23 September 2007

💎SQL Reloaded: 6 out of 49 (Part 3: Basic Data Analysis)

The most basic information one can get is the number of drawings in which a number occurred, respectively which was its frequency:

-- number & frequency drawings by number
DECLARE @NumberDrawings int = 2000
SELECT Number 
, Cast(100.0*count(*)/@NumberDrawings as decimal(10,2)) Frequency 
, count(*) NumberDrawings 
FROM dbo.vLottoNumbers 
GROUP BY Number 
ORDER BY Number  

One of the interesting things to see in a data set of drawings is the distance between two drawings in which appears the same numbers. It doesn’t look too easy to compare two consecutive records within the same query; actually this can be done easy with the help of DENSE_RANK function (works only on SQL Server 2005+ and Oracle), which ranks the data within a partition, thus if two values are identical, they have the same ranking. Let’s see how DENSE_RANK function works: 

-- ranked drawings by number
SELECT Number 
, DrawingDate 
, DENSE_RANK() OVER (PARTITION BY Number ORDER BY DrawingDate) Ranking 
FROM dbo.vLottoNumbers   

The partition is created by Number, while the ranking is delimited by DrawingDate. Now all we have to do is to join two such queries by Number with two consecutive Rankings: 

--creating the view 
CREATE VIEW dbo.vLottoConsecutiveDrawings 
AS 
-- consecutive drawings by numbers
WITH DAT 
AS (
	SELECT Number     
	, DrawingDate     
	, DENSE_RANK() OVER (PARTITION BY Number ORDER BY DrawingDate) Ranking   
	FROM dbo.vLottoNumbers  
)
SELECT A.Number 
, A.DrawingDate 
, B.DrawingDate NextDrawingDate 
, IsNull(DateDiff(d, A.DrawingDate, B.DrawingDate), 0) DifferenceDays 
, IsNull(DateDiff(wk, A.DrawingDate, B.DrawingDate), 0) DifferenceWeeks 
FROM DAT A
     LEFT JOIN DAT B 
	   ON A.Number = B.Number 
	  AND A.Ranking = B.Ranking - 1 

The first interesting thing to find out is:     
  • What’s the average number of occurrences?     
  • What’s the minimum/maximum number of consecutive drawings in which the number hasn’t appeared?  
  • How many times a number appeared?      
The following query answers to these questions, by doing a simple grouping by Number over vLottoConsecutiveDrawings output:

-- minimum/maximum differences between drawings
SELECT Number 
, Min(NullIf(DifferenceWeeks, 0)) Minimum 
, Max(NullIf(DifferenceWeeks, 0)) Maximum 
, Avg(NullIf(DifferenceWeeks, 0)) Average 
, count(*) NumberDrawings 
FROM dbo.vLottoConsecutiveDrawings 
GROUP BY Number 
ORDER BY Number    

The output doesn’t give much information, but it’s a good start. The study interval can be broken down by using the DrawingDate in GROUP and/or WHERE clause: 

-- minimum/maximum differences between drawings by year
SELECT Year(DrawingDate) DrawingYear 
, Number 
, Min(NullIf(DifferenceWeeks, 0)) Minimum 
, Max(NullIf(DifferenceWeeks, 0)) Maximum 
, Avg(NullIf(DifferenceWeeks, 0)) Average 
, count(*) NumberDrawings 
FROM vLottoConsecutiveDrawings 
--WHERE Year(DrawingDate) IN (2000, 2001) 
GROUP BY Number 
, Year(DrawingDate) 
ORDER BY Number, DrawingYear

It would be also interesting to know how many numbers fall on a given row or column within the 7x7 matrix:

