30 December 2007

🏗️Software Engineering: Failure (Just the Quotes)

"A complex system can fail in an infinite number of ways." (John Gall, "General Systemantics: How systems work, and especially how they fail", 1975)

"Failure to allow enough time for system test, in particular, is peculiarly disastrous. Since the delay comes at the end of the schedule, no one is aware of schedule trouble until almost the delivery date. Bad news, late and without warning, is unsettling to customers and to managers." (Fred P Brooks, "The Mythical Man-Month: Essays", 1975)

"The fundamental problem with software maintenance is that fixing a defect has a substantial (20-50 percent) chance of introducing another. So the whole process is two steps forward and one step back. Why aren't defects fixed more cleanly? First, even a subtle defect shows itself as a local failure of some kind. In fact it often has system-wide ramifications, usually nonobvious. Any attempt to fix it with minimum effort will repair the local and obvious, but unless the structure is pure or the documentation very fine, the far-reaching effects of the repair will be overlooked. Second, the repairer is usually not the man who wrote the code, and often he is a junior programmer or trainee. (Frederick P. Brooks, "The Mythical Man-Month" , 1975)

"Systems with unknown behavioral properties require the implementation of iterations which are intrinsic to the design process but which are normally hidden from view. Certainly when a solution to a well-understood problem is synthesized, weak designs are mentally rejected by a competent designer in a matter of moments. On larger or more complicated efforts, alternative designs must be explicitly and iteratively implemented. The designers perhaps out of vanity, often are at pains to hide the many versions which were abandoned and if absolute failure occurs, of course one hears nothing. Thus the topic of design iteration is rarely discussed. Perhaps we should not be surprised to see this phenomenon with software, for it is a rare author indeed who publicizes the amount of editing or the number of drafts he took to produce a manuscript." (Fernando J Corbató, "A Managerial View of the Multics System Development", 1977)

"[...] when a variety of tasks have all to be performed in cooperation, synchronization, and communication, a business needs managers and a management. Otherwise, things go out of control; plans fail to turn into action; or, worse, different parts of the plans get going at different speeds, different times, and with different objectives and goals, and the favor of the 'boss' becomes more important than performance." (Peter F Drucker, "People and Performance", 1977)

"How do we convince people that in programming simplicity and clarity - in short: what mathematicians call 'elegance' - are not a dispensable luxury, but a crucial matter that decides between success and failure?" (Edsger W Dijkstra, "'Why Is Software So Expensive?' An Explanation to the Hardware Designer", [EWD648] 1982) 

"Leaders value learning and mastery, and so do people who work for leaders. Leaders make it clear that there is no failure, only mistakes that give us feedback and tell us what to do next." (Warren G Bennis, Training and Development Journal, 1984)

"Object-oriented programming languages support encapsulation, thereby improving the ability of software to be reused, refined, tested, maintained, and extended. The full benefit of this support can only be realized if encapsulation is maximized during the design process. […] design practices which take a data-driven approach fail to maximize encapsulation because they focus too quickly on the implementation of objects." (Rebecca Wirfs-Brock, "Object-oriented Design: A. responsibility-driven approach", 1989)

"Our experience with designing and analyzing large and complex software-intensive systems has led us to recognize the role of business and organization in the design of the system and in its ultimate success or failure. Systems are built to satisfy an organization's requirements (or assumed requirements in the case of shrink-wrapped products). These requirements dictate the system's performance, availability, security, compatibility with other systems, and the ability to accommodate change over its lifetime. The desire to satisfy these goals with software that has the requisite properties influences the design choices made by a software architect." (Len Bass et al, "Software Architecture in Practice", 1998)

"A test that reveals a bug has succeeded, not failed." (Boris Beizer, "Software Testing Techniques", 1990)

"Failure to initialize a shared object can lead to data-dependent bugs caused by residues from a previous use of that object by another transaction. Note that the culprit transaction is long gone when the bug's symptoms are discovered. Because the effect of corruption of dynamic data can be arbitrarily far removed from the cause, such bugs are among the most difficult to catch." (Boris Beizer, "Software Testing Techniques", 1990)

"Testing proves a programmer’s failure. Debugging is the programmer’s vindication." (Boris Beizer, "Software Testing Techniques", 1990)

"The picture of digital progress that so many ardent boosters paint ignores the painful record of actual programmers’ epic struggles to bend brittle code into functional shape. That record is of one disaster after another, marking the field’s historical time line like craters. Anyone contemplating the start of a big software development project today has to contend with this unfathomably discouraging burden of experience. It mocks any newcomer with ambitious plans, as if to say, What makes you think you’re any different?" (Scott Rosenberg, "Dreaming in Code", 2007)

"As a general rule, implementations do not just spontaneously combust. Failures tend to stem from the aggregation of many issues. Although some issues may have been known since the early stages of the project (for example, the sales cycle or system design), implementation teams discover the majority of problems during the middle of the implementation, typically during some form of testing." (Phil Simon, "Why New Systems Fail: An Insider’s Guide to Successful IT Projects", 2010)

"Understanding the causes of system failures may help organizations avoid them, although there are no guarantees." (Phil Simon, "Why New Systems Fail: An Insider’s Guide to Successful IT Projects", 2010)

"But the history of large systems demonstrates that, once the hurdle of stability has been cleared, a more subtle challenge appears. It is the challenge of remaining stable when the rules change. Machines, like organizations or organisms, that fail to meet this challenge find that their previous stability is no longer of any use. The responses that once were life-saving now just make things worse. What is needed now is the capacity to re-write the procedure manual on short notice, or even (most radical change of all) to change goals." (John Gall, "The Systems Bible: The Beginner's Guide to Systems Large and Small"[Systematics 3rd Ed.], 2011)

"Experts in the 'Problem' area proceed to elaborate its complexity. They design complex Systems to attack it. This approach guarantees failure, at least for all but the most pedestrian tasks. The problem is a Problem precisely because it is incorrectly conceptualized in the first place, and a large System for studying and attacking the Problem merely locks in the erroneous conceptualization into the minds of everyone concerned. What is required is not a large System, but a different approach. Trying to design a System in the hope that the System will somehow solve the Problem, rather than simply solving the Problem in the first place, is to present oneself with two problems in place of one." (John Gall, "The Systems Bible: The Beginner's Guide to Systems Large and Small"[Systematics 3rd Ed.], 2011)

"Pragmatically, it is generally easier to aim at changing one or a few things at a time and then work out the unexpected effects, than to go to the opposite extreme. Attempting to correct everything in one grand design is appropriately designated as Grandiosity. […] A little Grandiosity goes a long way. […] The diagnosis of Grandiosity is quite elegantly and strictly made on a purely quantitative basis: How many features of the present System, and at what level, are to be corrected at once? If more than three, the plan is grandiose and will fail." (John Gall, "The Systems Bible: The Beginner's Guide to Systems Large and Small"[Systematics 3rd Ed.], 2011)

"Systems with high risks must be tested more thoroughly than systems that do not generate big losses if they fail. The risk assessment must be done for the individual system parts, or even for single error possibilities. If there is a high risk for failures by a system or subsystem, there must be a greater testing effort than for less critical (sub)systems. International standards for production of safety-critical systems use this approach to require that different test techniques be applied for software of different integrity levels." (Andreas Spillner et al, "Software Testing Foundations: A Study Guide for the Certified Tester Exam" 4th Ed., 2014)

"The real bug here is that the design of the system even permits this class of bug. It is unconscionable that someone designing a critical piece of security infrastructure would design the system in such a way that it does not fail safe." (Jamie Zawinski, 2014)

"A fault is usually defined as one component of the system deviating from its spec, where - as a failure is when the system as a whole stops providing the required service to the user. It is impossible to reduce the probability of a fault to zero; therefore it is usually best to design fault-tolerance mechanisms that prevent faults from causing failures." (Martin Kleppmann, "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems", 2015)

"A key contribution of DevOps was to raise awareness of the problems lingering in how teams interacted (or not) across the delivery chain, causing delays, rework, failures, and a lack of understanding and empathy toward other teams. It also became clear that such issues were not only happening between application development and operations teams but in interactions with many other teams involved in software delivery, like QA, InfoSec, networking, and more." (Matthew Skelton & Manuel Pais, "Team Topologies: Organizing Business and Technology Teams for Fast Flow", 2019)

28 December 2007

🏗️Software Engineering: Extreme Programming (Just the Quotes)

"Given the choice between an extremely skilled loner and a competent-but-social programmer, XP teams consistently choose the more social candidate. The best interviewing technique is to have the candidate work with the team for a day. Pair programming provides an excellent test of technical and social skills." (Kent Beck, "Extreme Programming Explained: Embrace Change", 1999)

"The XP philosophy is to start where you are now and move towards the ideal. From where you are now, could you improve a little bit?" (Kent Beck, "Extreme Programming Explained: Embrace Change", 1999)

