"[…] an obvious difference between our best classifiers and
human learning is the number of examples required in tasks such as object detection.
[…] the difficulty of a learning task depends on the size of the required
hypothesis space. This complexity determines in turn how many training examples
are needed to achieve a given level of generalization error. Thus the
complexity of the hypothesis space sets the speed limit and the sample complexity
for learning." (Tomaso Poggio & Steve Smale, "The Mathematics of
Learning: Dealing with Data", Notices of the AMS, 2003)
"[…] learning techniques are similar to fitting a
multivariate function to a certain number of measurement data. The key point,
as we just mentioned, is that the fitting should be predictive in the same way
that fitting experimental data from an experiment in physics can in principle
uncover the underlying physical law, which is then used in a predictive way. In
this sense, learning is also a principled method for distilling predictive and
therefore scientific 'theories' from the data." (Tomaso Poggio & Steve
Smale, "The Mathematics of Learning: Dealing with Data", Notices of
the AMS, 2003)
"Much of machine learning is concerned with devising different models, and different algorithms to fit them. We can use methods such as cross validation to empirically choose the best method for our particular problem. However, there is no universally best model - this is sometimes called the no free lunch theorem. The reason for this is that a set of assumptions that works well in one domain may work poorly in another." (Kevin P Murphy, "Machine Learning: A Probabilistic Perspective", 2012)
"We have let ourselves become enchanted by big data only because we exoticize technology. We’re impressed with small feats accomplished by computers alone, but we ignore big achievements from complementarity because the human contribution makes them less uncanny. Watson, Deep Blue, and ever-better machine learning algorithms are cool. But the most valuable companies in the future won’t ask what problems can be solved with computers alone. Instead, they’ll ask: how can computers help humans solve hard problems?" (Peter Thiel & Blake Masters, "Zero to One: Notes on Startups, or How to Build the Future", 2014)
"A good proxy for complexity in a machine learning model is how fast it takes to train it." (Matthew Kirk, "Thoughtful Machine Learning", 2015)
"In machine learning, knowledge is often in the form of statistical models, because most knowledge is statistical [...] Machine learning is a kind of knowledge pump: we can use it to extract a lot of knowledge from data, but first we have to prime the pump." (Pedro Domingos, "The Master Algorithm", 2015)
"It is important to remember that predictive data analytics models built using machine learning techniques are tools that we can use to help make better decisions within an organization and are not an end in themselves. It is paramount that, when tasked with creating a predictive model, we fully understand the business problem that this model is being constructed to address and ensure that it does address it." (John D Kelleher et al, "Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, worked examples, and case studies", 2015)
"Learning theory claims that a machine learning algorithm can generalize well from a finite training set of examples. This seems to contradict some basic principles of logic. Inductive reasoning, or inferring general rules from a limited set of examples, is not logically valid. To logically infer a rule describing every member of a set, one must have information about every member of that set." (Ian Goodfellow et al, "Deep Learning", 2015)
"Machine learning is a science and requires an objective approach to problems. Just like the scientific method, test-driven development can aid in solving a problem. The reason that TDD and the scientific method are so similar is because of these three shared characteristics: Both propose that the solution is logical and valid. Both share results through documentation and work over time. Both work in feedback loops." (Matthew Kirk, "Thoughtful Machine Learning", 2015)
"Machine learning is the intersection between theoretically sound computer science and practically noisy data. Essentially, it’s about machines making sense out of data in much the same way that humans do." (Matthew Kirk, "Thoughtful Machine Learning", 2015)
"Machine learning is well suited for the unpredictable future, because most algorithms learn from new information. But as new information is found, it can also come in unstable forms, and new issues can arise that weren’t thought of before. We don’t know what we don’t know. When processing new information, it’s sometimes hard to tell whether our model is working." (Matthew Kirk, "Thoughtful Machine Learning", 2015)
"Machine learning takes many different forms and goes by many different names: pattern recognition, statistical modeling, data mining, knowledge discovery, predictive analytics, data science, adaptive systems, self-organizing systems, and more. Each of these is used by different communities and has different associations. Some have a long half-life, some less so." (Pedro Domingos, "The Master Algorithm", 2015)
"Precision and recall are ways of monitoring the power of the machine learning implementation. Precision is a metric that monitors the percentage of true positives. […] Recall is the ratio of true positives to true positive plus false negatives." (Matthew Kirk, "Thoughtful Machine Learning", 2015)