-- aggregating data by drawing & row
SELECT LN.DrawingDate 
, SUM(CASE WHEN LN.Number BETWEEN 1 AND 7 THEN 1 ELSE 0 END) Bucket1
, SUM(CASE WHEN LN.Number BETWEEN 8 AND 14 THEN 1 ELSE 0 END) Bucket2
, SUM(CASE WHEN LN.Number BETWEEN 15 AND 21 THEN 1 ELSE 0 END) Bucket3
, SUM(CASE WHEN LN.Number BETWEEN 22 AND 28 THEN 1 ELSE 0 END) Bucket4
, SUM(CASE WHEN LN.Number BETWEEN 29 AND 35 THEN 1 ELSE 0 END) Bucket5
, SUM(CASE WHEN LN.Number BETWEEN 36 AND 42 THEN 1 ELSE 0 END) Bucket6
, SUM(CASE WHEN LN.Number BETWEEN 43 AND 49 THEN 1 ELSE 0 END) Bucket7
FROM dbo.vLottoNumbers LN 
GROUP BY LN.DrawingDate 

-- aggregating data by drawing & column
SELECT LN.DrawingDate 
, SUM(CASE WHEN LN.Number %7 = 1 THEN 1 ELSE 0 END) Bucket1
, SUM(CASE WHEN LN.Number %7 = 2 THEN 1 ELSE 0 END) Bucket2
, SUM(CASE WHEN LN.Number %7 = 3 THEN 1 ELSE 0 END) Bucket3
, SUM(CASE WHEN LN.Number %7 = 4 THEN 1 ELSE 0 END) Bucket4
, SUM(CASE WHEN LN.Number %7 = 5 THEN 1 ELSE 0 END) Bucket5
, SUM(CASE WHEN LN.Number %7 = 6 THEN 1 ELSE 0 END) Bucket6
, SUM(CASE WHEN LN.Number %7 = 7 THEN 1 ELSE 0 END) Bucket7
FROM dbo.vLottoNumbers LN 
GROUP BY LN.DrawingDate 

The buckets can be aggregated as follows (observe the replacement of SUM with MAX):
 
-- consolidated drawings by 7 buckets (row)
 SELECT SUM(Bucket1) Bucket1
, SUM(Bucket2) Bucket2
, SUM(Bucket3) Bucket3
, SUM(Bucket4) Bucket4
, SUM(Bucket5) Bucket5
, SUM(Bucket6) Bucket6
, SUM(Bucket7) Bucket7
 FROM (
     -- aggregating data by drawing & row
	 SELECT LN.DrawingDate 
	, Max(CASE WHEN LN.Number BETWEEN 1 AND 7 THEN 1 ELSE 0 END) Bucket1
	, Max(CASE WHEN LN.Number BETWEEN 8 AND 14 THEN 1 ELSE 0 END) Bucket2
	, Max(CASE WHEN LN.Number BETWEEN 15 AND 21 THEN 1 ELSE 0 END) Bucket3
	, Max(CASE WHEN LN.Number BETWEEN 22 AND 28 THEN 1 ELSE 0 END) Bucket4
	, Max(CASE WHEN LN.Number BETWEEN 29 AND 35 THEN 1 ELSE 0 END) Bucket5
	, Max(CASE WHEN LN.Number BETWEEN 36 AND 42 THEN 1 ELSE 0 END) Bucket6
	, Max(CASE WHEN LN.Number BETWEEN 43 AND 49 THEN 1 ELSE 0 END) Bucket7
	 FROM dbo.vLottoNumbers LN 
	 GROUP BY LN.DrawingDate 
  ) DAT

Happy coding!

💎SQL Reloaded: 6 out of 49 (Part 2: Modeling the Data)

In a previous post I created a random set of data and stored them in LottoExtracts table, the first step is done, now we have to model the data in a form which could be useful for our analysis. Thus it makes sense to split the table in two tables:     
  • LottoExtracts containing mainly the DrawingDate and eventually additional information about extraction (e.g. Country, System, etc.). For simplicity I’m including only the Drawing Date.     
  • LottoNumbers containing the numbers and their order in extraction. 
Here are the tables:
 