"The new concept of Extreme Programming (XP) is gaining more and more acceptance, partially because it is controversial, but primarily because it is particularly well-suited to help the small software development team succeed. [...] XP is controversial, many software development sacred cows don't make the cut in XP; it forces practitioners to take a fresh look at how software is developed." (Kent Beck, "Abstract Extreme Programming Explained", 2000)

"Don't produce voluminous design documents at the beginning. Don't even produce them in the middle: produce them at the end. Extreme Programming teaches you how to keep the design flexible, for highest flexibility and fastest implementation. The design documents you produce at the beginning will go out of date very quickly (they always do, even on non-Extreme projects), and you 'Il either waste time updating the docs or let them get out of date. Either is bad." (Ron Jeffries, "Extreme Programming Installed", 2001)

"Don't try to freeze requirements before you start implementing. Requirements changes show that the customer is learning! Sure, it would be nice if they knew just what they wanted before you started building things, but the fact is that when they see what you're building, they'll learn what they meant. XP lets you use a development and planning approach that allows for change, without big up-front investment in frameworks or flexibility." (Ron Jeffries, "Extreme Programming Installed", 2001)

"Extreme Programming is a discipline of software development with values of simplicity, communication, feedback and courage. We focus on the roles of customer, manager, and programmer and accord key rights and responsibilities to those in those roles." (Ron Jeffries, "Extreme Programming Installed", 2001)

"The values of XP are simplicity, communication, feedback, and courage. [...] Use simple design and programming practices, and simple methods of planning, tracking, and reporting. Test your program and your practices, using feedback to decide how to steer the project. Working together in this way gives the team courage."  (Ron Jeffries, "Extreme Programming Installed", 2001)

"We all strive for simple and clear design, don't we? Of course we do. But in XP, we take it to extremes. At every moment in time, we want  the system to be as simple as possible. That means that we want no  additional functions that aren't used, no structures or algorithms that  are more complex than the current need would dictate." (Ron Jeffries, "Extreme Programming Installed", 2001)

"XP isn't slash and burn programming, not code and fix, not at all. Extreme Programming is about careful and continuous design, rapid  feedback from extensive testing, and the maintenance of relentlessly clear and high-quality code." (Ron Jeffries, "Extreme Programming Installed, 2001)

"Extreme Programming is the most prominent new, light-weight (or agile) methods, defined to contrast the current heavy-weight and partially overloaded object-oriented methods. It focuses on the core issues of software technology. One of its principles is not to rely on diagrams to document a system." (Bernhard Rumpe, "Executable Modeling with UML. A vision or a Nightmare", Issues & Trends of Information Technology Management in Contemporary Associations, 2002)

"Extreme Programming recognizes the importance of design decisions, but it strongly resists upfront design. Instead, it puts an admirable effort into communication and improving the project’s ability to change course rapidly. With that ability to react, developers can use the “simplest thing that could work” at any stage of a project and then continuously refactor, making many small design improvements, ultimately arriving at a design that fits the customer’s true needs." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"In fact, XP works best for developers with a sharp design sense. The XP process assumes that you can improve a design by refactoring, and that you will do this often and rapidly. But past design choices make refactoring itself either easier or harder. The XP process attempts to increase team communication, but model and design choices clarify or confuse communication." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"Extreme Programming is the first popular methodology to view software development as an exercise in coding rather than an exercise in management." (Ben Aveling, "XP lite considered harmful?", 2004)

"One of the central axioms of extreme programming is the disciplined use of regression testing during stepwise software development." (Thomas A Henzinger et al, "Extreme model checking", 2004)

🏗️Software Engineering: Simplicity vs Complexity (Just the Quotes)

"Simplicity of structure means organic unity, whether the organism be simple or complex; and hence in all times the emphasis which critics have laid upon Simplicity, though they have not unfrequently confounded it with narrowness of range." (George H Lewes, "The Principles of Success in Literature", 1865)

"The first obligation of Simplicity is that of using the simplest means to secure the fullest effect. But although the mind instinctlvely rejects all needless complexity, we shall greatly err if we fail to recognise the fact, that what the mind recoils from is not the complexity, but the needlessness." (George H Lewes, "The Principles of Success in Literature", 1865)

"Simplicity is the soul of efficiency." (Austin Freeman, "The Eye of Osiris", 1911)

"The complexity of a system is no guarantee of its accuracy." (John P Jordan, "Cost accounting; principles and practice", 1920)

"[Disorganized complexity] is a problem in which the number of variables is very large, and one in which each of the many variables has a behavior which is individually erratic, or perhaps totally unknown. However, in spite of this helter-skelter, or unknown, behavior of all the individual variables, the system as a whole possesses certain orderly and analyzable average properties. [...] [Organized complexity is] not problems of disorganized complexity, to which statistical methods hold the key. They are all problems which involve dealing simultaneously with a sizable number of factors which are interrelated into an organic whole. They are all, in the language here proposed, problems of organized complexity." (Warren Weaver, "Science and Complexity", American Scientist Vol. 36, 1948)

"A theory is the more impressive the greater the simplicity of its premises is, the more different kinds of things it relates, and the more extended its area of applicability." (Albert Einstein, "Autobiographical Notes", 1949)

"In products of the human mind, simplicity marks the end of a process of refining, while complexity marks a primitive stage." (Eric Hoffer, 1954)

"Nor does complexity deny the valid simplification which is part of the process of analysis, and even a method of achieving complex architecture itself." (Robert Venturi, "Complexity and Contradiction in Architecture Complexity and Contradiction in Architecture", 1966)

"The ideas need not be complex. Most ideas that are successful are ludicrously simple. Successful ideas generally have the appearance of simplicity because they seem inevitable." (Sol LeWitt, "Paragraphs on Conceptual Art", 1967) 

"Simplicity does not precede complexity, but follows it." (Alan Perlis, "Epigrams on Programming", 1982)

"The complexity of software is an essential property, not an accidental one. Hence, descriptions of a software entity that abstract away its complexity often abstracts away its essence." (Frederick P Brooks, "No Silver Bullet" , 1987)

"Organized simplicity occurs where a small number of significant factors and a large number of insignificant factors appear initially to be complex, but on investigation display hidden simplicity." (Robert L Flood & Ewart R Carson, "Dealing with Complexity: An introduction to the theory and application of systems", 1988)

"It is important to emphasize the value of simplicity and elegance, for complexity has a way of compounding difficulties and as we have seen, creating mistakes. My definition of elegance is the achievement of a given functionality with a minimum of mechanism and a maximum of clarity."  (Fernando J Corbató, "On Building Systems That Will Fail", 1991)

"Crude complexity is ‘the length of the shortest message that will describe a system, at a given level of coarse graining, to someone at a distance, employing language, knowledge, and understanding that both parties share (and know they share) beforehand." (Murray Gell-Mann, "What is Complexity?" Complexity Vol. 1 (1), 1995)

"A dictionary definition of the word ‘complex’ is: ‘consisting of interconnected or interwoven parts’ […] Loosely speaking, the complexity of a system is the amount of information needed in order to describe it. The complexity depends on the level of detail required in the description. A more formal definition can be understood in a simple way. If we have a system that could have many possible states, but we would like to specify which state it is actually in, then the number of binary digits (bits) we need to specify this particular state is related to the number of states that are possible." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"When the behavior of the system depends on the behavior of the parts, the complexity of the whole must involve a description of the parts, thus it is large. The smaller the parts that must be described to describe the behavior of the whole, the larger the complexity of the entire system. […] A complex system is a system formed out of many components whose behavior is emergent, that is, the behavior of the system cannot be simply inferred from the behavior of its components." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"Complexity is that property of a model which makes it difficult to formulate its overall behaviour in a given language, even when given reasonably complete information about its atomic components and their inter-relations." (Bruce Edmonds, "Syntactic Measures of Complexity", 1999)

"People who pride themselves on their 'complexity' and deride others for being 'simplistic' should realize that the truth is often not very complicated. What gets complex is evading the truth." (Thomas Sowell, "Barbarians inside the Gates and Other Controversial Essays", 1999)

"Complexity is the characteristic property of complicated systems we don’t understand immediately. It is the amount of difficulties we face while trying to understand it. In this sense, complexity resides largely in the eye of the beholder - someone who is familiar with s.th. often sees less complexity than someone who is less familiar with it. [...] A complex system is created by evolutionary processes. There are multiple pathways by which a system can evolve. Many complex systems are similar, but each instance of a system is unique." (Jochen Fromm, "The Emergence of Complexity", 2004)

"Simplicity is achieved in two general ways: minimizing the amount of essential complexity that anyone's brain has to deal with at any one time, and keeping accidental complexity from proliferating needlessly." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"Complexity carries with it a lack of predictability different to that of chaotic systems, i.e. sensitivity to initial conditions. In the case of complexity, the lack of predictability is due to relevant interactions and novel information created by them." (Carlos Gershenson, "Understanding Complex Systems", 2011)

"Complexity has shown that reductionism is limited, in the sense that emergent properties cannot be reduced. In other words, the properties at a given scale cannot be always described completely in terms of properties at a lower scale. This has led people to debate on the reality of phenomena at different scales." (Carlos Gershenson, "Complexity", 2011)

