11 February 2018

🔬Data Science: Non-Parametric Tests (Definitions)

[nonparametric:] "A statistical procedure that does not require a normal distribution of the data." (Glenn J Myatt, "Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining", 2006)

"A branch of statistics that makes no assumptions on the underlying distributions of the data being examined. In general, the tests are far more generalizable but sacrifice precision and power." (Evan Stubbs, "Delivering Business Analytics: Practical Guidelines for Best Practice", 2013)

"Inferential statistical procedures that do not rely on estimating population parameters such as the mean and variance." (K  N Krishnaswamy et al, "Management Research Methodology: Integration of Principles, Methods and Techniques", 2016)

"A family of methods which makes no assumptions about the population distribution. Non-parametric methods most commonly work by ignoring the actual values, and, instead, analyzing only their ranks. This approach ensures that the test is not affected much by outliers, and does not assume any particular distribution. The clear advantage of non-parametric tests is that they do not require the assumption of sampling from a Gaussian population. When the assumption of Gaussian distribution does not hold, non-parametric tests have more power than parametric tests to detect differences." (Soheila Nasiri & Bijan Raahemi, "Non-Parametric Statistical Analysis of Rare Events in Healthcare", 2017)


No comments:

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.