"Science’s predictions are more trustworthy, but they are limited to what we can systematically observe and tractably model. Big data and machine learning greatly expand that scope. Some everyday things can be predicted by the unaided mind, from catching a ball to carrying on a conversation. Some things, try as we might, are just unpredictable. For the vast middle ground between the two, there’s machine learning." (Pedro Domingos, "The Master Algorithm", 2015)
"The no free lunch theorem for machine learning states that, averaged over all possible data generating distributions, every classification algorithm has the same error rate when classifying previously unobserved points. In other words, in some sense, no machine learning algorithm is universally any better than any other. The most sophisticated algorithm we can conceive of has the same average performance (over all possible tasks) as merely predicting that every point belongs to the same class. [...] the goal of machine learning research is not to seek a universal learning algorithm or the absolute best learning algorithm. Instead, our goal is to understand what kinds of distributions are relevant to the 'real world' that an AI agent experiences, and what kinds of machine learning algorithms perform well on data drawn from the kinds of data generating distributions we care about." (Ian Goodfellow et al, "Deep Learning", 2015)
"The no free lunch theorem implies that we must design our machine learning algorithms to perform well on a specific task. We do so by building a set of preferences into the learning algorithm. When these preferences are aligned with the learning problems we ask the algorithm to solve, it performs better." (Ian Goodfellow et al, "Deep Learning", 2015)
"To make progress, every field of science needs to have data commensurate with the complexity of the phenomena it studies. [...] With big data and machine learning, you can understand much more complex phenomena than before. In most fields, scientists have traditionally used only very limited kinds of models, like linear regression, where the curve you fit to the data is always a straight line. Unfortunately, most phenomena in the world are nonlinear. [...] Machine learning opens up a vast new world of nonlinear models." (Pedro Domingos, "The Master Algorithm", 2015)
"Traditionally, the only way to get a computer to do something - from adding two numbers to flying an airplane - was to write down an algorithm explaining how, in painstaking detail. But machine-learning algorithms, also known as learners, are different: they figure it out on their own, by making inferences from data. And the more data they have, the better they get. Now we don’t have to program computers; they program themselves." (Pedro Domingos, "The Master Algorithm", 2015)
"In machine learning, a model is defined as a function, and we describe the learning function from the training data as inductive learning. Generalization refers to how well the concepts are learned by the model by applying them to data not seen before. The goal of a good machine-learning model is to reduce generalization errors and thus make good predictions on data that the model has never seen." (Umesh R Hodeghatta & Umesha Nayak, "Business Analytics Using R: A Practical Approach", 2017)
"Machine learning is about making computers learn and perform tasks better based on past historical data. Learning is always based on observations from the data available. The emphasis is on making computers build mathematical models based on that learning and perform tasks automatically without the intervention of humans." (Umesh R Hodeghatta & Umesha Nayak, "Business Analytics Using R: A Practical Approach", 2017)
"Graphs can embed complex semantic representations in a compact form. As such, modeling data as networks of related entities is a powerful mechanism for analytics, both for visual analyses and machine learning. Part of this power comes from performance advantages of using a graph data structure, and the other part comes from an inherent human ability to intuitively interact with small networks." (Benjamin Bengfort et al, "Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning", 2018)
"However, because ML algorithms are biased to look for different types of patterns, and because there is no one learning bias across all situations, there is no one best ML algorithm. In fact, a theorem known as the 'no free lunch theorem' states that there is no one best ML algorithm that on average outperforms all other algorithms across all possible data sets." (John D Kelleher & Brendan Tierney, "Data Science", 2018)
"Just as they did thirty years ago, machine learning programs (including those with deep neural networks) operate almost entirely in an associational mode. They are driven by a stream of observations to which they attempt to fit a function, in much the same way that a statistician tries to fit a line to a collection of points. Deep neural networks have added many more layers to the complexity of the fitted function, but raw data still drives the fitting process. They continue to improve in accuracy as more data are fitted, but they do not benefit from the 'super-evolutionary speedup'." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)