"I think there is a profound and enduring beauty in simplicity; in clarity, in efficiency. True simplicity is derived from so much more than just the absence of clutter and ornamentation. It's about bringing order to complexity." (Jonathan Ive, 2013)

"Simplicity in a system tends to increase that system’s efficiency. Because less can go wrong with fewer parts, less will. Complexity in a system tends to increase that system’s inefficiency; the greater the number of variables, the greater the probability of those variables clashing, and in turn, the greater the potential for conflict and disarray. Because more can go wrong, more will. That is why centralized systems are inclined to break down quickly and become enmeshed in greater unintended consequences." (Lawrence K Samuels,"Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

27 December 2007

🏗️Software Engineering: Data Structures (Just the Quotes)

"At the present time, choosing a programming language is equivalent to choosing a data structure, and if that data structure does not fit the data you want to manipulate then it is too bad. It would, in a sense, be more logical first to choose a data structure appropriate to the problem and then look around for, or construct with a kit of tools provided, a language suitable for manipulating that data structure." (Maurice V Wilkes, "Computers Then and Now", 1968)

"Choosing a better data structure is often an art, which we cannot teach. Often you must write a preliminary draft of the code before you can determine what changes in the data structure will help simplify control. [...] Choose a data representation that makes the program simple." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Let the data structure the program." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Use recursive procedures for recursively-defined data structures." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"The programmer's primary weapon in the never-ending battle against slow system is to change the intramodular structure. Our first response should be to reorganize the modules' data structures." (Fred Brooks, "The Mythical Man-Month: Essays on Software Engineering", 1975)

"The representation of knowledge in symbolic form is a matter that has pre-occupied the world of documentation since its origin. The problem is now relevant in many situations other than documents and indexes. The structure of records and files in databases: data structures in computer programming; the syntactic and semantic structure of natural language; knowledge representation in artificial intelligence; models of human memory: in all these fields it is necessary to decide how knowledge may be represented so that the representations may be manipulated." (Brian C Vickery, "Concepts of documentation", 1978)

"Rule 4. Fancy algorithms are buggier than simple ones, and they're much harder to implement. Use simple algorithms as well as simple data structures." (Rob Pike, "Notes on Programming in C" , 1989)

"Rule 5. Data dominates. If you've chosen the right data structures and organized things well, the algorithms will almost always be self-evident. Data structures, not algorithms, are central to programming." (Rob Pike, "Notes on Programming in C", 1989)

"If a programmer designs a program, only half the job is done if they have only designed the data structures. They also have to design the procedures for operating on the structures. (Specifically, a programmer designs abstract data types.) Without the appropriate procedures for operating on data structures, a computer would literally get lost in the structures, even supposing it could start executing anything sensible." (Yin L Theng et al," 'Lost in hhyperspace': Psychological problem or bad design?", 1996)

"Often you'll see the same three or four data items together in lots of places: fields in a couple of classes, parameters in many method signatures. Bunches of data that hang around together really ought to be made into their own object." (Kent Beck, "Refactoring: Improving the Design of Existing Code", 1999)

"Smart data structures and dumb code works a lot better than the other way around." (Eric S Raymond, "The Cathedral & the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary", 2001)

"In fact, I'm a huge proponent of designing your code around the data, rather than the other way around, and I think it's one of the reasons git has been fairly successful. […] I will, in fact, claim that the difference between a bad programmer and a good one is whether he considers his code or his data structures more important. Bad programmers worry about the code. Good programmers worry about data structures and their relationships." (Linus Torvalds, [email] 2006)

"Computation at its root consists of a data structure (for input, output, and perhaps something being stored in between) and some process. One cannot talk about the process without describing the data structure. More importantly, different data structures enable certain computations to be done easily, whereas other data structures support other computations. Thus, the choice of data structure (representation) helps explain why a problem-solver does or does not successfully engage in a given process (cognition/behavior) or perhaps why a process takes as long or as short as it does." (Christian D Schunn et al, "Complex Visual Data Analysis, Uncertainty, and Representation", 2007)

"One of the essential parts of a formal training in programming is a long and demanding study of the large collection of algorithms that have already been discovered and analyzed, together with the Data Structures (carefully tailored, seemingly unnatural ways of organizing data for effective access) that go with them. As with any other engineering profession, it is impossible to do a good job without a thorough knowledge of what has been tried before. If a programmer starts the job fully armed with what is already known, they will have some chance of finding something new. Inventiveness is important: not all problems have been seen before. A programmer who does not already know the standard algorithms and data structures is doomed to nothing more than rediscovering the basics." (Robert Plant & Stephen Murrell, "An Executive’s Guide to Information Technology: Principles, Business Models, and Terminology", 2007)

"A modeling language is usually based on some kind of computational model, such as a state machine, data flow, or data structure. The choice of this model, or a combination of many, depends on the modeling target. Most of us make this choice implicitly without further thinking: some systems call for capturing dynamics and thus we apply for example state machines, whereas other systems may be better specified by focusing on their static structures using feature diagrams or component diagrams. For these reasons a variety of modeling languages are available." (Steven Kelly & Juha-Pekka Tolvanen, "Domain-specific Modeling", 2008)

"Clearly, the search for a dividing line between code and data is fruitless—and not particularly flattering to our egos. Let’s abandon any attempt to find a higher truth here, and settle for a pragmatic definition. If a piece of generated text simply instantiates and provides values for a data structure, it’s data; otherwise, it’s code." (Steven Kelly & Juha-Pekka Tolvanen, "Domain-specific Modeling", 2008)

"Generally, the craft of programming is the factoring of a set of requirements into a a set of functions and data structures." (Douglas Crockford, "JavaScript: The Good Parts", 2008)

"If the data structure can’t be explained on a beer coaster, it’s too complex." (Felix von Leitner, "Source Code Optimization", 2009)

26 December 2007

🏗️Software Engineering: Programing Languages (Just the Quotes)

"The establishment of formal standards for proofs about programs [...] and the proposal that the semantics of a programming language may be defined independently of all processors for that language, by establishing standards of rigor for proofs about programs in the language, appears to be novel." (Robert Floyd, "Assigning Meanings to Programs", 1967)

"Computer languages of the future will be more concerned with goals and less with procedures specified by the programmer." (Marvin Minsky, "Form and Content in Computer Science", [Turing Award lecture] 1969)

"There is no programming language, no matter how structured, that will prevent programmers from making bad programs." (Larry Flon, "On research in structured programming", SIGPLAN 10(10), 1975)

"Most programming languages are decidedly inferior to mathematical notation and are little used as tools of thought in ways that would be considered significant by, say, an applied mathematician." (Kenneth E Iverson, "Notation as a Tool of Thought", 1979)

"The properties of executability and universality associated with programming languages can be combined, in a single language, with the well-known properties of mathematical notation which make it such an effective tool of thought." (Kenneth E Iverson, "Notation as a Tool of Thought", 1979)

"A language that doesn't affect the way you think about programming, is not worth knowing." (Alan Perlis, "Epigrams on Programming", 1982)

"A programming language is low level when its programs require attention to the irrelevant." (Alan J Perlis, "Epigrams on Programming", 1982)

"Some programming languages manage to absorb change, but withstand progress." (Alan J Perlis, "Epigrams on Programming", 1982)

"The only way to learn a new programming language is by writing programs in it." (Dennis Ritchie, "C Programming Language", 1988)

"A programming language is like a natural, human language in that it favors certain methaphors, images, and ways of thinking." (Seymour Papert, "Mindstorms: Children, Computers, And Powerful Ideas", 1993) 

"Although mathematical notation undoubtedly possesses parsing rules, they are rather loose, sometimes contradictory, and seldom clearly stated. [...] The proliferation of programming languages shows no more uniformity than mathematics. Nevertheless, programming languages do bring a different perspective. [...] Because of their application to a broad range of topics, their strict grammar, and their strict interpretation, programming languages can provide new insights into mathematical notation." (Kenneth E Iverson, "Math for the Layman", 1999) 

"Programming in an object-oriented language, however, does not ensure that the complexity of an application will be well encapsulated. Applying good programming techniques can improve encapsulation, but the full benefit of object-oriented programming can be realized only if encapsulation is a recognized goal of the design process." (Rebecca Wirfs-Brock, "Object-oriented Design: A responsibility-driven approach", 1989)

"Computer programs are complex by nature. Even if you could invent a programming language that operated exactly at the level of the problem domain, programming would be complicated because you would still need to precisely define relationships between real-world entities, identify exception cases, anticipate all possible state transitions, and so on. Strip away the accidental work involved in representing these factors in a specific programming language and in a specific computing environment, and you still have the essential difficulty of defining the underlying real-world concepts and debugging your understanding of them." (Steve C McConnell," After the Gold Rush : Creating a True Profession of Software Engineering", 1999)

“The precision provided (or enforced) by programming languages and their execution can identify lacunas, ambiguities, and other areas of potential confusion in conventional [mathematical] notation." (Kenneth E Iverson, "Math for the Layman", 1999)