-- dropping the LottoDrawings table
DROP TABLE IF EXISTS dbo.LottoDrawings
GO

--creating the LottoDrawings table 
CREATE TABLE dbo.LottoDrawings( 
  DrawingID int IDENTITY(1,1) NOT NULL
 , DrawingDate smalldatetime NULL) 
GO

 -- dropping the LottoNumbers table
DROP TABLE IF EXISTS dbo.LottoNumbers

 --creating LottoNumbers table 
 CREATE TABLE dbo.LottoNumbers(NumberID int IDENTITY(1,1) NOT NULL
 , DrawingID int NULL
 , Position smallint NULL
 , Number smallint NULL)   

 And, the view which will be used as source for analysis: 

 --creating vLottoNumbers view 
 CREATE VIEW dbo.vLottoNumbers AS 
 -- consolidated drawings by number
 SELECT LN.NumberID 
 , LN.Position 
 , LN.Number 
 , LN.DrawingID 
 , LD.DrawingDate 
 , Year(LD.DrawingDate) DrawingYear , Month(LD.DrawingDate) DrawingMonth 
 , DatePart(dd, LD.DrawingDate) DrawingDay 
 , DatePart(wk, LD.DrawingDate) DrawingWeek 
 FROM dbo.LottoNumbers LN 
      JOIN dbo.LottoDrawings LD 
	    ON LN.DrawingID = LD.DrawingID    

Now that we have the objects to model the data, we need to populate the tables with the data from LottoExtracts table: 

--populating LottoDrawings table 
INSERT dbo.LottoDrawings (DrawingDate) 
SELECT DISTINCT DrawingDate 
FROM dbo.LottoExtracts 

--populating the LottoNumbers table - first drawing number 
INSERT LottoNumbers (DrawingID, Position, Number) 
SELECT DrawingID, 1, N1 
FROM dbo.LottoExtracts LE 
     JOIN dbo.LottoDrawings LD 
	   ON DateDiff(d, LE.DrawingDate, LD.DrawingDate) = 0  

The above query inserted only the first number of the extraction, in order to insert the other 5 numbers, all you have to do is to replace 1 with 2 in the second line and run the query again, the insert for second number becomes: 

--populating the LottoNumbers table – second drawing number 
INSERT LottoNumbers (DrawingID, Position, Number) 
SELECT DrawingID, 2, N2 
FROM dbo.LottoExtracts LE 
       JOIN dbo.LottoDrawings LD
	     ON DateDiff(d, LE.DrawingDate, LD.DrawingDate) = 0

Here's the code for the remaining numbers:

--populating LottoNumbers table – the remaining drawing numbers
INSERT LottoNumbers (DrawingID, Position, Number) 
SELECT DrawingID, 3, N3 
FROM dbo.LottoExtracts LE 
       JOIN dbo.LottoDrawings LD
	     ON DateDiff(d, LE.DrawingDate, LD.DrawingDate) = 0
UNION ALL 
SELECT DrawingID, 4, N4
FROM dbo.LottoExtracts LE 
       JOIN dbo.LottoDrawings LD
	     ON DateDiff(d, LE.DrawingDate, LD.DrawingDate) = 0
UNION ALL 
SELECT DrawingID, 5, N5 
FROM dbo.LottoExtracts LE 
       JOIN dbo.LottoDrawings LD
	     ON DateDiff(d, LE.DrawingDate, LD.DrawingDate) = 0
UNION ALL 
SELECT DrawingID, 6, N6
FROM dbo.LottoExtracts LE 
       JOIN dbo.LottoDrawings LD
	     ON DateDiff(d, LE.DrawingDate, LD.DrawingDate) = 0

Checking the output, you should have 12000 records: 

--checking the data 
SELECT * 
FROM dbo.vLottoNumbers 
ORDER BY DrawingDate
, Position

Now we have the data for analysis (see the next post).

Happy coding!

