17 December 2018

🔭Data Science: Method (Just the Quotes)

"There are two aspects of statistics that are continually mixed, the method and the science. Statistics are used as a method, whenever we measure something, for example, the size of a district, the number of inhabitants of a country, the quantity or price of certain commodities, etc. […] There is, moreover, a science of statistics. It consists of knowing how to gather numbers, combine them and calculate them, in the best way to lead to certain results. But this is, strictly speaking, a branch of mathematics." (Alphonse P de Candolle, "Considerations on Crime Statistics", 1833)

"The process of discovery is very simple. An unwearied and systematic application of known laws to nature, causes the unknown to reveal themselves. Almost any mode of observation will be successful at last, for what is most wanted is method." (Henry D Thoreau, "A Week on the Concord and Merrimack Rivers", 1862)

"As systematic unity is what first raises ordinary knowledge to the rank of science, that is, makes a system out of a mere aggregate of knowledge, architectonic is the doctrine of the scientific in our knowledge, and therefore necessarily forms part of the doctrine of method." (Immanuel Kant, "Critique of Pure Reason", 1871)

"Nothing is more certain in scientific method than that approximate coincidence alone can be expected. In the measurement of continuous quantity perfect correspondence must be accidental, and should give rise to suspicion rather than to satisfaction." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"The object of statistical science is to discover methods of condensing information concerning large groups of allied facts into brief and compendious expressions suitable for discussion. The possibility of doing this is based on the constancy and continuity with which objects of the same species are found to vary." (Sir Francis Galton, "Inquiries into Human Faculty and Its Development, Statistical Methods", 1883)

"Physical research by experimental methods is both a broadening and a narrowing field. There are many gaps yet to be filled, data to be accumulated, measurements to be made with great precision, but the limits within which we must work are becoming, at the same time, more and more defined." (Elihu Thomson, "Annual Report of the Board of Regents of the Smithsonian Institution", 1899)

"A statistical estimate may be good or bad, accurate or the reverse; but in almost all cases it is likely to be more accurate than a casual observer’s impression, and the nature of things can only be disproved by statistical methods." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"A method is a dangerous thing unless its underlying philosophy is understood, and none more dangerous than the statistical. […] Over-attention to technique may actually blind one to the dangers that lurk about on every side- like the gambler who ruins himself with his system carefully elaborated to beat the game. In the long run it is only clear thinking, experienced methods, that win the strongholds of science." (Edwin B Wilson, "The Statistical Significance of Experimental Data", Science, Volume 58 (1493), 1923)

"[…] the methods of statistics are so variable and uncertain, so apt to be influenced by circumstances, that it is never possible to be sure that one is operating with figures of equal weight." (Havelock Ellis, "The Dance of Life", 1923)

"Statistics may be regarded as (i) the study of populations, (ii) as the study of variation, and (iii) as the study of methods of the reduction of data." (Sir Ronald A Fisher, "Statistical Methods for Research Worker", 1925)

"Science is but a method. Whatever its material, an observation accurately made and free of compromise to bias and desire, and undeterred by consequence, is science." (Hans Zinsser, "Untheological Reflections", The Atlantic Monthly, 1929)

"The most important application of the theory of probability is to what we may call 'chance-like' or 'random' events, or occurrences. These seem to be characterized by a peculiar kind of incalculability which makes one disposed to believe - after many unsuccessful attempts - that all known rational methods of prediction must fail in their case. We have, as it were, the feeling that not a scientist but only a prophet could predict them. And yet, it is just this incalculability that makes us conclude that the calculus of probability can be applied to these events." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"The fundamental difference between engineering with and without statistics boils down to the difference between the use of a scientific method based upon the concept of laws of nature that do not allow for chance or uncertainty and a scientific method based upon the concepts of laws of probability as an attribute of nature." (Walter A Shewhart, 1940)

"[Statistics] is both a science and an art. It is a science in that its methods are basically systematic and have general application; and an art in that their successful application depends to a considerable degree on the skill and special experience of the statistician, and on his knowledge of the field of application, e.g. economics." (Leonard H C Tippett, "Statistics", 1943)

"Statistics is the branch of scientific method which deals with the data obtained by counting or measuring the properties of populations of natural phenomena. In this definition 'natural phenomena' includes all the happenings of the external world, whether human or not " (Sir Maurice G Kendall, "Advanced Theory of Statistics", Vol. 1, 1943)

"We can scarcely imagine a problem absolutely new, unlike and unrelated to any formerly solved problem; but if such a problem could exist, it would be insoluble. In fact, when solving a problem, we should always profit from previously solved problems, using their result or their method, or the experience acquired in solving them." (George Polya, 1945)