"Programming languages on the whole are very much more complicated than they used to be: object orientation, inheritance, and other features are still not really being thought through from the point of view of a coherent and scientifically well-based discipline or a theory of correctness. My original postulate, which I have been pursuing as a scientist all my life, is that one uses the criteria of correctness as a means of converging on a decent programming language design - one which doesn’t set traps for its users, and ones in which the different components of the program correspond clearly to different components of its specification, so you can reason compositionally about it. [...] The tools, including the compiler, have to be based on some theory of what it means to write a correct program." (Charles A R Hoare, [interview] 2002)

"A programming language is for thinking of programs, not for expressing programs you've already thought of." (Paul Graham, "Hackers and Painters", 2003)

"All OO languages show some tendency to suck programmers into the trap of excessive layering. Object frameworks and object browsers are not a substitute for good design or documentation, but they often get treated as one. Too many layers destroy transparency: It becomes too difficult to see down through them and mentally model what the code is actually doing. The Rules of Simplicity, Clarity, and Transparency get violated wholesale, and the result is code full of obscure bugs and continuing maintenance problems." (Eric S Raymond, "The Art of Unix Programming", 2003)

"Few classical programmers found prototypal inheritance to be acceptable, and classically inspired syntax obscures the language’s true prototypal nature. It is the worst of both worlds." (Douglas Crockford, "JavaScript: The Good Parts", 2008)

"Most programming languages contain good parts and bad parts. I discovered that I could be better programmer by using only the good parts and avoiding the bad parts." (Douglas Crockford, "JavaScript: The Good Parts", 2008) 

25 December 2007

🏗️Software Engineering: Documentation (Just the Quotes)

"Amid a wash of paper, a small number of documents become the critical pivots around which every project's management revolves. These are the manager's chief personal tools." (William Bengough, "Scene in the old Congressional Library", 1897)

"Notice that even the data is commented. One of the most effective ways to document a program is simply to describe the data layout in detail. If you can specify for each important variable what values it can assume and how it gets changed, you have gone a long way to describing the program. [...] Document your data layouts." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"The best documentation for a computer program is a clean structure. It also helps if the code is well formatted, with good mnemonic identifiers and labels (if any are needed), and a smattering of enlightening comments. Flowcharts and program descriptions are of secondary importance; the only reliable documentation of a computer program is the code itself. The reason is simple -whenever there are multiple representations of a program, the chance for discrepancy exists. If the code is in error, artistic flowcharts and detailed comments are to no avail. Only by reading the code can the programmer know for sure what the program does." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Writing a computer program eventually boils down to writing a sequence of statements in the language at hand. How each of those statements is expressed determines in large measure the intelligibility of the whole; no amount of commenting, formatting, or supplementary documentation can entirely replace well expressed statements. After all, they determine what the program actually does." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"There is nothing in the programming field more despicable than an undocumented program." (Edward Yourdon, "Techniques of program structure and design", 1975)

"The representation of knowledge in symbolic form is a matter that has pre-occupied the world of documentation since its origin. The problem is now relevant in many situations other than documents and indexes. The structure of records and files in databases: data structures in computer programming; the syntactic and semantic structure of natural language; knowledge representation in artificial intelligence; models of human memory: in all these fields it is necessary to decide how knowledge may be represented so that the representations may be manipulated." (Brian C Vickery, "Concepts of Documentation", 1978)

"Even though it is better if the system can be used without documentation, it may be necessary to provide help and documentation. Any such information should be easy to search, focused on the user's task, list concrete steps to be carried out, and not be too large." (Jakob Nielsen, "Usability Engineering", 1994)

"The following two statements are usually both true: 
There's not enough documentation. 
There's too much documentation." (Larry Wall, [Usenet article], 1997)

"But code as a design document does have its limits. It can overwhelm the reader with detail. Although its behavior is unambiguous, that doesn’t mean it is obvious. And the meaning behind a behavior can be hard to convey. […] A document shouldn’t try to do what the code already does well. The code already supplies the detail. It is an exact specification of program behavior. Other documents need to illuminate meaning, to give insight into large-scale structures, and to focus attention on core elements. Documents can clarify design intent when the programming language does not support a straightforward implementation of a concept. Written documents should complement the code and the talking." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"Good code is its own best documentation." (Steve McConnell, "Code Complete", 2004)

"Documentation is a love letter that you write to your future self." (Damian Conway, "Perl Best Practices", 2005)

"Developing fewer features allows you to conserve development resources and spend more time refining those features that users really need. Fewer features mean fewer things to confuse users, less risk of user errors, less description and documentation, and therefore simpler Help content. Removing any one feature automatically increases the usability of the remaining ones." (Jakob Nielsen, "Prioritizing Web Usability", 2006)

"Any comment that forces you to look in another module for the meaning of that comment has failed to communicate to you and is not worth the bits it consumes." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008) 

"Features have a specification cost, a design cost, and a development cost. There is a testing cost and a reliability cost. […] Features have a documentation cost. Every feature adds pages to the manual increasing training costs." (Douglas Crockford, "JavaScript: The Good Parts: The Good Parts", 2008)

Software is usually accompanied by documentation in the form of big fat scary manuals that nobody ever reads. (Dave Barry, "Dave Barry in Cyberspace", 2010)

"In addition to developing the proper culture, invest in your testing infrastructure by developing linters, documentation, or other assistance that makes it more difficult to write bad tests." (Titus Winters, "Software Engineering at Google: Lessons Learned from Programming Over Time", 2020)

"Documentation is a practice concerned with all the processes involved in transferring documents from sources to users." (Brian C Vickery)

"Documentation is not understanding, process is not discipline, formality is not skill." (Jim Highsmith)

"The guy who knows about computers is the last person you want to have creating documentation for people who don't understand computers." (Adam Osborne)

"This is generally true: any sizeable piece of program, or even a complete program package, is only a useful tool that can be used in a reliable fashion, provided that the documentation pertinent for the user is much shorter than the program text. If any machine or system requires a very thick manual, its usefulness becomes for that very circumstance subject to doubt!" (Edsger W. Dijkstra, "On the reliability of programs")

🏗️Software Engineering: Object-Oriented Programming (Just the Quotes)

"Object-oriented programming languages support encapsulation, thereby improving the ability of software to be reused, refined, tested, maintained, and extended. The full benefit of this support can only be realized if encapsulation is maximized during the design process. […] design practices which take a data-driven approach fail to maximize encapsulation because they focus too quickly on the implementation of objects." (Rebecca Wirfs-Brock, "Object-oriented Design: A. responsibility-driven approach", 1989)

"Perhaps the greatest strength of an object-oriented approach to development is that it offers a mechanism that captures a model of the real world." (Grady Booch, "Software Engineering with Ada", 1986)

"Object-oriented programming increases the value of these metrics by managing this complexity. The most effective tool available for dealing with complexity is abstraction. Many types of abstraction can be used, but encapsulation is the main form of abstraction by which complexity is managed in object-oriented programming. Programming in an object-oriented language, however, does not ensure that the complexity of an application will be well encapsulated. Applying good programming techniques can improve encapsulation, but the full benefit of object-oriented programming can be realized only if encapsulation is a recognized goal of the design process." (Rebecca Wirfs-Brock," Object-Oriented Design: A responsibility-driven approach", 1989)

"Programming in an object-oriented language, however, does not ensure that the complexity of an application will be well encapsulated. Applying good programming techniques can improve encapsulation, but the full benefit of object-oriented programming can be realized only if encapsulation is a recognized goal of the design process." (Rebecca Wirfs-Brock, "Object-oriented Design: A responsibility-driven approach", 1989)

"In object-oriented analysis, we seek to model the world by identifying the classes and objects that form the vocabulary of the problem domain, and in object-oriented design, we invent the abstractions and mechanisms that provide the behavior that this model requires." (Grady Booch, "Object-Oriented Design: With Applications", 1991) 

"Object-oriented analysis is a method of analysis that examines requirements from the perspective of the classes and objects found in the vocabulary of the problem domain."(Grady Booch, "Object-oriented design: With Applications", 1991)

"[Object-oriented analysis is] the challenge of understanding the problem domain and then the system's responsibilities in that light." (Edward Yourdon, "Object-Oriented Design", 1991) 

"Object-oriented programming is a method of implementation in which programs are organized as cooperative collections of objects, each of which represents an instance of some class, and whose classes are all members of a hierarchy of classes united via inheritance relationships." (Grady Booch, "Object-oriented design: With Applications", 1991)

"Structured design does not scale up well for extremely complex systems, and this method is largely inappropriate for use with object-based and object-oriented programming languages." (Grady Booch, "Object-oriented design: With Applications", 1991) 

"The object-oriented paradigm is useful when building software systems where there is a hierarchy defined as a ranking or ordering of abstractions. (Grady Booch, "Object-Oriented Design: With Applications", 1991)

"Whereas object-oriented analysis typically focuses upon one specific problem at a time, domain analysis seeks to identify the classes and objects that are common to all applications within a given domain, such as missile avionics systems, compilers, or accounting software." (Grady Booch, "Object-oriented design: With Applications", 1991)

