10 October 2023

🪄💫SSRS (& Paginated Reports): Dynamics 365 F&O (Part II: Products Master Report via Base Tables)

As mentioned in the previous post, building the Products Master paginated report via the base D365 FO tables synchronized in Data Lake involves more effort and implies duplicating the logic from the used data entity(-ies). One can attempt recreating the entities 1:1 as they are defined in the D365 database (an SQL Server Azure database), however there are high the chances that in certain areas (e.g. financial dimensions) the features used in building the logic are not supported. Moreover, it might be the case that only a subset of the functionality was implemented, and with this, pieces of logic becoming obsolete. 

There's also a limitation on the number of tables which can be synchronized, and therefore one needs to compromise. In the dbo.EcoResProductV2Entity there are about 20 tables involved, though probably only half of them are used. The base table dbo.EcoResProduct contains most of the fields available also in the data entity, though the names for the various attributes need to be retrieved from the various tables. 

Some of the issues met in working with data entities appear in this scenario as well: (2) there are fields based on Enums that store only the code and it's needed to map the corresponding values, (4) further transformations are needed (e.g., converting fields to formats). It makes sense to encapsulate similarly the logic in views, though this time one or two layers of logic are needed in addition. One can choose to do this for each table in scope, or replicate data entity's logic by focusing only on the needed parts. Both approaches will prove to be challenging in certain scenarios. Let's consider the latter:

CREATE OR ALTER VIEW TDM.vEcoResProductV2Entity
AS 
/*
name:  Products - Master (base view)
created: 01.04.2021
modified: 01.04.2021
*/
SELECT ITM.ProductType
, CASE ITM.ProductType
    WHEN 1 THEN 'Item'
	WHEN 2 THEN 'Service'
  END ProductTypeName
, CAST ((CASE WHEN ITM.InstanceRelationType = 13678 THEN 1 ELSE 2 END) AS INT) ProductSubtype
, CASE 
    WHEN ITM.InstanceRelationType = 13678 THEN 'Product'
	ELSE 'Product Master'
   END ProductSubtypeName
, ITM.DisplayProductNumber ProductNumber
, Replace(Replace(ILT.Name, char(10), ' '), char(13), ' ')  ProductName
, Replace(Replace(ILT.Description, char(10), ' '), char(13), ' ') ProductDescription
, PCA.CategoryName RetailProductCategoryName 
, PCA.CategoryCode RetailProductCategoryCode
, PDG.Name ProductDimensionGroupName 
, SDG.Name StorageDimensionGroupName 
, TDG.Name TrackingDimensionGroupName 
, ITM.RetailColorGroupId ProductColorGroupId 
, ITM.RetailSizeGroupId ProductSizeGroupId 
, ITM.RetailStyleGroupId ProductStyleGroupId
, ITM.VariantConfigurationTechnology
, CASE ITM.VariantConfigurationTechnology
	WHEN 0 THEN 'None'
	WHEN 1 THEN 'Predefined Variants'
    WHEN 2 THEN 'Dimension Based'
	WHEN 3 THEN 'RuleBased'
	WHEN 4 THEN 'Constraint Based'
  END VariantConfigurationTechnologyName
, CASE WHEN KIT.ProductMaster IS NOT NULL THEN 1 ELSE 0 END IsProductKit
, CASE WHEN KIT.ProductMaster IS NOT NULL  THEN 'Yes' ELSE 'No' END IsProductKitName
, ITM.PDSCWProduct IsCatchWeightproduct
, CASE ITM.PDSCWProduct WHEN 1 THEN 'Yes' ELSE 'No' END IsCatchWeightproductName
, ITM.IsProductVariantUnitConversionEnabled
, CASE ITM.IsProductVariantUnitConversionEnabled WHEN 1 THEN 'Yes' ELSE 'No' END IsProductVariantUnitConversionEnabledName
-- system
, PPD.ProductDimensionGroup ProductDimensionGroupRecId
, PSG.StorageDimensionGroup StorageDimensionGroupRecId
, PTD.TrackingDimensionGroup TrackingDimensionGroupRecId
, PCA.RetailCategoryRecId
, ITM.RecId
, ITM.Partition
FROM dbo.EcoResProduct ITM
     LEFT JOIN dbo.EcoResProductTranslation ILT
	   ON ITM.RecId = ILT.Product 
	  AND ITM.Partition = ILT.Partition 
	  AND ILT.LanguageId = 'en-us'
     LEFT JOIN dbo.EcoResProductDimensionGroupProduct PPD
	   ON ITM.RecId = PPD.Product
	  AND ITM.Partition = PPD.Partition
	      LEFT JOIN dbo.EcoResProductDimensionGroup PDG
		    ON PPD.ProductDimensionGroup = PDG.RecId 
		   AND PPD.Partition = PDG.Partition 
	 LEFT JOIN dbo.EcoResStorageDimensionGroupProduct PSG
	   ON ITM.RecId = PSG.Product
	  AND ITM.Partition = PSG.Partition
	      LEFT JOIN dbo.EcoResStorageDimensionGroup SDG
		    ON PSG.StorageDimensionGroup = SDG.RecId 
		   AND PSG.Partition = SDG.Partition 
	 LEFT JOIN dbo.EcoResTrackingDimensionGroupProduct PTD
	   ON ITM.RecId = PTD.Product
	  AND ITM.Partition = PTD.Partition
	      LEFT JOIN dbo.EcoResTrackingDimensionGroup TDG
		    ON PTD.TrackingDimensionGroup = TDG.RecId 
		   AND PTD.Partition = TDG.Partition 
	 LEFT JOIN (-- product retail category 
	   SELECT PCA.Product 
	   , PCA.Partition 
	   , CAT.Code CategoryCode 
	   , CAT.Name CategoryName
	   , PCA.Category RetailCategoryRecId
	   FROM dbo.EcoResProductCategory PCA
	        JOIN dbo.EcoResProductRetailCategoryHierarchy RCH
			  ON PCA.CategoryHierarchy = RCH.RetailCategoryHierarchy
			 AND PCA.Product = RCH.Product 
			 AND PCA.Partition = RCH.Partition 
			JOIN dbo.EcoResCategory CAT
			  ON PCA.Category = CAT.RecId 
			 AND PCA.Partition = CAT.Partition 
		 ) PCA
	   ON ITM.RecId = PCA.Product 
	  AND ITM.Partition = PCA.Partition 
	  LEFT JOIN dbo.RetailKit KIT
	    ON ITM.RecId = KIT.ProductMaster 
	   AND ITM.Partition = KIT.Partition
WHERE NOT(ITM.InstanceRelationType  =  4211)

