longer around. Remember that useful code is used much longer than ever intended." (Peter Sommerlad, [in Kevlin Henney’s "97 Things Every Programmer Should Know", 2010])

"Few would deny the importance of writing quality code. High quality code contains less bugs, and is easier to understand and easier to maintain. However, the precise definitions of code quality can be more subjective, varying between organizations, teams, and even individuals within a team." (John F Smart, "Jenkins: The Definitive Guide", 2011)

"One of the worst symptoms of a dysfunctional team is when each programmer builds a wall around his code and refuses to let other programmers touch it." (Robert C Martin,"The Clean Coder: A code of conduct for professional programmers", 2011)

"Programming is an act of creation. When we write code we are creating something out of nothing. We are boldly imposing order upon chaos. We are confidently commanding, in precise detail, the behaviors of a machine that could otherwise do incalculable damage. And so, programming is an act of supreme arrogance." (Robert C Martin, "The Clean Coder: A code of conduct for professional programmers", 2011)

"The fact that bugs will certainly occur in your code does not mean you aren't responsible for them. The fact that the task to write perfect software is virtually impossible does not mean you aren't responsible for the imperfection." (Robert C Martin,"The Clean Coder: A code of conduct for professional programmers", 2011)

"The true professional knows that delivering function at the expense of structure is a fool's errand. It is the structure of your code that allows it to be flexible. If you compromise the structure, you compromise the future." (Robert C Martin,"The Clean Coder: A code of conduct for professional programmers", 2011)

"A lack of focus on a shared language and knowledge of the problem domain results in a codebase that works but does not reveal the intent of the business. This makes codebases difficult to read and maintain because translations between the analysis model and the code model can be costly and error prone." (Scott Millett, "Patterns Principles and Practices of Domain Driven Design", 2015)

"Areas of low complexity or that are unlikely to be invested in can be built without the need for perfect code quality; working software is good enough. Sometimes feedback and first-to-market are core to the success of a product; in this instance, it can make business sense to get working software up as soon as possible, whatever the architecture." (Scott Millett, "Patterns Principles and Practices of Domain Driven Design", 2015)

"But like many other aspects of code quality, building an abstraction for a problem comes with tradeoffs. Building a generalized solution takes more time than building one specific to a given problem. To break even, the time saved by the abstraction for future engineers needs to outweigh the time invested." (Edmond Lau, "The Effective Engineer: How to Leverage Your Efforts In Software Engineering to Make a Disproportionate and Meaningful Impact", 2015)

"Development is a design process. Design processes are generally evaluated by the value they deliver rather than a conformance to plan. Therefore, it makes sense to move away from plan-driven projects and toward value-driven projects. [...] The realization that the source code is part of the design, not the product, fundamentally rewires our understanding of software." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"It's wishful thinking to believe that all the code we write will be bug-free and work the first time. In actuality, much of our engineering time is spent either debugging issues or validating that what we're building behaves as expected. The sooner we internalize this reality, the sooner we will start to consciously invest in our iteration speed in debugging and validation loops." (Edmond Lau, "The Effective Engineer: How to Leverage Your Efforts In Software Engineering to Make a Disproportionate and Meaningful Impact", 2015)

"Sometimes, we build things in a way that makes sense in the short-term but that can be costly in the long-term. We work around design guidelines because it's faster and easier than following them. We punt on writing test cases for a new feature because there' too much work to finish before the deadline. We copy, paste, and tweak small chunks of existing code instead of refactoring it to support our use cases. Each of these tradeoffs, whether they're made from laziness or out of a conscious decision to ship sooner, can increase the amount of technical debt in our codebase." (Edmond Lau, "The Effective Engineer: How to Leverage Your Efforts In Software Engineering to Make a Disproportionate and Meaningful Impact", 2015)

"The fact that software engineering is not like other forms of engineering should really come as no surprise. Medicine is not like the law. Carpentry is not like baking. Software development is like one thing, and one thing only: software development. We need practices that make what we do more efficient, more verifiable, and easier to change. If we can do this, we can slash the short-term cost of building software, and all but eliminate the crippling long-term cost of maintaining it." (David S Bernstein, "Beyond Legacy Code", 2015)