"Object-oriented methods tend to focus on the lowest-level building block: the class and its objects." (Peter Coad, "Object-oriented patterns", 1992)

"Object-oriented domain analysis seeks to identify reusable items localized around objects e. g., classes, instances, systems of interacting objects, and kits." (Edward V Berard, "Essays on object-oriented software engineering", 1993)

"All OO languages show some tendency to suck programmers into the trap of excessive layering. Object frameworks and object browsers are not a substitute for good design or documentation, but they often get treated as one. Too many layers destroy transparency: It becomes too difficult to see down through them and mentally model what the code is actually doing. The Rules of Simplicity, Clarity, and Transparency get violated wholesale, and the result is code full of obscure bugs and continuing maintenance problems." (Eric S. Raymond, "The Art of Unix Programming", 2003)

"Objects are the real and conceptual things we find in the world around us. An object may be hardware, software, a concept (e. g., velocity), or even 'flesh and blood'. Objects are complete entities, i. e., they are not 'simply information' or 'simply information and actions'. Software objects strive to capture as completely as possible the characteristics of the 'real world' objects which they represent. Finally, objects are 'black boxes', i. e., their internal implementations are hidden from the outside world, and all interactions with an object take place via a well-defined interface." (Edward V Berard, "Essays onObject-Oriented Software Engineering", 1993) 

"The combination of threads, remote-procedure-call interfaces, and heavyweight object-oriented design is especially dangerous [...] if you are ever invited onto a project that is supposed to feature all three, fleeing in terror might well be an appropriate reaction." (Eric S Raymond, "The Art of UNIX Programming", 2003)

"Abstraction is the ability to engage with a concept while safely ignoring some of its details - handling different details at different levels. Any time you work with an aggregate, you're working with an abstraction. […] From a complexity point of view, the principal benefit of abstraction is that it allows you to ignore irrelevant details. Most real-world objects are already abstractions of some kind." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"Coupling describes how tightly a class or routine is related to other classes or routines. The goal is to create classes and routines with small, direct, visible, and flexible relations to other classes and routines, which is known as "loose coupling." The concept of coupling applies equally to classes and routines […] Good coupling between modules is loose enough that one module can easily be used by other modules." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"Encapsulation picks up where abstraction leaves off. Abstraction says, ‘You're allowed to look at an object at a high level of detail’. Encapsulation says, ‘Furthermore, you aren't allowed to look at an object at any other level of detail’." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"Object-oriented design is the roman numerals of computing." (Rob Pike, 2004)

"On a related topic, let me say that I'm not much of a fan of object-oriented design. I've seen some beautiful stuff done with OO, and I've even done some OO stuff myself, but it's just one way to approach a problem. For some problems, it's an ideal way; for others, it's not such a good fit. […] OO is great for problems where an interface applies naturally to a wide range of types, not so good for managing polymorphism (the machinations to get collections into OO languages are astounding to watch and can be hellish to work with), and remarkably ill-suited for network computing. That's why I reserve the right to match the language to the problem, and even - often - to coordinate software written in several languages towards solving a single problem. It's that last point - different languages for different subproblems - that sometimes seems lost to the OO crowd." (Rob Pike, [interview] 2004) 

"The steps in designing with objects are
- Identify the objects and their attributes (methods and data).
- Determine what can be done to each object.
- Determine what each object is allowed to do to other objects.
- Determine the parts of each object that will be visible to other objects—which parts will be public and which will be private.
- Define each object's public interface. 
These steps aren't necessarily performed in order, and they're often repeated. Iteration is important." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"Every system is built from a domain-specific language designed by the programmers to describe that system. Functions are the verbs of that language, and classes are the nouns."  (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"I find OOP methodologically wrong. It starts with classes. It is as if mathematicians would start with axioms. You do not start with axioms - you start with proofs. Only when you have found a bunch of related proofs, can you come up with axioms. You end with axioms. The same thing is true in programming: you have to start with interesting algorithms. Only when you understand them well, can you come up with an interface that will let them work." (Alexander Stepanov, [Interview with A. Stepanov] 2008)

"We do not want to expose the details of our data. Rather we want to express our data in abstract terms. This is not merely accomplished by using interfaces and/or getters and setters. Serious thought needs to be put into the best way to represent the data that an object contains. The worst option is to blithely add getters and setters." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"[Object-oriented analysis is] the challenge of understanding the problem domain and then the system's responsibilities in that light." (Ed Yourdon)

"Strive for class interfaces that are complete and minimal." (Scott Meyers) 

24 December 2007

🏗️Software Engineering: Design (Just the Quotes)

"The engineer must be able not only to design, but to execute. A draftsman may be able to design, but unless he is able to execute his designs to successful operation he cannot be classed as an engineer. The production engineer must be able to execute his work as he has planned it. This requires two qualifications in addition to technical engineering ability: He must know men, and he must have creative ability in applying good statistical, accounting, and 'system' methods to any particular production work he may undertake." (Hugo Diemer, "Industrial Engineering", 1905)

"A design may be called organic when there is an harmonious organization of the parts within the whole, according to structure, material, and purpose." (Eliot Noyes, "Organic Design in Home Furnishing", 1941)

"An engineering science aims to organize the design principles used in engineering practice into a discipline and thus to exhibit the similarities between different areas of engineering practice and to emphasize the power of fundamental concepts. In short, an engineering science is predominated by theoretical analysis and very often uses the tool of advanced mathematics." (Qian Xuesen, "Engineering Cybernetics", 1954)

"Design problems - generating or discovering alternatives - are complex largely because they involve two spaces, an action space and a state space, that generally have completely different structures. To find a design requires mapping the former of these on the latter. For many, if not most, design problems in the real world systematic algorithms are not known that guarantee solutions with reasonable amounts of computing effort. Design uses a wide range of heuristic devices - like means-end analysis, satisficing, and the other procedures that have been outlined - that have been found by experience to enhance the efficiency of search. Much remains to be learned about the nature and effectiveness of these devices." (Herbert A Simon, "The Logic of Heuristic Decision Making", [in "The Logic of Decision and Action"], 1966)

"But active programming consists of the design of new programs, rather than contemplation of old programs." (Niklaus Wirth, "Program Development by Stepwise Refinement", 1971) 

"Clearly, programming courses should teach methods of design and construction, and the selected examples should be such that a gradual development can be nicely demonstrated." (Niklaus Wirth, "Program Development by Stepwise Refinement", 1971)

"A clean design is more easily modified as requirements change or as more is learned about what parts of the code consume significant amounts of execution time. A 'clever' design that fails to work or to run fast enough can often be salvaged only at great cost. Efficiency does not have to be sacrificed in the interest of writing readable code - rather, writing readable code is often the only way to ensure efficient programs that are also easy to maintain and modify." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Conceptual integrity is the most important consideration in system design." (Frederick P Brooks, "The Mythical Man-Month" , 1975) 

"The hardest single part of building a software system is deciding precisely what to build." (Frederick P. Brooks, "The Mythical Man-Month", 1975) 

"From the point of view of modern science, design is nothing, but from the point of view of engineering, design is everything. It represents the purposive adaptation of means to reach a preconceived end, the very essence of engineering." (Edwin T Layton Jr., "American Ideologies of Science and Engineering", Technology and Culture No. 4, 1976)

"Systems with unknown behavioral properties require the implementation of iterations which are intrinsic to the design process but which are normally hidden from view. Certainly when a solution to a well-understood problem is synthesized, weak designs are mentally rejected by a competent designer in a matter of moments. On larger or more complicated efforts, alternative designs must be explicitly and iteratively implemented. The designers perhaps out of vanity, often are at pains to hide the many versions which were abandoned and if absolute failure occurs, of course one hears nothing. Thus the topic of design iteration is rarely discussed. Perhaps we should not be surprised to see this phenomenon with software, for it is a rare author indeed who publicizes the amount of editing or the number of drafts he took to produce a manuscript." (Fernando J Corbató, "A Managerial View of the Multics System Development", 1977)

"We try to solve the problem by rushing through the design process so that enough time is left at the end of the project to uncover the errors that were made because we rushed through the design process." (Glenford Myers, "Composite/structured design", 1978)

"A good scientist is a person with original ideas. A good engineer is a person who makes a design that works with as few original ideas as possible. There are no prima donnas in engineering." (Freeman Dyson, "Disturbing the Universe", 1979)

"Overemphasis of efficiency leads to an unfortunate circularity in design: for reasons of efficiency early programming languages reflected the characteristics of the early computers, and each generation of computers reflects the needs of the programming languages of the preceding generation." (Kenneth E Iverson, "Notation as a Tool of Thought", 1979) 

"Meta-design is much more difficult than design; it's easier to draw something than to explain how to draw it." (Donald E Knuth, "The METAFONTbook", 1986)

"The complexity of software is an essential property, not an accidental one. Hence, descriptions of a software entity that abstract away its complexity often abstracts away its essence." (Frederick P Brooks, "No Silver Bullet" , 1987)