Previous Post <<||>> Next Post

💎SQL Reloaded: 6 out of 49 (Part 1: Getting the data)

I was thinking to model the 6 out of 49 lottery drawing, so common across EU countries. To study numbers’ occurrences we need to import the historical data, though during my first attempts this proved to be challenging. Each lottery has a website from which data can be taken drawing by drawing or when possible, as a data dump (see notes). Moreover, some of the lotteries have variations for 6/49.       

To avoid any legal litigations, I will use a self-made set of data via the RAND function (which unfortunately is not a perfect randomizer). To store the generated data, I've created a table called LottoExtracts: 

-- cleaning the table
DROP TABLE IF EXISTS dbo.LottoExtracts

--creating the LottoExtracts table 
CREATE TABLE dbo.LottoExtracts(     
   DrawingDate date NULL
 , N1 smallint NULL
 , N2 smallint NULL
 , N3 smallint NULL
 , N4 smallint NULL
 , N5 smallint NULL
 , N6 smallint NULL)

This format will be used to upload the data in a staging table which is used later as source for our data model. As can be seen it has a Drawing Date which identifies uniquely an extraction, while in N1, …, N6 are stored the drawings’ numbers in the order they were picked. 

--creating random data 
DECLARE @index, @counter int 
DECLARE @N1, @N2, @N3, @N4, @N5, @N6 smallint 
  
SET @index = 0 
WHILE @index < 2000 
BEGIN 
  -- creating the first number 
  SET @N1 = Cast(1000 * RAND() as int) % 48 + 1 

  -- creating the second number 
  SET @counter = 1 
  WHILE @counter < 50 or @N1 = @N2 
  BEGIN 
	  SET @N2 = Cast(1000 * RAND() as int) % 48 + 1;
	  SET @counter = @counter + 1 
  END;

  -- creating the third number
  SET @counter = 1 
  WHILE @counter < 50 or @N3 IN (@N1, @N2) 
  BEGIN 
	  SET @N3 = Cast(1000 * RAND() as int) % 48 + 1 
	  SET @counter = @counter + 1 
  END 

  -- creating the fourth number 
  SET @counter = 1 
  WHILE @counter < 50 or @N4 IN (@N1, @N2, @N3) 
  BEGIN 
	  SET @N4 = Cast(1000 * RAND() as int) % 48 + 1 
	  SET @counter = @counter + 1 
  END 

  -- creating the fifth number 
  SET @counter = 1 
  WHILE @counter < 50 or @N5 IN (@N1, @N2, @N3, @N4) 
  BEGIN 
	  SET @N5 = Cast(1000 * RAND() as int) % 48 + 1 
	  SET @counter = @counter + 1 
  END 

  -- creating the sixth number 
  SET @counter = 1 
  WHILE @counter < 50 or @N6 IN (@N1, @N2, @N3, @N4, @N5) 
  BEGIN 
	  SET @N6 = Cast(1000 * RAND() as int) % 48 + 1 
	  SET @counter = @counter + 1 
  END 

  --inserting a new drawing 
  INSERT LottoExtracts(DrawingDate, N1, N2, N3, N4, N5, N6) 
  VALUES (DateAdd(d, @index*7, '01/01/2000'), @N1, @N2, @N3, @N4, @N5, @N6) 
  SET @index = @index + 1 
END 

I've created only 200 records, which equates with almost 4 years of history, and should be enough for testing purposes. Of course, one can increase or decrease the number of drawings as needed! 
 