"When we talk about software architecture, software is recursive and fractal in nature, etched and sketched in code. Everything is details. Interlocking levels of detail also contribute to a building's architecture, but it doesn't make sense to talk about physical scale in software. Software has structure - many structures and many kinds of structures-but its variety eclipses the range of physical structure found in buildings. You can even argue quite convincingly that there is more design activity and focus in software than in building architecture - in this sense, it's not unreasonable to consider software architecture more architectural than building architecture!" (Robert C Martin, "Clean Architecture: A Craftsman's Guide to Software Structure and Design", 2017)

"It is not loyalty or internal motivation that drives us programmers forward. We must write our code when the road to our personal success is absolutely clear for us and writing high quality code obviously helps us move forward on this road. To make this happen, the management has to define the rules of the game, also known as process", and make sure they are strictly enforced, which is much more difficult than 'being agile'."" (Yegor Bugayenko, "Code Ahead", 2018)

"Trying to determine the cognitive load of software using simple measures such as lines of code, number of modules, classes, or methods is misguided. [...] When measuring cognitive load, what we really care about is the domain complexity - how complex is the problem that we're trying to solve with software? A domain is a more largely applicable concept than software size." (Matthew Skelton, "Team Topologies: Organizing Business and Technology Teams for Fast Flow", 2019)

"A boat without a captain is nothing more than a floating waiting room: unless someone grabs the rudder and starts the engine, it's just going to drift along aimlessly with the current. A piece of software is just like that boat: if no one pilots it, you're left with a group of engineers burning up valuable time, just sitting around waiting for something to happen" (or worse, still writing code that you don't need)." (Titus Winters, "Software Engineering at Google: Lessons Learned from Programming Over Time", 2020)

"Code coverage can provide some insight into untested code, but it is not a substitute for thinking critically about how well your system is tested." (Titus Winters, "Software Engineering at Google: Lessons Learned from Programming Over Time", 2020)

"People are inherently imperfect - we like to say that humans are mostly a collection of intermittent bugs. But before you can understand the bugs in your coworkers, you need to understand the bugs in yourself. We're going to ask you to think about your own reactions, behaviors, and attitudes - and in return, we hope you gain some real insight into how to become a more efficient and successful software engineer who spends less energy dealing with people-related problems and more time writing great code." (Titus Winters, "Software Engineering at Google: Lessons Learned from Programming Over Time", 2020)

"Programming is the immediate act of producing code. Software engineering is the set of policies, practices, and tools that are necessary to make that code useful for as long as it needs to be used and allowing collaboration across a team." (Titus Winters, "Software Engineering at Google: Lessons Learned from Programming Over Time", 2020)

"When program developers are not territorial about their code and encourage others to look for bugs and potential improvements, progress speeds up dramatically." (Gerald Weinberg)

24 December 2007

🏗️Software Engineering: Design (Just the Quotes)

"The engineer must be able not only to design, but to execute. A draftsman may be able to design, but unless he is able to execute his designs to successful operation he cannot be classed as an engineer. The production engineer must be able to execute his work as he has planned it. This requires two qualifications in addition to technical engineering ability: He must know men, and he must have creative ability in applying good statistical, accounting, and 'system' methods to any particular production work he may undertake." (Hugo Diemer, "Industrial Engineering", 1905)

"A design may be called organic when there is an harmonious organization of the parts within the whole, according to structure, material, and purpose." (Eliot Noyes, "Organic Design in Home Furnishing", 1941)

"An engineering science aims to organize the design principles used in engineering practice into a discipline and thus to exhibit the similarities between different areas of engineering practice and to emphasize the power of fundamental concepts. In short, an engineering science is predominated by theoretical analysis and very often uses the tool of advanced mathematics." (Qian Xuesen, "Engineering Cybernetics", 1954)