"There are two ways of constructing a software design. One way is to make it so simple that there are obviously no deficiencies. And the other way is to make it so complicated that there are no obvious deficiencies." (Charles A R Hoare, [lecture] 1987)

"A design remedy that prevents bugs is always preferable to a test method that discovers them." (Boris Beizer, "Software Testing Techniques", 1990)

"Engineering knowledge reflects the fact that design does not take place for its own sake and in isolation." (Walter G Vincenti, "What Engineers Know and How They Know It", 1990)

"First law: The pesticide paradox. Every method you use to prevent or find bugs leaves a residue of subtler bugs against which those methods are ineffective."  (Boris Beizer, "Software Testing Techniques", 1990)

"Extra features were once considered desirable. We now recognize that 'free' features are rarely free. Any increase in generality that does not contribute to reliability, modularity, maintainability, and robustness should be suspected." (Boris Beizer, "Software Testing Techniques", 1990)

"More than the act of testing, the act of designing tests is one of the best bug preventers known. The thinking that must be done to create a useful test can discover and eliminate bugs before they are coded - indeed, test-design thinking can discover and eliminate bugs at every stage in the creation of software, from conception to specification, to design, coding and the rest."  (Boris Beizer, "Software Testing Techniques", 1990)

"Second law: The complexity barrier. Software complexity (and therefore that of bugs) grows to the limits of our ability to manage that complexity." (Boris Beizer, "Software Testing Techniques", 1990)

"If solutions could be offered within the existing system, there would be no need to design. Thus designers have to transcend the existing system. Their task is to create a different system or devise a new one. That is why designers say they can truly define the problem only in light of the solution. The solution informs them as to what the real problem is." (Béla H Bánáthy, "Systems Design of Education", 1991)

"No matter how vigorously a 'science' of design may be pushed, the successful design of real things in a contingent world will always be based more on art than on science. Unquantifiable judgments and choices are the elements that determine the way a design comes together. Engineering design is simply that kind of process. It always has been; it always will be. (Eugene S Ferguson , "Engineering and the Mind’s Eye", 1992)

"Design patterns are not about designs such as linked lists and hash tables that can be encoded in classes and reused as is. Nor are they complex, domain-specific designs for an entire application or subsystem. The design patterns [...] are descriptions of communicating objects and classes that are customized to solve a general design problem in a particular context." (Erich Gamma et al, "Design Patterns: Elements of Reusable Object-Oriented Software", 1994)

"Design patterns make it easier to reuse successful designs and architectures. Expressing proven techniques as design patterns makes them more accessible to developers of new systems. Design patterns help you choose design alternatives that make a system reusable and avoid alternatives that compromise reusability. Design patterns can even improve the documentation and maintenance of existing systems by furnishing an explicit specification of class and object interactions and their underlying intent. Put simply, design patterns help a designer get a design 'right' faster." (Erich Gamma et al, "Design Patterns: Elements of Reusable Object-Oriented Software", 1994)

"If a project has not achieved a system architecture, including its rationale, the project should not proceed to full-scale system development. Specifying the architecture as a deliverable enables its use throughout the development and maintenance process." (Barry Boehm, 1995)

"The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"Good design protects you from the need for too many highly accurate components in the system. But such design principles are still, to this date, ill-understood and need to be researched extensively. Not that good designers do not understand this intuitively, merely it is not easily incorporated into the design methods you were taught in school. Good minds are still needed in spite of all the computing tools we have developed." (Richard Hamming, "The Art of Doing Science and Engineering: Learning to Learn", 1997)

"The nature of our language tends to force us into 'yes-no', something is or is not, you either have a proof or you do not. But once we admit there is a changing standard of rigor we have to accept some proofs are more convincing than other proofs. If you view proofs on a scale much like probability, running from 0 to 1, then all proofs lie in the range and very likely never reach the upper limit of 1, certainty."  (Richard Hamming, "The Art of Doing Science and Engineering: Learning to Learn", 1997)

"The woes of software engineering are not due to lack of tools or proper management, but largely due to lack of sufficient technical competence. A good designer must rely on experience; on precise, logical thinking; and on pedantic exactness. No magic will do. In light of all this, it is particularly sad that, in many informatics curricula, programming in the large is badly neglected. Design has become a non-topic." (Niklaus Wirth, [interview in Software Development] 1997)

"It’s really hard to design products by focus groups. A lot of times, people don’t know what they want until you show it to them." (Steve Jobs, BusinessWeek, 1998)

"Good design is also an act of communication between the designer and the user, except that all the communication has to come about by the appearance of the device itself. The device must explain itself." (Donald Norman, "The Design of Everyday Things", 2002)

"Domain-driven design is both a way of thinking and a set of priorities, aimed at accelerating software projects that have to deal with complicated domains." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"If the architecture isolates the domain-related code in a way that allows a cohesive domain design loosely coupled to the rest of the system, then that architecture can probably support domain-driven DESIGN." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"If the design, or some central part of it, does not map to the domain model, that model is of little value, and the correctness of the software is suspect. At the same time, complex mappings between models and design functions are difficult to understand and, in practice, impossible to maintain as the design changes. A deadly divide opens between analysis and design so that insight gained in each of those activities does not feed into the other." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"Many things can put a project off course: bureaucracy, unclear objectives, and lack of resources, to name a few. But it is the approach to design that largely determines how complex software can become. When complexity gets out of hand, developers can no longer understand the software well enough to change or extend it easily and safely. On the other hand, a good design can create opportunities to exploit those complex features." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"Models come in many varieties and serve many roles, even those restricted to the context of a software development project. Domain-driven design calls for a model that doesn’t just aid early analysis but is the very foundation of the design […]  Tightly relating the code to an underlying model gives the code meaning and makes the model relevant." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"Software design is a constant battle with complexity." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"The aim of architectural design is to prepare overall specifications, derived from the needs and desires of the user, for subsequent design and construction stages. The first task for the architect in each design project is thus to determine what the real needs and desires of the user are […]" (George J Klir & Doug Elias, "Architecture of Systems Problem Solving" 2nd Ed, 2003)

"The effectiveness of an overall design is very sensitive to the quality and consistency of fine-grained design and implementation decisions. With a MODEL-DRIVEN DESIGN, a portion of the code is an expression of the model; changing that code changes the model. Programmers are modelers, whether anyone likes it or not. So it is better to set up the project so that the programmers do good modeling work." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"Design is heuristic. Dogmatic adherence to any single methodology hurts creativity and hurts your programs." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"Design patterns provide the cores of ready-made solutions that can be used to solve many of software’s most common problems. Some software problems require solutions that are derived from first principles. But most problems are similar to past problems, and those can be solved using similar solutions, or patterns." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"In addition to their complexity-management benefit, design patterns can accelerate design discussions by allowing designers to think and discuss at a larger level of granularity." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"On small, informal projects, a lot of design is done while the programmer sits at the keyboard. 'Design' might be just writing a class interface in pseudocode before writing the details. It might be drawing diagrams of a few class relationships before coding them. It might be asking another programmer which design pattern seems like a better choice. Regardless of how it’s done, small projects benefit from careful design just as larger projects do, and recognizing design as an explicit activity maximizes the benefit you will receive from it." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)

"The flip side of the coin was that even good programmers and language designers tended to do terrible extensions when they were in the heat of programming, because design is something that is best done slowly and carefully." (Alan Kay, [ACM Queue A Conversation with Alan Kay Vol. 2 (9)] 2004-2005)

"A commitment to simplicity of design means addressing the essence of design - the abstractions on which software is built - explicitly and up front. Abstractions are articulated, explained, reviewed and examined deeply, in isolation from the details of the implementation. This doesn’t imply a waterfall process, in which all design and specification precedes all coding. But developers who have experienced the benefits of this separation of concerns are reluctant to rush to code, because they know that an hour spent on designing abstractions can save days of refactoring." (Daniel Jackson, "Software Abstractions", 2006)

"Abstractions matter to users too. Novice users want programs whose abstractions are simple and easy to understand; experts want abstractions that are robust and general enough to be combined in new ways. When good abstractions are missing from the design, or erode as the system evolves, the resulting program grows barnacles of complexity. The user is then forced to master a mass of spurious details, to develop workarounds, and to accept frequent, inexplicable failures." (Daniel Jackson, "Software Abstractions", 2006)

"Software is built on abstractions. Pick the right ones, and programming will flow naturally from design; modules will have small and simple interfaces; and new functionality will more likely fit in without extensive reorganization […] Pick the wrong ones, and programming will be a series of nasty surprises: interfaces will become baroque and clumsy as they are forced to accommodate unanticipated interactions, and even the simplest of changes will be hard to make." (Daniel Jackson, "Software Abstractions", 2006)

