"A subsystem is a set of classes (and possibly other subsystems) collaborating to fulfill a set of responsibilities. Although subsystems do not exist as the software executes, they are useful conceptual entities." (Rebecca Wirfs-Brock, "Object-oriented Design: A. responsibility-driven approach", 1989)
"The data-driven approach to object-oriented design focuses on the structure of the data in a system. This results in the incorporation of structural information in the definitions of classes. Doing so violates encapsulation. The responsibility-driven approach emphasizes the encapsulation of both the structure and behavior of objects. By focusing on the contractual responsibilities of a class, the designer is able to postpone implementation considerations until the implementation phase. While responsibility-driven design is not the only technique addressing this problem, most other techniques attempt to enforce encapsulation during the implementation phase. This is too late in the software life-cycle to achieve maximum benefits." (Rebecca Wirfs-Brock, "Object-oriented design: a responsibility-driven approach", 1989)
"In object-oriented analysis, we seek to model the world by identifying the classes and objects that form the vocabulary of the problem domain, and in object-oriented design, we invent the abstractions and mechanisms that provide the behavior that this model requires." (Grady Booch, "Object-Oriented Design: With Applications", 1991)
"If you're passing a parameter among several routines, that might indicate a need to factor those routines into a class that share the parameter as object data. Streamlining parameter passing isn't a goal, per se, but passing lots of data around suggests that a different class organization might work better." (Steve C McConnell," Code Complete: A Practical Handbook of Software Construction", 1993)
"[...] inheritance is a powerful tool for reducing complexity because a programmer can focus on the generic attributes of an object without worrying about the details. If a programmer must be constantly thinking about semantic differences in subclass implementations, then inheritance is increasing complexity rather than reducing it." (Steve C McConnell," Code Complete: A Practical Handbook of Software Construction", 1993)
"Inheritance is the idea that one class is a specialization of another class. The purpose of inheritance is to create simpler code by defining a base class that specifies common elements of two or more derived classes. The common elements can be routine interfaces, implementations, data members, or data types. Inheritance helps avoid the need to repeat code and data in multiple locations by centralizing it within a base class. When you decide to use inheritance, you have to make several decisions: For each member routine, will the routine be visible to derived classes? Will it have a default implementation? Will the default implementation be overridable? For each data member (including variables, named constants, enumerations, and so on), will the data member be visible to derived classes?" (Steve C McConnell," Code Complete: A Practical Handbook of Software Construction", 1993)
"Modularity's goal is to make each routine or class like a 'black box': You know what goes in, and you know what comes out, but you don't know what happens inside." (Steve C McConnell," Code Complete: A Practical Handbook of Software Construction", 1993)
"Watch for coupling that's too tight. 'Coupling' refers to how tight the connection is between two classes. In general, the looser the connection, the better. Several general guidelines flow from this concept: Minimize accessibility of classes and members. Avoid friend classes, because they're tightly coupled. Make data private rather than protected in a base class to make derived classes less tightly coupled to the base class. Avoid exposing member data in a class's public interface. Be wary of semantic violations of encapsulation. Observe the 'Law of Demeter' [...]. Coupling goes hand in glove with abstraction and encapsulation. Tight coupling occurs when an abstraction is leaky, or when encapsulation is broken." (Steve C McConnell," Code Complete: A Practical Handbook of Software Construction", 1993)
"Often you'll see the same three or four data items together in lots of places: fields in a couple of classes, parameters in many method signatures. Bunches of data that hang around together really ought to be made into their own object." (Kent Beck, "Refactoring: Improving the Design of Existing Code", 1999)
"An object-oriented application is a set of interacting objects. Each object is an implementation of one or more roles. A role supports a set of related (cohesive) responsibilities. A responsibility is an obligation to perform a task or know certain information. And objects don't work in isolation, they collaborate with others in a community to perform the overall responsibilities of the application. So a conceptual view, at least to start, is a distillation of the key object roles and their responsibilities (stated at a fairly high level). More than likely (unless you form classification hierarchies and use inheritance and composition techniques) many candidates you initially model will map directly to a single class in some inheritance hierarchy. But I like to open up possibilities by think first of roles and responsibilities, and then as a second step towards a specification-level view, mapping these candidates to classes and interfaces." (Rebecca Wirfs-Brock, [interview] 2003)
"On small, informal projects, a lot of design is done while the programmer sits at the keyboard. 'Design' might be just writing a class interface in pseudocode before writing the details. It might be drawing diagrams of a few class relationships before coding them. It might be asking another programmer which design pattern seems like a better choice. Regardless of how it’s done, small projects benefit from careful design just as larger projects do, and recognizing design as an explicit activity maximizes the benefit you will receive from it." (Steve C McConnell, "Code Complete: A Practical Handbook of Software Construction" 2nd Ed., 2004)
"An abstraction is not a module, or an interface, class, or method; it is a structure, pure and simple - an idea reduced to its essential form. Since the same idea can be reduced to different forms, abstractions are always, in a sense, inventions, even if the ideas they reduce existed before in the world outside the software. The best abstractions, however, capture their underlying ideas so naturally and convincingly that they seem more like discoveries."
"Clean code is focused. Each function, each class, each module exposes a single-minded attitude that remains entirely undistracted, and unpolluted, by the surrounding details."
"Every system is built from a domain-specific language designed by the programmers to describe that system. Functions are the verbs of that language, and classes are the nouns."