"Design problems - generating or discovering alternatives - are complex largely because they involve two spaces, an action space and a state space, that generally have completely different structures. To find a design requires mapping the former of these on the latter. For many, if not most, design problems in the real world systematic algorithms are not known that guarantee solutions with reasonable amounts of computing effort. Design uses a wide range of heuristic devices - like means-end analysis, satisficing, and the other procedures that have been outlined - that have been found by experience to enhance the efficiency of search. Much remains to be learned about the nature and effectiveness of these devices." (Herbert A Simon, "The Logic of Heuristic Decision Making", [in "The Logic of Decision and Action"], 1966)

"But active programming consists of the design of new programs, rather than contemplation of old programs." (Niklaus Wirth, "Program Development by Stepwise Refinement", 1971) 

"Clearly, programming courses should teach methods of design and construction, and the selected examples should be such that a gradual development can be nicely demonstrated." (Niklaus Wirth, "Program Development by Stepwise Refinement", 1971)

"A clean design is more easily modified as requirements change or as more is learned about what parts of the code consume significant amounts of execution time. A 'clever' design that fails to work or to run fast enough can often be salvaged only at great cost. Efficiency does not have to be sacrificed in the interest of writing readable code - rather, writing readable code is often the only way to ensure efficient programs that are also easy to maintain and modify." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Conceptual integrity is the most important consideration in system design." (Frederick P Brooks, "The Mythical Man-Month" , 1975) 

"The hardest single part of building a software system is deciding precisely what to build." (Frederick P. Brooks, "The Mythical Man-Month", 1975) 

"From the point of view of modern science, design is nothing, but from the point of view of engineering, design is everything. It represents the purposive adaptation of means to reach a preconceived end, the very essence of engineering." (Edwin T Layton Jr., "American Ideologies of Science and Engineering", Technology and Culture No. 4, 1976)

"Systems with unknown behavioral properties require the implementation of iterations which are intrinsic to the design process but which are normally hidden from view. Certainly when a solution to a well-understood problem is synthesized, weak designs are mentally rejected by a competent designer in a matter of moments. On larger or more complicated efforts, alternative designs must be explicitly and iteratively implemented. The designers perhaps out of vanity, often are at pains to hide the many versions which were abandoned and if absolute failure occurs, of course one hears nothing. Thus the topic of design iteration is rarely discussed. Perhaps we should not be surprised to see this phenomenon with software, for it is a rare author indeed who publicizes the amount of editing or the number of drafts he took to produce a manuscript." (Fernando J Corbató, "A Managerial View of the Multics System Development", 1977)

"We try to solve the problem by rushing through the design process so that enough time is left at the end of the project to uncover the errors that were made because we rushed through the design process." (Glenford Myers, "Composite/structured design", 1978)

"A good scientist is a person with original ideas. A good engineer is a person who makes a design that works with as few original ideas as possible. There are no prima donnas in engineering." (Freeman Dyson, "Disturbing the Universe", 1979)

"Overemphasis of efficiency leads to an unfortunate circularity in design: for reasons of efficiency early programming languages reflected the characteristics of the early computers, and each generation of computers reflects the needs of the programming languages of the preceding generation." (Kenneth E Iverson, "Notation as a Tool of Thought", 1979) 

"Meta-design is much more difficult than design; it's easier to draw something than to explain how to draw it." (Donald E Knuth, "The METAFONTbook", 1986)

"The complexity of software is an essential property, not an accidental one. Hence, descriptions of a software entity that abstract away its complexity often abstracts away its essence." (Frederick P Brooks, "No Silver Bullet" , 1987)

"There are two ways of constructing a software design. One way is to make it so simple that there are obviously no deficiencies. And the other way is to make it so complicated that there are no obvious deficiencies." (Charles A R Hoare, [lecture] 1987)

"A design remedy that prevents bugs is always preferable to a test method that discovers them." (Boris Beizer, "Software Testing Techniques", 1990)