--checking the data 
SELECT * 
FROM dbo.LottoExtracts   

In what concerns the code, the following statement creates a random number in 1 … 49 range:
 
-- creating first number 
SET @N1 = Cast(1000 * RAND() as int) % 48 + 1    

Thus, can be created all 6 numbers, however because the same number can't be extracted twice in the same drawing, I had to add duplication checks:
 
-- creating third number 
SET @counter = 1 
WHILE @counter < 50 or @N3 IN (@N1, @N2) 
BEGIN 
	SET @N3 = Cast(1000 * RAND() as int) % 48 + 1 
	SET @counter = @counter + 1 
END    

Notes:
(1) The code is verbose and probably suboptimal, though it's a must because of the behavior of RAND function as part of transactions.
(2) The below links could change in time. I provided them just to make easier the search. (*) denotes that historical data can be downloaded.
Previous Post <<||>> Next Post

15 September 2007

💎SQL Reloaded: Updating Data With Values From The Same Table

I have to deal with cases in which I have to update data from a table with values from the same table across records, a simple example I can sketch is the one of Standard Prices, which are normally valid during a year. For example if I would have to reset the Standard Prices from a year to the ones from the previous year, how this can be done? Actually that's pretty sample, for exemplification purposes I will create a table having only 3 columns, ProductID, Year and StandardPrice: 

-- creating the table 
CREATE TABLE dbo.StandardPrices( 
ProductID int 
, [Year] int 
, StandardPrice decimal(13,2) )      

--creating test data 
DECLARE @index int 
SET @index = 0 
  WHILE @index < 50 
  BEGIN 
      INSERT dbo.StandardPrices(ProductID, [Year], StandardPrice) 
      VALUES (@index % 25+1, 2000 + (@index/25), 100 * RAND()) 
      SET @index = @index + 1 
END     

Let's see the content, the RAND() function allows me to assign random prices to each product. As can be seen there are 25 products with Standard Prices for the Years 2000 and 2001.

 --testing StandardPrices table's content 
SELECT * 
FROM dbo.StandardPrices 
ORDER BY ProductID, [Year]     

Let's try to use a normal update: 

--first update attempt 
UPDATE dbo.StandardPrices 
SET StandardPrice = A.StandardPrice 
FROM StandardPrices A 
WHERE StandardPrices.ProductID = A.ProductID 
AND StandardPrices.[Year] = 2001 AND A.[Year] = 2000     

Ups, I got an error (SQL Server 2005):
Msg 4104, Level 16, State 1, Line 1 The multi-part identifier "StandardPrices.ProductID" could not be bound. Msg 4104, Level 16, State 1, Line 1 The multi-part identifier "StandardPrices.Year" could not be bound. 
SQL Server 2000:
Server: Msg 107, Level 16, State 3, Line 1 The column prefix 'StandardPrices' does not match with a table name oralias name used in the query. Server: Msg 107, Level 16, State 1, Line 1 The column prefix 'StandardPrices' does not match with a table name oralias name used in the query.     

It seems we can't use the same table in updates of this type, but we can use a subquery or view which refers to the same table, so we can write: 

  --the update 
UPDATE dbo.StandardPrices 
SET StandardPrice = A.StandardPrice 
FROM ( 
     SELECT ProductID , [Year] , StandardPrice 
     FROM dbo.StandardPrices 
     WHERE [Year] = 2000 
) A 
WHERE StandardPrices.ProductID = A.ProductID 
     AND StandardPrices.[Year] = 2001     

Now there are no errors, 25 records updated, let's see the output: 

--testing table's content after update 
SELECT * 
FROM dbo.StandardPrices 
ORDER BY ProductID
, [Year]