"The enthusiastic use of statistics to prove one side of a case is not open to criticism providing the work is honestly and accurately done, and providing the conclusions are not broader than indicated by the data. This type of work must not be confused with the unfair and dishonest use of both accurate and inaccurate data, which too commonly occurs in business. Dishonest statistical work usually takes the form of: (1) deliberate misinterpretation of data; (2) intentional making of overestimates or underestimates; and (3) biasing results by using partial data, making biased surveys, or using wrong statistical methods." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1951)

"Statistics is the fundamental and most important part of inductive logic. It is both an art and a science, and it deals with the collection, the tabulation, the analysis and interpretation of quantitative and qualitative measurements. It is concerned with the classifying and determining of actual attributes as well as the making of estimates and the testing of various hypotheses by which probable, or expected, values are obtained. It is one of the means of carrying on scientific research in order to ascertain the laws of behavior of things - be they animate or inanimate. Statistics is the technique of the Scientific Method." (Bruce D Greenschields & Frank M Weida, "Statistics with Applications to Highway Traffic Analyses", 1952)

"The methods of science may be described as the discovery of laws, the explanation of laws by theories, and the testing of theories by new observations. A good analogy is that of the jigsaw puzzle, for which the laws are the individual pieces, the theories local patterns suggested by a few pieces, and the tests the completion of these patterns with pieces previously unconsidered." (Edwin P Hubble, "The Nature of Science and Other Lectures", 1954)

"We have to remember that what we observe is not nature herself, but nature exposed to our method of questioning." (Werner K Heisenberg, "Physics and Philosophy: The revolution in modern science", 1958)

"We are committed to the scientific method, and measurement is the foundation of that method; hence we are prone to assume that whatever is measurable must be significant and that whatever cannot be measured may as well be disregarded." (Joseph W Krutch, "Human Nature and the Human Condition", 1959)

"Scientific method is the way to truth, but it affords, even in principle, no unique definition of truth. Any so-called pragmatic definition of truth is doomed to failure equally." (Willard v O Quine, "Word and Object", 1960)

"Observation, reason, and experiment make up what we call the scientific method." (Richard Feynman, "Mainly mechanics, radiation, and heat", 1963)

"Engineering is the art of skillful approximation; the practice of gamesmanship in the highest form. In the end it is a method broad enough to tame the unknown, a means of combing disciplined judgment with intuition, courage with responsibility, and scientific competence within the practical aspects of time, of cost, and of talent." (Ronald B Smith, "Professional Responsibility of Engineering", Mechanical Engineering Vol. 86 (1), 1964)

"Statistics is a body of methods and theory applied to numerical evidence in making decisions in the face of uncertainty." (Lawrence Lapin, "Statistics for Modern Business Decisions", 1973)

"Statistical methods of analysis are intended to aid the interpretation of data that are subject to appreciable haphazard variability." (David V. Hinkley & David Cox, "Theoretical Statistics", 1974)

"Scientists use mathematics to build mental universes. They write down mathematical descriptions - models - that capture essential fragments of how they think the world behaves. Then they analyse their consequences. This is called 'theory'. They test their theories against observations: this is called 'experiment'. Depending on the result, they may modify the mathematical model and repeat the cycle until theory and experiment agree. Not that it's really that simple; but that's the general gist of it, the essence of the scientific method." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"But our ways of learning about the world are strongly influenced by the social preconceptions and biased modes of thinking that each scientist must apply to any problem. The stereotype of a fully rational and objective ‘scientific method’, with individual scientists as logical (and interchangeable) robots, is self-serving mythology." (Stephen J Gould, "This View of Life: In the Mind of the Beholder", Natural History Vol. 103, No. 2, 1994)

"The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996) 

"Data are generally collected as a basis for action. However, unless potential signals are separated from probable noise, the actions taken may be totally inconsistent with the data. Thus, the proper use of data requires that you have simple and effective methods of analysis which will properly separate potential signals from probable noise." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"No matter what the data, and no matter how the values are arranged and presented, you must always use some method of analysis to come up with an interpretation of the data.
While every data set contains noise, some data sets may contain signals. Therefore, before you can detect a signal within any given data set, you must first filter out the noise." (Donald J Wheeler," Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Scientists pursue ideas in an ill-defined but effective way that is often called the scientific method. There is no strict rule of procedure that will lead you from a good idea to a Nobel prize or even to a publishable discovery. Some scientists are meticulously careful; others are highly creative. The best scientists are probably both careful and creative. Although there are various scientific methods in use, a typical approach consists of a series of steps." (Peter Atkins et al, "Chemical Principles: The Quest for Insight" 6th ed., 2013)