"Engineering knowledge reflects the fact that design does not take place for its own sake and in isolation." (Walter G Vincenti, "What Engineers Know and How They Know It", 1990)

"First law: The pesticide paradox. Every method you use to prevent or find bugs leaves a residue of subtler bugs against which those methods are ineffective."  (Boris Beizer, "Software Testing Techniques", 1990)

"Extra features were once considered desirable. We now recognize that 'free' features are rarely free. Any increase in generality that does not contribute to reliability, modularity, maintainability, and robustness should be suspected." (Boris Beizer, "Software Testing Techniques", 1990)

"More than the act of testing, the act of designing tests is one of the best bug preventers known. The thinking that must be done to create a useful test can discover and eliminate bugs before they are coded - indeed, test-design thinking can discover and eliminate bugs at every stage in the creation of software, from conception to specification, to design, coding and the rest."  (Boris Beizer, "Software Testing Techniques", 1990)

"Second law: The complexity barrier. Software complexity (and therefore that of bugs) grows to the limits of our ability to manage that complexity." (Boris Beizer, "Software Testing Techniques", 1990)

"If solutions could be offered within the existing system, there would be no need to design. Thus designers have to transcend the existing system. Their task is to create a different system or devise a new one. That is why designers say they can truly define the problem only in light of the solution. The solution informs them as to what the real problem is." (Béla H Bánáthy, "Systems Design of Education", 1991)

"No matter how vigorously a 'science' of design may be pushed, the successful design of real things in a contingent world will always be based more on art than on science. Unquantifiable judgments and choices are the elements that determine the way a design comes together. Engineering design is simply that kind of process. It always has been; it always will be. (Eugene S Ferguson , "Engineering and the Mind’s Eye", 1992)

"Design patterns are not about designs such as linked lists and hash tables that can be encoded in classes and reused as is. Nor are they complex, domain-specific designs for an entire application or subsystem. The design patterns [...] are descriptions of communicating objects and classes that are customized to solve a general design problem in a particular context." (Erich Gamma et al, "Design Patterns: Elements of Reusable Object-Oriented Software", 1994)

"Design patterns make it easier to reuse successful designs and architectures. Expressing proven techniques as design patterns makes them more accessible to developers of new systems. Design patterns help you choose design alternatives that make a system reusable and avoid alternatives that compromise reusability. Design patterns can even improve the documentation and maintenance of existing systems by furnishing an explicit specification of class and object interactions and their underlying intent. Put simply, design patterns help a designer get a design 'right' faster." (Erich Gamma et al, "Design Patterns: Elements of Reusable Object-Oriented Software", 1994)

"If a project has not achieved a system architecture, including its rationale, the project should not proceed to full-scale system development. Specifying the architecture as a deliverable enables its use throughout the development and maintenance process." (Barry Boehm, 1995)

"The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"Good design protects you from the need for too many highly accurate components in the system. But such design principles are still, to this date, ill-understood and need to be researched extensively. Not that good designers do not understand this intuitively, merely it is not easily incorporated into the design methods you were taught in school. Good minds are still needed in spite of all the computing tools we have developed." (Richard Hamming, "The Art of Doing Science and Engineering: Learning to Learn", 1997)

"The nature of our language tends to force us into 'yes-no', something is or is not, you either have a proof or you do not. But once we admit there is a changing standard of rigor we have to accept some proofs are more convincing than other proofs. If you view proofs on a scale much like probability, running from 0 to 1, then all proofs lie in the range and very likely never reach the upper limit of 1, certainty."  (Richard Hamming, "The Art of Doing Science and Engineering: Learning to Learn", 1997)

"The woes of software engineering are not due to lack of tools or proper management, but largely due to lack of sufficient technical competence. A good designer must rely on experience; on precise, logical thinking; and on pedantic exactness. No magic will do. In light of all this, it is particularly sad that, in many informatics curricula, programming in the large is badly neglected. Design has become a non-topic." (Niklaus Wirth, [interview in Software Development] 1997)