💎SQL Reloaded: PIVOT Operator Example

    Starting with SQL Server 2005, Microsoft introduced the PIVOT operator, which tries to implement the pivoting feature available in Excel, however it does only static pivoting, the values on which the pivoting is done must be mentioned explicitely.
    In List Based Aggregations I gave an example of a query in which the On Hand was cumulated per Location, the same output can be obtained with the below query:
SELECT Name
, ProductNumber
, MakeFlag
, FinishedGoodsFlag
, IsNull([Paint Storage], 0) OnHandPaintStorage
, IsNull([Frame Forming], 0) OnHandFrameForming
, IsNull([Frame Welding], 0) OnHandFrameWelding
, IsNull([Debur and Polish], 0) OnHandDeburPolish
, IsNull([Specialized Paint], 0) OnHandSpecializedPaint
, IsNull([Subassembly], 0) OnHandAssembly
, IsNull([Final Assembly], 0) OnHandFinalAssembly
, IsNull([Paint Storage], 0) + IsNull([Frame Forming], 0) + IsNull([Frame Welding], 0) + IsNull([Debur and Polish], 0) + IsNull([Specialized Paint], 0) + IsNull([Subassembly], 0) + IsNull([Final Assembly], 0) OnHand
, ListPrice
, StandardCost
, (IsNull([Paint Storage], 0) + IsNull([Frame Forming], 0) + IsNull([Frame Welding], 0) + IsNull([Debur and Polish], 0) + IsNull([Specialized Paint], 0) + IsNull([Subassembly], 0) + IsNull([Final Assembly], 0) ) * StandardCost Value
FROM
(
SELECT PP.Name
, PP.ProductNumber
, PP.MakeFlag
, PP.FinishedGoodsFlag
, PL.Name AS Location
, PP.ListPrice
, PP.StandardCost
, PPI.Quantity
FROM Production.ProductInventory PPI
JOIN Production.Product PP
ON PPI.ProductID = PP.ProductID
JOIN Production.Location PL
ON PPI.LocationID = PL.LocationID
) AS A
PIVOT
(
SUM(Quantity)
FOR Location IN ([Paint Storage], [Frame Forming], [Frame Welding], [Debur and Polish], [Specialized Paint], [Subassembly], [Final Assembly])
) PVT

    The query is not rocket science, but it took me some time to figure out that when I need to use multiple tables, I have to create first a subquery, and only then can apply the PIVOT operator. This is how I tried to write my query:
SELECT PP.Name
, PP.ProductNumber
, PP.MakeFlag
, PP.FinishedGoodsFlag
, IsNull([Paint Storage], 0) OnHandPaintStorage
, IsNull([Frame Forming], 0) OnHandFrameForming
, IsNull([Frame Welding], 0) OnHandFrameWelding
, IsNull([Debur and Polish], 0) OnHandDeburPolish
, IsNull([Specialized Paint], 0) OnHandSpecializedPaint
, IsNull([Subassembly], 0) OnHandAssembly
, IsNull([Final Assembly], 0) OnHandFinalAssembly
, IsNull([Paint Storage], 0) + IsNull([Frame Forming], 0) + IsNull([Frame Welding], 0) + IsNull([Debur and Polish], 0) + IsNull([Specialized Paint], 0) + IsNull([Subassembly], 0) + IsNull([Final Assembly], 0) OnHand
, PP.ListPrice
, PP.StandardCost
, (IsNull([Paint Storage], 0) + IsNull([Frame Forming], 0) + IsNull([Frame Welding], 0) + IsNull([Debur and Polish], 0) + IsNull([Specialized Paint], 0) + IsNull([Subassembly], 0) + IsNull([Final Assembly], 0) ) * StandardCost Value
FROM Production.ProductInventory PPI
JOIN Production.Product PP
ON PPI.ProductID = PP.ProductID
JOIN Production.Location PL
ON PPI.LocationID = PL.LocationID
PIVOT
(
SUM(Quantity)
FOR PL.Name IN ([Paint Storage], [Frame Forming], [Frame Welding], [Debur and Polish], [Specialized Paint], [Subassembly], [Final Assembly])
) PVT
and the error: Msg 8156, Level 16, State 1, Line 1
The column 'ProductID' was specified multiple times for 'PVT'.
Msg 4104, Level 16, State 1, Line 1
The multi-part identifier "PP.Name" could not be bound.
Msg 4104, Level 16, State 1, Line 1
The multi-part identifier "PP.ProductNumber" could not be bound.
Msg 4104, Level 16, State 1, Line 1
The multi-part identifier "PP.MakeFlag" could not be bound.
Msg 4104, Level 16, State 1, Line 1
The multi-part identifier "PP.FinishedGoodsFlag" could not be bound.
Msg 4104, Level 16, State 1, Line 1
The multi-part identifier "PP.ListPrice" could not be bound.
Msg 4104, Level 16, State 1, Line 1
The multi-part identifier "PP.StandardCost" could not be bound.