"Duplication is the primary enemy of a well-designed system. It represents additional work, additional risk, and additional unnecessary complexity."  (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"Good software designs accommodate change without huge investments and rework. When we use code that is out of our control, special care must be taken to protect our investment and make sure future change is not too costly."  (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"Whether you are designing systems or individual modules, never forget to use the simplest thing that can possibly work." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"We see a lot of feature-driven product design in which the cost of features is not properly accounted. Features can have a negative value to customers because they make the products more difficult to understand and use. We are finding that people like products that just work. It turns out that designs that just work are much harder to produce that designs that assemble long lists of features." (Douglas Crockford, "JavaScript: The Good Parts", 2008)

"A good system design is based on a sound conceptual model (architecture). A system design that has no conceptual structure and little logic to its organization is ultimately going to be unsuccessful. Good architecture will address all the requirements of the system at the right level of abstraction." (Vasudeva Varma, "Software Architecture: A Case Based Approach", 2009)

"A systems approach is one that focuses on the system as a whole, specifically linking value judgments (what is desired) and design decisions (what is feasible). A true systems approach means that the design process includes the 'problem' as well as the solution. The architect seeks a joint problem–solution pair and understands that the problem statement is not fixed when the architectural process starts. At the most fundamental level, systems are collections of different things that together produce results unachievable by the elements alone."  (Mark W Maier, "The Art Systems of Architecting" 3rd Ed., 2009)

"Design has the power to enrich our lives by engaging our emotions through image, form, texture, color, sound, and smell. The intrinsically human-centered nature of design thinking points to the next step: we can use our empathy and understanding of people to design experiences that create opportunities for active engagement and participation." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Design is the bridging activity between gathering and implementation of software requirements that satisfies the required needs. […] The fundamental goal of design is to reduce the number of dependencies between modules, thus reducing the complexity of the system. This is also known as coupling; lesser the coupling the better is the design. On the other hand, higher the binding between elements within a module (known as cohesion) the better is the design." (Vasudeva Varma, "Software Architecture: A Case Based Approach", 2009)

"Design thinking taps into capacities we all have but that are overlooked by more conventional problem-solving practices. It is not only human-centered; it is deeply human in and of itself. Design thinking relies on our ability to be intuitive, to recognize patterns, to construct ideas that have emotional meaning as well as functionality, to express ourselves in media other than words or symbols." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Modeling is the creation of abstractions or representations of the system to predict and analyze performance, costs, schedules, and risks and to provide guidelines for systems research, development, design, manufacture, and management. Modeling is the centerpiece of systems architecting - a mechanism of communication to clients and builders, of design management with engineers and designers, of maintaining system integrity with project management, and of learning for the architect, personally."  (Mark W Maier, "The Art Systems of Architecting" 3rd Ed., 2009)

"Mostly we rely on stories to put our ideas into context and give them meaning. It should be no surprise, then, that the human capacity for storytelling plays an important role in the intrinsically human-centered approach to problem solving, design thinking." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Taking a systems approach means paying close attention to results, the reasons we build a system. Architecture must be grounded in the client’s/user’s/customer’s purpose. Architecture is not just about the structure of components. One of the essential distinguishing features of architectural design versus other sorts of engineering design is the degree to which architectural design embraces results from the perspective of the client/user/customer. The architect does not assume some particular problem formulation, as “requirements” is fixed. The architect engages in joint exploration, ideally directly with the client/user/customer, of what system attributes will yield results worth paying for."  (Mark W Maier, "The Art Systems of Architecting" 3rd Ed., 2009)

"A software design can be described as a collection of design decisions. These design decisions include decisions about what classes should be included, how classes should behave, and how they should interact with each other. Each and every design decision is influenced by previously made design decisions, constraints on the design, and the requirements. In turn, every design decision also impacts the design; it can narrow down the set of future design decisions considerably or widen the scope of possible design decisions. In other words, each and every design decision impacts and even changes the context of the design." (Girish Suryanarayana et al, "Refactoring for Software Design Smells: Managing Technical Debt", 2015)

"Design is the process of taking something that appears in the mind’s eye, modeling it in one or more of a number of ways, predicting how that thing will behave if it is made, and then making it, sometimes modifying the design as we make it. Design is what engineering is about. Furthermore, modeling is how engineering design is done. This includes mental models, mathematical models, computer models, plans and drawings, written language, and (sometimes) physical models." (William M Bulleit, "The Engineering Way of Thinking: The Idea", Structure [magazine], 2015) 

"Development is a design process. Design processes are generally evaluated by the value they deliver rather than a conformance to plan. Therefore, it makes sense to move away from plan-driven projects and toward value-driven projects. […] The realization that the source code is part of the design, not the product, fundamentally rewires our understanding of software." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"How does a smell manifest in design? A smell occurs as a result of a combination of one or more design decisions. In other words, the design ecosystem itself is responsible for the creation of the smell. The presence of the smell in turn impacts the ecosystem in several ways. First, it is likely that the presence of the smell triggers new design decisions that are needed to address the smell! Second, the smell can potentially influence or constrain future design decisions as a result of which one or more new smells may manifest in the ecosystem. Third, smells also tend to have an effect on other smells. For instance, some smells amplify the effects of other smells, or co-occur with or act as precursors to other smells. Clearly, smells share a rich relationship with the ecosystem in which they occur." (Girish Suryanarayana et al, "Refactoring for Software Design Smells: Managing Technical Debt", 2015)

"Technical debt is the debt that accrues when you knowingly or unknowingly make wrong or non-optimal design decisions. [...] when a software developer opts for a quick fix rather than a proper well-designed solution, he introduces technical debt. It is okay if the developer pays back the debt on time. However, if the developer chooses not to pay or forgets about the debt created, the accrued interest on the technical debt piles up, just like financial debt, increasing the overall technical debt. The debt keeps increasing over time with each change to the software; thus, the later the developer pays off the debt, the more expensive it is to pay off. If the debt is not paid at all, then eventually the pile-up becomes so huge that it becomes immensely difficult to change the software. In extreme cases, the accumulated technical debt is so huge that it cannot be paid off anymore and the product has to be abandoned. Such a situation is called technical bankruptcy." (Girish Suryanarayana et al, "Refactoring for Software Design Smells: Managing Technical Debt", 2015)

"Designers need to be part engineer. Good design only exists in concert with engineering. That is because form has to follow function, so you focus on function and then give the object a shape to make it appealing." (Ferdinand A Porsche)

"One of the great enemies of design is when systems or objects become more complex than a person - or even a team of people - can keep in their heads. This is why software is generally beneath contempt." (Bran Ferren)

"Programming without an overall architecture or design in mind is like exploring a cave with only a flashlight: You don't know where you've been, you don't know where you're going, and you don't know quite where you are." (Danny Thorpe) 

"The broader one’s understanding of the human experience, the better design we will have." (Steve Jobs)

"The essence of engineering consists not so much in the mere construction of the spectacular layouts or developments, but in the invention required - the analysis of the problem, the design, the solution by the mind which directs it all." (William Hood)
 
"The purpose of abstraction is not to be vague, but to create a new semantic level in which one can be absolutely precise." (Edsger Dijkstra)

"The thing that makes software design difficult is that we must express thoughts about a problem and a solution we typically do not understand fully, using a language that does not contain many of our accustomed features of expression, to a system that is unforgiving of mistakes." (Alistair Cockburn)

23 December 2007

🏗️Software Engineering: Conceptual Models (Just the Quotes)

"Mere deductive logic, whether you clothe it in mathematical symbols and phraseology or whether you enlarge its scope into a more general symbolic technique, can never take the place of clear relevant initial concepts of the meaning of your symbols, and among symbols I include words. If you are dealing with nature, your meanings must directly relate to the immediate facts of observation. We have to analyse first the most general characteristics of things observed, and then the more casual contingent occurrences. There can be no true physical science which looks first to mathematics for the provision of a conceptual model. Such a procedure is to repeat the errors of the logicians of the middle-ages." (Alfred N Whitehead, "Principle of Relativity", 1922)

"Scientists whose work has no clear, practical implications would want to make their decisions considering such things as: the relative worth of (1) more observations, (2) greater scope of his conceptual model, (3) simplicity, (4) precision of language, (5) accuracy of the probability assignment." (C West Churchman, "Costs, Utilities, and Values", 1956)

"Model-making, the imaginative and logical steps which precede the experiment, may be judged the most valuable part of scientific method because skill and insight in these matters are rare. Without them we do not know what experiment to do. But it is the experiment which provides the raw material for scientific theory. Scientific theory cannot be built directly from the conclusions of conceptual models." (Herbert G Andrewartha," Introduction to the Study of Animal Population", 1961)

"As the least conscious layer of the user experience, the conceptual model has the paradoxical quality of also having the most impact on usability. If an appropriate conceptual model is faithfully represented throughout the interface, after users recognize and internalize the model, they will have a fundamental understanding of what the application does and how to operate it." (Bob Baxley, "Making the Web Work: Designing Effective Web Applications", 2002) 

"Sometimes, however, a conceptual model is only a first step, and the second step is a mathematical representation of the conceptual model." (Gregory N Derry, "What Science Is and How It Works", 2002) 