"It’s really hard to design products by focus groups. A lot of times, people don’t know what they want until you show it to them." (Steve Jobs, BusinessWeek, 1998)

"Good design is also an act of communication between the designer and the user, except that all the communication has to come about by the appearance of the device itself. The device must explain itself." (Donald Norman, "The Design of Everyday Things", 2002)

"Domain-driven design is both a way of thinking and a set of priorities, aimed at accelerating software projects that have to deal with complicated domains." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"If the architecture isolates the domain-related code in a way that allows a cohesive domain design loosely coupled to the rest of the system, then that architecture can probably support domain-driven DESIGN." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"If the design, or some central part of it, does not map to the domain model, that model is of little value, and the correctness of the software is suspect. At the same time, complex mappings between models and design functions are difficult to understand and, in practice, impossible to maintain as the design changes. A deadly divide opens between analysis and design so that insight gained in each of those activities does not feed into the other." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"Many things can put a project off course: bureaucracy, unclear objectives, and lack of resources, to name a few. But it is the approach to design that largely determines how complex software can become. When complexity gets out of hand, developers can no longer understand the software well enough to change or extend it easily and safely. On the other hand, a good design can create opportunities to exploit those complex features." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"Models come in many varieties and serve many roles, even those restricted to the context of a software development project. Domain-driven design calls for a model that doesn’t just aid early analysis but is the very foundation of the design […]  Tightly relating the code to an underlying model gives the code meaning and makes the model relevant." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"Software design is a constant battle with complexity." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"The aim of architectural design is to prepare overall specifications, derived from the needs and desires of the user, for subsequent design and construction stages. The first task for the architect in each design project is thus to determine what the real needs and desires of the user are […]" (George J Klir & Doug Elias, "Architecture of Systems Problem Solving" 2nd Ed, 2003)

"The effectiveness of an overall design is very sensitive to the quality and consistency of fine-grained design and implementation decisions. With a MODEL-DRIVEN DESIGN, a portion of the code is an expression of the model; changing that code changes the model. Programmers are modelers, whether anyone likes it or not. So it is better to set up the project so that the programmers do good modeling work." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"Design is heuristic. Dogmatic adherence to any single methodology hurts creativity and hurts your programs." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"Design patterns provide the cores of ready-made solutions that can be used to solve many of software’s most common problems. Some software problems require solutions that are derived from first principles. But most problems are similar to past problems, and those can be solved using similar solutions, or patterns." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"In addition to their complexity-management benefit, design patterns can accelerate design discussions by allowing designers to think and discuss at a larger level of granularity." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"On small, informal projects, a lot of design is done while the programmer sits at the keyboard. 'Design' might be just writing a class interface in pseudocode before writing the details. It might be drawing diagrams of a few class relationships before coding them. It might be asking another programmer which design pattern seems like a better choice. Regardless of how it’s done, small projects benefit from careful design just as larger projects do, and recognizing design as an explicit activity maximizes the benefit you will receive from it." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"The flip side of the coin was that even good programmers and language designers tended to do terrible extensions when they were in the heat of programming, because design is something that is best done slowly and carefully." (Alan Kay, [ACM Queue A Conversation with Alan Kay Vol. 2 (9)] 2004-2005)

"A commitment to simplicity of design means addressing the essence of design - the abstractions on which software is built - explicitly and up front. Abstractions are articulated, explained, reviewed and examined deeply, in isolation from the details of the implementation. This doesn’t imply a waterfall process, in which all design and specification precedes all coding. But developers who have experienced the benefits of this separation of concerns are reluctant to rush to code, because they know that an hour spent on designing abstractions can save days of refactoring." (Daniel Jackson, "Software Abstractions", 2006)

"Abstractions matter to users too. Novice users want programs whose abstractions are simple and easy to understand; experts want abstractions that are robust and general enough to be combined in new ways. When good abstractions are missing from the design, or erode as the system evolves, the resulting program grows barnacles of complexity. The user is then forced to master a mass of spurious details, to develop workarounds, and to accept frequent, inexplicable failures." (Daniel Jackson, "Software Abstractions", 2006)