Notes:
1. Probably it's better to create a view for subquery and use the view instead. I am doing that most of the times, sometimes I prefer to write table-valued functions; more on this in another post.
2. As it seems can be used only one aggregation function with PIVOT, that's pretty bad because even if you start doing your query using a PIVOT and then the requirements change (e.g. is needed to output how many records are for each Location, a more appropriate example is the ones of Purchase Orders, in which could be aggregations applied on Ordered, Receipt and Open Quantity) then you'll have to change the whole query. I'm expecting more from next implementations of PIVOT operator, I hope Microsoft will have that on their list.
3. The benefit of PIVOT operator is supposed to be that it allows writing shorter code, not necessarily. Of course, it allows to eliminate the redundant code - the multiple CASE WHEN statments, however this works when there is only one column (Location in our example) used to do the split, what if there is additional logic which must be included in CASEs?

💎SQL Reloaded: List Based Aggregations (On Hand example)

    I found some time ago a query like the one below (I wrote this kind of queries myself too):
SELECT PP.Name
, PP.ProductNumber
, PP.MakeFlag
, PP.FinishedGoodsFlag
, IsNull(PI1.Quantity, 0) OnHandPaintStorage
, IsNull(PI2.Quantity, 0) OnHandFrameForming
, IsNull(PI3.Quantity, 0) OnHandFrameWelding
, IsNull(PI1.Quantity, 0)+IsNull(PI2.Quantity, 0)+IsNull(PI3.Quantity, 0) OnHand
, PP.ListPrice
, PP.StandardCost
, (IsNull(PI1.Quantity, 0)+IsNull(PI2.Quantity, 0)+IsNull(PI3.Quantity, 0))*PP.StandardCost Value
FROM Production.Product PP
LEFT JOIN
(-- On Hand Paint Storage
SELECT SUM (Quantity) Quantity
, PPI.ProductID
FROM Production.ProductInventory PPI
JOIN Production.Location PL
ON PPI.LocationID = PL.LocationID
WHERE PL.Name = 'Paint Storage' GROUP BY PPI.ProductID
) PI1
ON PP.ProductID = PI1.ProductID
LEFT JOIN
(--On Hand Frame Forming
SELECT SUM (Quantity) Quantity
, PPI.ProductID
FROM Production.ProductInventory PPI
JOIN Production.Location PL
ON PPI.LocationID = PL.LocationID
WHERE PL.Name = 'Frame Forming'
GROUP BY PPI.ProductID
) PI2
ON PP.ProductID = PI2.ProductID
LEFT JOIN
(--On Hand Frame Welding
SELECT SUM (Quantity) Quantity
, PPI.ProductID
FROM Production.ProductInventory PPI
JOIN Production.Location PL
ON PPI.LocationID = PL.LocationID
WHERE PL.Name = 'Frame Welding'
GROUP BY PPI.ProductID
) PI3
ON PP.ProductID = PI3.ProductID
WHERE IsNull(PI1.Quantity, 0)+IsNull(PI2.Quantity, 0)+IsNull(PI3.Quantity, 0) <> 0
ORDER BY PP.Name