"Science, at its core, is simply a method of practical logic that tests hypotheses against experience. Scientism, by contrast, is the worldview and value system that insists that the questions the scientific method can answer are the most important questions human beings can ask, and that the picture of the world yielded by science is a better approximation to reality than any other." (John M Greer, "After Progress: Reason and Religion at the End of the Industrial Age", 2015)

"The general principles of starting with a well-defined question, engaging in careful observation, and then formulating hypotheses and assessing the strength of evidence for and against them became known as the scientific method." (Michael Friendly & Howard Wainer, "A History of Data Visualization and Graphic Communication", 2021)

🔭Data Science: Mathematical Models (Just the Quotes)

"Experience teaches that one will be led to new discoveries almost exclusively by means of special mechanical models." (Ludwig Boltzmann, "Lectures on Gas Theory", 1896)

"If the system exhibits a structure which can be represented by a mathematical equivalent, called a mathematical model, and if the objective can be also so quantified, then some computational method may be evolved for choosing the best schedule of actions among alternatives. Such use of mathematical models is termed mathematical programming."  (George Dantzig, "Linear Programming and Extensions", 1959)

“In fact, the construction of mathematical models for various fragments of the real world, which is the most essential business of the applied mathematician, is nothing but an exercise in axiomatics.” (Marshall Stone, cca 1960)

"[...] sciences do not try to explain, they hardly even try to interpret, they mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes observed phenomena. The justification of such a mathematical construct is solely and precisely that it is expected to work - that is, correctly to describe phenomena from a reasonably wide area. Furthermore, it must satisfy certain aesthetic criteria - that is, in relation to how much it describes, it must be rather simple.” (John von Neumann, “Method in the physical sciences”, 1961)

“Mathematical statistics provides an exceptionally clear example of the relationship between mathematics and the external world. The external world provides the experimentally measured distribution curve; mathematics provides the equation (the mathematical model) that corresponds to the empirical curve. The statistician may be guided by a thought experiment in finding the corresponding equation.” (Marshall J Walker, “The Nature of Scientific Thought”, 1963)

"Thus, the construction of a mathematical model consisting of certain basic equations of a process is not yet sufficient for effecting optimal control. The mathematical model must also provide for the effects of random factors, the ability to react to unforeseen variations and ensure good control despite errors and inaccuracies." (Yakov Khurgin, "Did You Say Mathematics?", 1974)

"A mathematical model is any complete and consistent set of mathematical equations which are designed to correspond to some other entity, its prototype. The prototype may be a physical, biological, social, psychological or conceptual entity, perhaps even another mathematical model." (Rutherford Aris, "Mathematical Modelling", 1978)

"Mathematical model making is an art. If the model is too small, a great deal of analysis and numerical solution can be done, but the results, in general, can be meaningless. If the model is too large, neither analysis nor numerical solution can be carried out, the interpretation of the results is in any case very difficult, and there is great difficulty in obtaining the numerical values of the parameters needed for numerical results." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

“Theoretical scientists, inching away from the safe and known, skirting the point of no return, confront nature with a free invention of the intellect. They strip the discovery down and wire it into place in the form of mathematical models or other abstractions that define the perceived relation exactly. The now-naked idea is scrutinized with as much coldness and outward lack of pity as the naturally warm human heart can muster. They try to put it to use, devising experiments or field observations to test its claims. By the rules of scientific procedure it is then either discarded or temporarily sustained. Either way, the central theory encompassing it grows. If the abstractions survive they generate new knowledge from which further exploratory trips of the mind can be planned. Through the repeated alternation between flights of the imagination and the accretion of hard data, a mutual agreement on the workings of the world is written, in the form of natural law.” (Edward O Wilson, “Biophilia”, 1984)

“The usual approach of science of constructing a mathematical model cannot answer the questions of why there should be a universe for the model to describe. Why does the universe go to all the bother of existing?” (Stephen Hawking, "A Brief History of Time", 1988)

“Mathematical modeling is about rules - the rules of reality. What distinguishes a mathematical model from, say, a poem, a song, a portrait or any other kind of ‘model’, is that the mathematical model is an image or picture of reality painted with logical symbols instead of with words, sounds or watercolors.” (John L Casti, "Reality Rules, The Fundamentals", 1992)

“Pedantry and sectarianism aside, the aim of theoretical physics is to construct mathematical models such as to enable us, from the use of knowledge gathered in a few observations, to predict by logical processes the outcomes in many other circumstances. Any logically sound theory satisfying this condition is a good theory, whether or not it be derived from ‘ultimate’ or ‘fundamental’ truth.” (Clifford Truesdell & Walter Noll, “The Non-Linear Field Theories of Mechanics” 2nd Ed., 1992)