"Software is built on abstractions. Pick the right ones, and programming will flow naturally from design; modules will have small and simple interfaces; and new functionality will more likely fit in without extensive reorganization […] Pick the wrong ones, and programming will be a series of nasty surprises: interfaces will become baroque and clumsy as they are forced to accommodate unanticipated interactions, and even the simplest of changes will be hard to make." (Daniel Jackson, "Software Abstractions", 2006)

"Duplication is the primary enemy of a well-designed system. It represents additional work, additional risk, and additional unnecessary complexity."  (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"Good software designs accommodate change without huge investments and rework. When we use code that is out of our control, special care must be taken to protect our investment and make sure future change is not too costly."  (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"Whether you are designing systems or individual modules, never forget to use the simplest thing that can possibly work." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"We see a lot of feature-driven product design in which the cost of features is not properly accounted. Features can have a negative value to customers because they make the products more difficult to understand and use. We are finding that people like products that just work. It turns out that designs that just work are much harder to produce that designs that assemble long lists of features." (Douglas Crockford, "JavaScript: The Good Parts", 2008)

"A good system design is based on a sound conceptual model (architecture). A system design that has no conceptual structure and little logic to its organization is ultimately going to be unsuccessful. Good architecture will address all the requirements of the system at the right level of abstraction." (Vasudeva Varma, "Software Architecture: A Case Based Approach", 2009)

"A systems approach is one that focuses on the system as a whole, specifically linking value judgments (what is desired) and design decisions (what is feasible). A true systems approach means that the design process includes the 'problem' as well as the solution. The architect seeks a joint problem–solution pair and understands that the problem statement is not fixed when the architectural process starts. At the most fundamental level, systems are collections of different things that together produce results unachievable by the elements alone."  (Mark W Maier, "The Art Systems of Architecting" 3rd Ed., 2009)

"Design has the power to enrich our lives by engaging our emotions through image, form, texture, color, sound, and smell. The intrinsically human-centered nature of design thinking points to the next step: we can use our empathy and understanding of people to design experiences that create opportunities for active engagement and participation." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Design is the bridging activity between gathering and implementation of software requirements that satisfies the required needs. […] The fundamental goal of design is to reduce the number of dependencies between modules, thus reducing the complexity of the system. This is also known as coupling; lesser the coupling the better is the design. On the other hand, higher the binding between elements within a module (known as cohesion) the better is the design." (Vasudeva Varma, "Software Architecture: A Case Based Approach", 2009)

"Design thinking taps into capacities we all have but that are overlooked by more conventional problem-solving practices. It is not only human-centered; it is deeply human in and of itself. Design thinking relies on our ability to be intuitive, to recognize patterns, to construct ideas that have emotional meaning as well as functionality, to express ourselves in media other than words or symbols." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Modeling is the creation of abstractions or representations of the system to predict and analyze performance, costs, schedules, and risks and to provide guidelines for systems research, development, design, manufacture, and management. Modeling is the centerpiece of systems architecting - a mechanism of communication to clients and builders, of design management with engineers and designers, of maintaining system integrity with project management, and of learning for the architect, personally."  (Mark W Maier, "The Art Systems of Architecting" 3rd Ed., 2009)

"Mostly we rely on stories to put our ideas into context and give them meaning. It should be no surprise, then, that the human capacity for storytelling plays an important role in the intrinsically human-centered approach to problem solving, design thinking." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Taking a systems approach means paying close attention to results, the reasons we build a system. Architecture must be grounded in the client’s/user’s/customer’s purpose. Architecture is not just about the structure of components. One of the essential distinguishing features of architectural design versus other sorts of engineering design is the degree to which architectural design embraces results from the perspective of the client/user/customer. The architect does not assume some particular problem formulation, as “requirements” is fixed. The architect engages in joint exploration, ideally directly with the client/user/customer, of what system attributes will yield results worth paying for."  (Mark W Maier, "The Art Systems of Architecting" 3rd Ed., 2009)