"Machine learning is often associated with the automation of decision making, but in practice, the process of constructing a predictive model generally requires a human in the loop. While computers are good at fast, accurate numerical computation, humans are instinctively and instantly able to identify patterns. The bridge between these two necessary skill sets lies in visualization - the precise and accurate rendering of data by a computer in visual terms and the immediate assignation of meaning to that data by humans." (Benjamin Bengfort et al, "Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning", 2018)
"Quantum Machine Learning is defined as the branch of science and technology that is concerned with the application of quantum mechanical phenomena such as superposition, entanglement and tunneling for designing software and hardware to provide machines the ability to learn insights and patterns from data and the environment, and the ability to adapt automatically to changing situations with high precision, accuracy and speed." (Amit Ray, "Quantum Computing Algorithms for Artificial Intelligence", 2018)
"Quantum machine learning promises to discover the optimal network topologies and hyperparameters automatically without human intervention." (Amit Ray, "Quantum Computing Algorithms for Artificial Intelligence", 2018)
"The beauty of quantum machine learning is that we do not need to depend on an algorithm like gradient descent or convex objective function. The objective function can be nonconvex or something else." (Amit Ray, "Quantum Computing Algorithms for Artificial Intelligence", 2018)
"The premise of classification is simple: given a categorical target variable, learn patterns that exist between instances composed of independent variables and their relationship to the target. Because the target is given ahead of time, classification is said to be supervised machine learning because a model can be trained to minimize error between predicted and actual categories in the training data. Once a classification model is fit, it assigns categorical labels to new instances based on the patterns detected during training." (Benjamin Bengfort et al, "Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning", 2018)
"A recurring theme in machine learning is combining predictions across multiple models. There are techniques called bagging and boosting which seek to tweak the data and fit many estimates to it. Averaging across these can give a better prediction than any one model on its own. But here a serious problem arises: it is then very hard to explain what the model is (often referred to as a 'black box'). It is now a mixture of many, perhaps a thousand or more, models." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)
"Machines are not good at asking questions or even knowing what questions to ask. They are much better at answering them, provided the question is stated in a way that the computer can comprehend. Present-day machine learning algorithms partner with people much like a bloodhound works with its trainer: the dog's sense of smell may be many times stronger than its master's, but without being carefully directed, the hound may end up chasing its tail." (Brett Lantz, "Machine Learning with R", 2019)
"In an era of machine learning, where data is likely to be used to train AI, getting quality and governance under control is a business imperative. Failing to govern data surfaces problems late, often at the point closest to users (for example, by giving harmful guidance), and hinders explainability (garbage data in, machine-learned garbage out)." (Jesús Barrasa et al, "Knowledge Graphs: Data in Context for Responsive Businesses", 2021)
"Machine learning bias is typically understood as a source of learning error, a technical problem. […] Machine learning bias can introduce error simply because the system doesn’t 'look' for certain solutions in the first place. But bias is actually necessary in machine learning - it’s part of learning itself." (Erik J Larson, "The Myth of Artificial Intelligence: Why Computers Can’t Think the Way We Do", 2021)
"People who assume that extensions of modern machine learning methods like deep learning will somehow 'train up', or learn to be intelligent like humans, do not understand the fundamental limitations that are already known. Admitting the necessity of supplying a bias to learning systems is tantamount to Turing’s observing that insights about mathematics must be supplied by human minds from outside formal methods, since machine learning bias is determined, prior to learning, by human designers."
"To accomplish their goals, what are now called machine learning systems must each learn something specific. Researchers call this giving the machine a 'bias'. […] A bias in machine learning means that the system is designed and tuned to learn something. But this is, of course, just the problem of producing narrow problem-solving applications." (Erik J Larson, "The Myth of Artificial Intelligence: Why Computers Can’t Think the Way We Do", 2021)
"[...] the focus on Big Data AI seems to be an excuse to put forth a number of vague and hand-waving theories, where the actual details and the ultimate success of neuroscience is handed over to quasi- mythological claims about the powers of large datasets and inductive computation. Where humans fail to illuminate a complicated domain with testable theory, machine learning and big data supposedly can step in and render traditional concerns about finding robust theories. This seems to be the logic of Data Brain efforts today. (Erik J Larson, "The Myth of Artificial Intelligence: Why Computers Can’t Think the Way We Do", 2021)