"Nature behaves in ways that look mathematical, but nature is not the same as mathematics. Every mathematical model makes simplifying assumptions; its conclusions are only as valid as those assumptions. The assumption of perfect symmetry is excellent as a technique for deducing the conditions under which symmetry-breaking is going to occur, the general form of the result, and the range of possible behaviour. To deduce exactly which effect is selected from this range in a practical situation, we have to know which imperfections are present." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry", 1992)

“A model is an imitation of reality and a mathematical model is a particular form of representation. We should never forget this and get so distracted by the model that we forget the real application which is driving the modelling. In the process of model building we are translating our real world problem into an equivalent mathematical problem which we solve and then attempt to interpret. We do this to gain insight into the original real world situation or to use the model for control, optimization or possibly safety studies." (Ian T Cameron & Katalin Hangos, “Process Modelling and Model Analysis”, 2001)

"Formulation of a mathematical model is the first step in the process of analyzing the behaviour of any real system. However, to produce a useful model, one must first adopt a set of simplifying assumptions which have to be relevant in relation to the physical features of the system to be modelled and to the specific information one is interested in. Thus, the aim of modelling is to produce an idealized description of reality, which is both expressible in a tractable mathematical form and sufficiently close to reality as far as the physical mechanisms of interest are concerned." (Francois Axisa, "Discrete Systems" Vol. I, 2001)

"[…] interval mathematics and fuzzy logic together can provide a promising alternative to mathematical modeling for many physical systems that are too vague or too complicated to be described by simple and crisp mathematical formulas or equations. When interval mathematics and fuzzy logic are employed, the interval of confidence and the fuzzy membership functions are used as approximation measures, leading to the so-called fuzzy systems modeling." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"Modeling, in a general sense, refers to the establishment of a description of a system (a plant, a process, etc.) in mathematical terms, which characterizes the input-output behavior of the underlying system. To describe a physical system […] we have to use a mathematical formula or equation that can represent the system both qualitatively and quantitatively. Such a formulation is a mathematical representation, called a mathematical model, of the physical system." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

“What is a mathematical model? One basic answer is that it is the formulation in mathematical terms of the assumptions and their consequences believed to underlie a particular ‘real world’ problem. The aim of mathematical modeling is the practical application of mathematics to help unravel the underlying mechanisms involved in, for example, economic, physical, biological, or other systems and processes.” (John A Adam, “Mathematics in Nature”, 2003)

“Mathematical modeling is as much ‘art’ as ‘science’: it requires the practitioner to (i) identify a so-called ‘real world’ problem (whatever the context may be); (ii) formulate it in mathematical terms (the ‘word problem’ so beloved of undergraduates); (iii) solve the problem thus formulated (if possible; perhaps approximate solutions will suffice, especially if the complete problem is intractable); and (iv) interpret the solution in the context of the original problem.” (John A Adam, “Mathematics in Nature”, 2003)

“Mathematical modeling is the application of mathematics to describe real-world problems and investigating important questions that arise from it.” (Sandip Banerjee, “Mathematical Modeling: Models, Analysis and Applications”, 2014)

“A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reductions. The purpose of the model is to understand the phenomenon and perhaps to make predictions about future behavior. [...] A mathematical model is never a completely accurate representation of a physical situation - it is an idealization." (James Stewart, “Calculus: Early Transcedentals” 8th Ed., 2016)

"Machine learning is about making computers learn and perform tasks better based on past historical data. Learning is always based on observations from the data available. The emphasis is on making computers build mathematical models based on that learning and perform tasks automatically without the intervention of humans." (Umesh R Hodeghatta & Umesha Nayak, "Business Analytics Using R: A Practical Approach", 2017)

"Mathematical modeling is the modern version of both applied mathematics and theoretical physics. In earlier times, one proposed not a model but a theory. By talking today of a model rather than a theory, one acknowledges that the way one studies the phenomenon is not unique; it could also be studied other ways. One's model need not claim to be unique or final. It merits consideration if it provides an insight that isn't better provided by some other model." (Reuben Hersh, ”Mathematics as an Empirical Phenomenon, Subject to Modeling”, 2017)

16 December 2018

🔭Data Science: Data Collection (Just the Quotes)

"There are two aspects of statistics that are continually mixed, the method and the science. Statistics are used as a method, whenever we measure something, for example, the size of a district, the number of inhabitants of a country, the quantity or price of certain commodities, etc. […] There is, moreover, a science of statistics. It consists of knowing how to gather numbers, combine them and calculate them, in the best way to lead to certain results. But this is, strictly speaking, a branch of mathematics." (Alphonse P de Candolle, "Considerations on Crime Statistics", 1833)