"A software design can be described as a collection of design decisions. These design decisions include decisions about what classes should be included, how classes should behave, and how they should interact with each other. Each and every design decision is influenced by previously made design decisions, constraints on the design, and the requirements. In turn, every design decision also impacts the design; it can narrow down the set of future design decisions considerably or widen the scope of possible design decisions. In other words, each and every design decision impacts and even changes the context of the design." (Girish Suryanarayana et al, "Refactoring for Software Design Smells: Managing Technical Debt", 2015)

"Design is the process of taking something that appears in the mind’s eye, modeling it in one or more of a number of ways, predicting how that thing will behave if it is made, and then making it, sometimes modifying the design as we make it. Design is what engineering is about. Furthermore, modeling is how engineering design is done. This includes mental models, mathematical models, computer models, plans and drawings, written language, and (sometimes) physical models." (William M Bulleit, "The Engineering Way of Thinking: The Idea", Structure [magazine], 2015) 

"Development is a design process. Design processes are generally evaluated by the value they deliver rather than a conformance to plan. Therefore, it makes sense to move away from plan-driven projects and toward value-driven projects. […] The realization that the source code is part of the design, not the product, fundamentally rewires our understanding of software." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"How does a smell manifest in design? A smell occurs as a result of a combination of one or more design decisions. In other words, the design ecosystem itself is responsible for the creation of the smell. The presence of the smell in turn impacts the ecosystem in several ways. First, it is likely that the presence of the smell triggers new design decisions that are needed to address the smell! Second, the smell can potentially influence or constrain future design decisions as a result of which one or more new smells may manifest in the ecosystem. Third, smells also tend to have an effect on other smells. For instance, some smells amplify the effects of other smells, or co-occur with or act as precursors to other smells. Clearly, smells share a rich relationship with the ecosystem in which they occur." (Girish Suryanarayana et al, "Refactoring for Software Design Smells: Managing Technical Debt", 2015)

"Technical debt is the debt that accrues when you knowingly or unknowingly make wrong or non-optimal design decisions. [...] when a software developer opts for a quick fix rather than a proper well-designed solution, he introduces technical debt. It is okay if the developer pays back the debt on time. However, if the developer chooses not to pay or forgets about the debt created, the accrued interest on the technical debt piles up, just like financial debt, increasing the overall technical debt. The debt keeps increasing over time with each change to the software; thus, the later the developer pays off the debt, the more expensive it is to pay off. If the debt is not paid at all, then eventually the pile-up becomes so huge that it becomes immensely difficult to change the software. In extreme cases, the accumulated technical debt is so huge that it cannot be paid off anymore and the product has to be abandoned. Such a situation is called technical bankruptcy." (Girish Suryanarayana et al, "Refactoring for Software Design Smells: Managing Technical Debt", 2015)

"Designers need to be part engineer. Good design only exists in concert with engineering. That is because form has to follow function, so you focus on function and then give the object a shape to make it appealing." (Ferdinand A Porsche)

"One of the great enemies of design is when systems or objects become more complex than a person - or even a team of people - can keep in their heads. This is why software is generally beneath contempt." (Bran Ferren)

"Programming without an overall architecture or design in mind is like exploring a cave with only a flashlight: You don't know where you've been, you don't know where you're going, and you don't know quite where you are." (Danny Thorpe) 

"The broader one’s understanding of the human experience, the better design we will have." (Steve Jobs)

"The essence of engineering consists not so much in the mere construction of the spectacular layouts or developments, but in the invention required - the analysis of the problem, the design, the solution by the mind which directs it all." (William Hood)
 
"The purpose of abstraction is not to be vague, but to create a new semantic level in which one can be absolutely precise." (Edsger Dijkstra)

"The thing that makes software design difficult is that we must express thoughts about a problem and a solution we typically do not understand fully, using a language that does not contain many of our accustomed features of expression, to a system that is unforgiving of mistakes." (Alistair Cockburn)
Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.