"A conceptual model is one which reflects reality by placing words which are concepts into the model in the same way that the model aeroplane builder puts wings, a fuselage, and a cockpit together." (Lynn Basford & ‎Oliver Slevin, "Theory and Practice of Nursing: An Integrated Approach to Caring Practice", 2003)

"Sometimes, however, a conceptual model is only a first step, and the second step is a mathematical representation of the conceptual model." (Gregory N Derry, "What Science Is and How It Works", 2002) 

"The role of conceptual modelling in information systems development during all these decades is seen as an approach for capturing fuzzy, ill-defined, informal 'real-world' descriptions and user requirements, and then transforming them to formal, in some sense complete, and consistent conceptual specifications." (Janis A Burbenko jr., "From Information Algebra to Enterprise Modelling and Ontologies", Conceptual Modelling in Information Systems Engineering, 2007) 

"Like a physical model, a conceptual model is an artificial system. It is however, made up of conceptual, and not physical components." (Ibrahim A Halloun, "Modeling Theory in Science Education", 2007) 

"The first function of a conceptual model is relating the research to the existing body of literature. With the help of a conceptual model a researcher can indicate in what way he is looking at the phenomenon of his research."(Jan Jonker & Bartjan Pennink, "The Essence of Research Methodology" , 2010)

"Conceptual models are best thought of as design-tools - a way for designers to straighten out and simplify the design and match it to the users’ task-domain, thereby making it clearer to users how they should think about the application. The designers’ responsibility is to devise a conceptual model that seems natural to users based on the users’ familiarity with the task domain. If designers do their job well, the conceptual model will be the basis for users’ mental models of the application." (Jeff Johnson & Austin Henderson, "Conceptual Models", 2011)

"The conceptual model is not the users’ mental model of the application. […] users of an application form mental models of it to allow them to predict its behavior. A mental model is the user’s high-level understanding of how the application works; it allows the user to predict what the application will do in response to various user-actions. Ideally, a user’s mental model of an application should be similar to the designers’ conceptual model, but in practice the two models may differ significantly. Even if a user’s mental model is the same as the designer’s conceptual model, they are distinct models." (Jeff Johnson & Austin Henderson, "Conceptual Models", 2011) 

"Once we understand our user's mental model, we can capture it in a conceptual model. The conceptual model is a representation of the mental model using elements, relationships, and conditions. Our design and final system will be the tangible result of this conceptual model." (Pau Giner & Pablo Perea, "UX Design for Mobile, 2017)

"A model or conceptual model is a schematic or representation that describes how something works. We create and adapt models all the time without realizing it. Over time, as you gain more information about a problem domain, your model will improve to better match reality." (James Padolsey, "Clean Code in JavaScript", 2020)

🏗️Software Engineering: Features (Just the Quotes)

"Extra features were once considered desirable. We now recognize that 'free' features are rarely free. Any increase in generality that does not contribute to reliability, modularity, maintainability, and robustness should be suspected." (Boris Beizer, "Software Testing Techniques", 1990)

"Design bugs are often subtle and occur by evolution with early assumptions being forgotten as new features or uses are added to systems." (Fernando J Corbató, "On Building Systems That Will Fail", 1991)

"When you find you have to add a feature to a program, and the program's code is not structured in a convenient way to add the feature, first refactor the program to make it easy to add the feature, then add the feature." (Martin Fowler, "Refactoring: Improving the Design of Existing Code", 1999)

"One of the purposes of planning is we always want to work on the most valuable thing possible at any given time. We can’t pick features at random and expect them to be most valuable. We have to begin development by taking a quick look at everything that might be valuable, putting all our cards on the table. At the beginning of each iteration the business (remember the balance of power) will pick the most valuable features for the next iteration." (Kent Beck & Martin Fowler, "Planning Extreme Programming", 2000)

"Putting a new feature into a program is important, but refactoring so new features can be added in the future is equally important." (Ward Cunningham, "Crucible of Creativity", 2005)

"Developing fewer features allows you to conserve development resources and spend more time refining those features that users really need. Fewer features mean fewer things to confuse users, less risk of user errors, less description and documentation, and therefore simpler Help content. Removing any one feature automatically increases the usability of the remaining ones." (Jakob Nielsen, "Prioritizing Web Usability", 2006) 

"Features have a specification cost, a design cost, and a development cost. There is a testing cost and a reliability cost. […] Features have a documentation cost. Every feature adds pages to the manual increasing training costs." (Douglas Crockford, "JavaScript: The Good Parts: The Good Parts", 2008)

"Features that offer value to a minority of users impose a cost on all users." (Douglas Crockford, "JavaScript: The Good Parts", 2008)

"In an ideal system, we incorporate new features by extending the system, not by making modifications to existing code." (Robert C Martin, "Clean Code: A Handbook of Agile Software Craftsmanship", 2008)

"We see a lot of feature-driven product design in which the cost of features is not properly accounted. Features can have a negative value to customers because they make the products more difficult to understand and use. We are finding that people like products that just work. It turns out that designs that just work are much harder to produce that designs that assemble long lists of features." (Douglas Crockford, "JavaScript: The Good Parts", 2008)

22 December 2007

🏗️Software Engineering: Software Engineering (Just the Quotes)

"Software engineering is the part of computer science which is too difficult for the computer scientist." (Friedrich Bauer, "Software Engineering", 1971)

"[Software engineering is the] establishment and use of sound engineering principles to obtain economically software that is reliable and works on real machines efficiently." (Friedrich Bauer, "Software Engineering", Information Processing, 1972)

"Throughout the software life cycle, there are many decision situations involving limited resources in which software engineering economics techniques provide useful assistance."(Barry Boehm, "Software Engineering Economics", 1984)

"Einstein repeatedly argued that there must be simplified explanations of nature, because God is not capricious or arbitrary. No such faith comforts the software engineer. Much of the complexity he must master is arbitrary complexity [… ] because they were designed by different people, rather than by God." (Fred Brooks, "No Silver Bullet", 1986) 

"Software engineering, of course, presents itself as another worthy cause, but that is eyewash: if you carefully read its literature and analyse what its devotees actually do, you will discover that software engineering has accepted as its charter 'How to program if you cannot'." (Edsger W Dijkstra, "On the cruelty of really teaching computing science", 1988)

"One principle problem of educating software engineers is that they will not use a new method until they believe it works and, more importantly, that they will not believe the method will work until they see it for themselves." (Watts S Humphrey, "The Personal Software Process", 1997) 

"Software is a great combination between artistry and engineering." (Bill Gates, "Bill Gates Speaks: Insight from the World's Greatest Entrepreneur", 1998)

"In all engineering disciplines nowadays, software engineering excluded, there exists an established engineering process to develop a system, which is accompanied by a number of suited modeling description techniques. Software engineering, being a rather new field, has not as yet established any clear methodical guidance or a fully standardized modeling notation." (Bernhard Rumpe, "Executable Modeling with UML: A Vision or a Nightmare", 2002)

"The entire history of software engineering is that of the rise in levels of abstraction." (Grady Booch, "The Limits of Software", 2003)

"Software engineering concerns methods and techniques to develop large software systems. The engineering metaphor is used to emphasize a systematic approach to develop systems that satisfy organizational requirements and constraints." (Hans van Vliet, "Software Engineering: Principles and Practice", 2007)

"The amateur software engineer is always in search of magic, some sensational method or tool whose application promises to render software development trivial. It is the mark of the professional software engineer to know that no such panacea exist." (Grady Booch et al, "Object-Oriented Analysis and Design with Applications", 2007)

"A lot of research in software engineering strikes me as hopelessly naive in one of two ways. Most of it fails entirely to account for the social and belief aspects altogether. It looks at its object of inquiry as if it was entirely material and inert; as if 'software' was some kind of naturally occurring substance, the properties of which can be revealed in the equivalent of a test tube." (Laurent Bossavit, "The Leprechauns of Software Engineering", 2015)

"Design is the process of taking something that appears in the mind’s eye, modeling it in one or more of a number of ways, predicting how that thing will behave if it is made, and then making it, sometimes modifying the design as we make it. Design is what engineering is about. Furthermore, modeling is how engineering design is done. This includes mental models, mathematical models, computer models, plans and drawings, written language, and (sometimes) physical models." (William M Bulleit, "The Engineering Way of Thinking: The Idea", Structure [magazine], 2015)

"The fact that software engineering is not like other forms of engineering should really come as no surprise. Medicine is not like the law. Carpentry is not like baking. Software development is like one thing, and one thing only: software development. We need practices that make what we do more efficient, more verifiable, and easier to change. If we can do this, we can slash the short-term cost of building software, and all but eliminate the crippling long-term cost of maintaining it." (David S Bernstein, "Beyond Legacy Code", 2015)

"Over-engineering is a real disease of many engineers as they delight in design purity and ignore tradeoffs." (Alex Xu, "System Design Interview: An insider's guide", 2017)

"Good engineering is the difference between code running in eight minutes or eight hours. It affects real people in real ways. It's not a 'matter of opinion' any more than a bird taking flight is a 'matter of opinion'." (H W Kenton)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.