As can be seen, the logic is quite complex and only half of the tables were used. There will be entities even more complex than this (the query was restructured for understandability). On the other hand, there will be environments where only half from the above tables will be used (e.g., when no inventory and/or dimensions are needed). 

To test the view, one just needs to change the schema referenced in the logic. The view is created under the TDM (Table Data Model) schema, so there should be no issues as long the schemas are used correctly. However, when duplicating logic, one should check whether the values match, respectively whether the objects have the same record count:

-- checking whether the values match for an example
SELECT * 
FROM TDM.vEcoResProductV2Entity
WHERE ProductNumber = '0169'

SELECT * 
FROM EDM.vEcoResProductV2Entity
WHERE ProductNumber = '0169'


-- checking the number of records
SELECT count(*)
FROM TDM.vEcoResProductV2Entity

SELECT count(*)
FROM EDM.vEcoResProductV2Entity

There are several optimizations or restructuring opportunities in the logic, e.g., the 'product retail category' subquery can be created as a separate view. Also, the groupings of two tables for the 'dimension groups' could be encapsulated individually in views. This can increase the number of views created considerably, though upon case the views could prove to be useful for troubleshooting or reuse. 

Moreover, in environments with only a partition the constraints on the respective field could be removed (important decision though), while the value for the retail category could be hardcoded. Even if hardcoding values should be in general avoided, it's needed to compromise when there are more important constraints. 

One way to reduce logic's complexity is to create a "base view" for each table in which the needed transformations are made, respectively only the needed columns are used. Reducing the number of columns simplifies the identification of attributes. For example, the base view for dbo.EcoResProduct could be written as follows:

CREATE OR ALTER VIEW [TDM].[vEcoResProduct]
AS
/*
name: Products - master data (base view)
created: 01.04.2021
modified: 01.04.2021
*/
SELECT PRD.DisplayProductNumber ProductNumber
, PRD.ProductType 
, CASE PRD.ProductType
    WHEN 1 THEN 'Product'
    WHEN 2 THEN 'ProductMaster'
    WHEN 3 THEN 'ProductVariant'
  END ProductTypeName
, CASE WHEN PRD.INSTANCERELATIONTYPE = 15969 THEN 1 ELSE 2 END ProductSubtype 
, CASE 
    WHEN PRD.INSTANCERELATIONTYPE = 15969 THEN 'Item'
    ELSE 'Product master'  
   END ProductSubtypeName
, PRD.RetailSizeGroupId
, PRD.RetailColorGroupId
, PRD.RetailStyleGroupId
, PRD.RetailFlavorGroupId
, PRD.VariantConfigurationTechnology 
, CASE PRD.VariantConfigurationTechnology
    WHEN 0 THEN 'None'
    WHEN 1 THEN 'PredefinedVariants'
    WHEN 2 THEN 'DimensionBased'
    WHEN 3 THEN 'RuleBased'
    WHEN 4 THEN 'ConstraintBased'
  END VariantConfigurationTechnologyName
, PRD.IsProductVariantUnitConversionEnabled
, CASE PRD.IsProductVariantUnitConversionEnabled WHEN 1 THEN 'Yes' ELSE 'No' END IsProductVariantUnitConversionEnabledName
-- system
, PRD.RecId 
, PRD.Partition 
, PRD.ModifiedBy
FROM dbo.EcoResProduct PRD
WHERE NOT(PRD.InstanceRelationType  =  4211)
GO

A similar approach can be used for each table, or at least the tables that need further transformations. There are several choices - ideally one should find a good-enough approach and stick to it. There will be also exceptions, though the general design should prevail!

The bottom line, when using the Export to Data Lake add-in (*), as only the export of tables is supported, the logic can become occasionally complex, though still manageable (in other areas the tables are straightforward to use). When using Link to Data Lake, one can rely on data entities, as long they are synchronized correctly. However, one still needs to rely on tables to fill the gaps. 

Note:
(*) Existing customers have until 1-Nov-2024 to transition from Export to Data lake to Synapse link. Microsoft advises new customers to use Synapse Link.

Happy coding!

Previous Post << ||>> Next Post

Previous Post <<||>> Next Post

No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.