    I exemplified the above query by using tables from AdventureWorks database, and it's based on Product, ProductInventoy and Location table.
The query returns the OnHand from special Locations (here I exemplified with only 3 locations, but could be more), the query is not difficult even if it involves 3 tables, however many people write this kind of lengthy queries. A much simpler solution is to use directly aggregations as in the below query. Such method is flexible enough to allow to add another Locations to the query in no time, and performs better!
SELECT PP.Name
, PP.ProductNumber
, PP.MakeFlag
, PP.FinishedGoodsFlag
, SUM(CASE WHEN PL.Name = 'Paint Storage' THEN PPI.Quantity ELSE 0 END) OnHandPaintStorage
, SUM(CASE WHEN PL.Name = 'Frame Forming' THEN PPI.Quantity ELSE 0 END) OnHandFrameForming
, SUM(CASE WHEN PL.Name = 'Frame Welding' THEN PPI.Quantity ELSE 0 END) OnHandFrameWelding
, SUM(CASE WHEN PL.Name = 'Debur and Polish' THEN PPI.Quantity ELSE 0 END) OnHandDeburPolish
, SUM(CASE WHEN PL.Name = 'Specialized Paint' THEN PPI.Quantity ELSE 0 END) OnHandSpecializedPaint
, SUM(CASE WHEN PL.Name = 'Subassembly' THEN PPI.Quantity ELSE 0 END) OnHandSubassembly
, SUM(CASE WHEN PL.Name = 'Final Assembly' THEN PPI.Quantity ELSE 0 END) OnHandFinalAssembly
, SUM(PPI.Quantity) OnHand
, PP.ListPrice
, PP.StandardCost
, SUM(PPI.Quantity)*PP.StandardCost Value
FROM Production.ProductInventory PPI
JOIN Production.Product PP
ON PPI.ProductID = PP.ProductID
JOIN Production.Location PL
ON PPI.LocationID = PL.LocationID
WHERE PL.Name IN ('Paint Storage', 'Frame Forming', 'Frame Welding', 'Debur and Polish', 'Specialized Paint', 'Subassembly', 'Final Assembly')
GROUP BY PP.Name
, PP.ProductNumber
, PP.MakeFlag
, PP.FinishedGoodsFlag
, PP.ListPrice
, PP.StandardCost
HAVING SUM(PPI.Quantity)<>0
ORDER BY PP.Name

Note:
1. Probably you'll wonder why I put the constraint SUM(PPI.Quantity)<>0?! The explanation is simple, I met cases in which ERP systems were allowing negative values for On Hand, pretty cool, isn't it?
2. AdventureWorks database can be downloaded from Microsoft site.
3. I met many other cases in which this type of quries are very handy, in here I tried to exemplify the method in the easiest possible way, with minimum of effort :D.

14 September 2007

💎SQL Reloaded: The Stuff function

No matter how much experience we have in a programming language or a technology, there is always something new to learn. There are a few hardly used functions in SQL Server 2000, but they could be really useful in certain situations. One of such functions is Stuff, I discovered its use long time after I started to play with SQL. 

  Stuff ( character_expression , start , length , character_expression )

--inserting a string inside another without doing a replacement
SELECT Stuff('This is just a test', 3, 0, 'x')  -- Output: Thxis is just a test 

--inserting a string inside another without doing a replacement 
SELECT Stuff('This is just a test', 3, 5, 'at was') --Output: That was just a test  

 So, it could be useful when we check whether a character is on a certain position, and replace it with another character. Normally we would have to write something like: 

DECLARE @string varchar(50) 
SET @string = 'DE1988299X8829' 
SELECT 
    CASE WHEN Substring(@string, 10,1) = 'X' THEN Stuff(@string, 10, 1, 'Y') 
   ELSE @string 
END 
Output: DE1988299Y8829     

Another function I haven't saw too often in SQL logic is Replicate, yeah, it does exactly what it's name suggests - it takes a string and replicates it's content multiple times. 

 Replicate ( character_expression , integer_expression ) 

 SELECT Replicate ('0', 10) --Output: 0000000000 
 SELECT Replicate ('tone', 3) --Output: tonetonetone     

The function could be useful when we need to put a number of characters in front of a value. For example a table contains integer values, but in a report we need them with leading zeroes (e.g. 00056 instead of 56). I tried to implement such functionality as a function, in a previous posting with the help of Space function; using Space and Replace functions can be obtained the same result as using Replicate

  SELECT Replace(Space(3), ' ', 'tone') --Output: tonetonetone
Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.