"Just as data gathered by an incompetent observer are worthless - or by a biased observer, unless the bias can be measured and eliminated from the result - so also conclusions obtained from even the best data by one unacquainted with the principles of statistics must be of doubtful value." (William F White, "A Scrap-Book of Elementary Mathematics: Notes, Recreations, Essays", 1908)

"[...] scientists are not a select few intelligent enough to think in terms of 'broad sweeping theoretical laws and principles'. Instead, scientists are people specifically trained to build models that incorporate theoretical assumptions and empirical evidence. Working with models is essential to the performance of their daily work; it allows them to construct arguments and to collect data." (Peter Imhof, Science Vol. 287, 1935–1936)

"Statistics is a scientific discipline concerned with collection, analysis, and interpretation of data obtained from observation or experiment. The subject has a coherent structure based on the theory of Probability and includes many different procedures which contribute to research and development throughout the whole of Science and Technology." (Egon Pearson, 1936)

"Scientific data are not taken for museum purposes; they are taken as a basis for doing something. If nothing is to be done with the data, then there is no use in collecting any. The ultimate purpose of taking data is to provide a basis for action or a recommendation for action. The step intermediate between the collection of data and the action is prediction." (William E Deming, "On a Classification of the Problems of Statistical Inference", Journal of the American Statistical Association Vol. 37 (218), 1942)

"Data should be collected with a clear purpose in mind. Not only a clear purpose, but a clear idea as to the precise way in which they will be analysed so as to yield the desired information." (Michael J Moroney, "Facts from Figures", 1951)

"The technical analysis of any large collection of data is a task for a highly trained and expensive man who knows the mathematical theory of statistics inside and out. Otherwise the outcome is likely to be a collection of drawings - quartered pies, cute little battleships, and tapering rows of sturdy soldiers in diversified uniforms - interesting enough in the colored Sunday supplement, but hardly the sort of thing from which to draw reliable inferences." (Eric T Bell, "Mathematics: Queen and Servant of Science", 1951)

"Null hypotheses of no difference are usually known to be false before the data are collected [...] when they are, their rejection or acceptance simply reflects the size of the sample and the power of the test, and is not a contribution to science." (I Richard Savage, "Nonparametric statistics", Journal of the American Statistical Association 52, 1957)

"Philosophers of science have repeatedly demonstrated that more than one theoretical construction can always be placed upon a given collection of data." (Thomas Kuhn, "The Structure of Scientific Revolutions", 1962) 

"It has been said that data collection is like garbage collection: before you collect it you should have in mind what you are going to do with it." (Russell Fox et al, "The Science of Science", 1964)

"Typically, data analysis is messy, and little details clutter it. Not only confounding factors, but also deviant cases, minor problems in measurement, and ambiguous results lead to frustration and discouragement, so that more data are collected than analyzed. Neglecting or hiding the messy details of the data reduces the researcher's chances of discovering something new." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"If we gather more and more data and establish more and more associations, however, we will not finally find that we know something. We will simply end up having more and more data and larger sets of correlations." (Kenneth N Waltz, "Theory of International Politics Source: Theory of International Politics", 1979)

"The systematic collection of data about people has affected not only the ways in which we conceive of a society, but also the ways in which we describe our neighbour. It has profoundly transformed what we choose to do, who we try to be, and what we think of ourselves." (Ian Hacking, "The Taming of Chance", 1990)

"When looking at the end result of any statistical analysis, one must be very cautious not to over interpret the data. Care must be taken to know the size of the sample, and to be certain the method for gathering information is consistent with other samples gathered. […] No one should ever base conclusions without knowing the size of the sample and how random a sample it was. But all too often such data is not mentioned when the statistics are given - perhaps it is overlooked or even intentionally omitted." (Theoni Pappas, "More Joy of Mathematics: Exploring mathematical insights & concepts", 1991)

"We have found that some of the hardest errors to detect by traditional methods are unsuspected gaps in the data collection (we usually discovered them serendipitously in the course of graphical checking)." (Peter Huber, "Huge data sets", Compstat '94: Proceedings, 1994)

"We do not realize how deeply our starting assumptions affect the way we go about looking for and interpreting the data we collect." (Roger A Lewin, "Kanzi: The Ape at the Brink of the Human Mind", 1994)

"The science of statistics may be described as exploring, analyzing and summarizing data; designing or choosing appropriate ways of collecting data and extracting information from them; and communicating that information. Statistics also involves constructing and testing models for describing chance phenomena. These models can be used as a basis for making inferences and drawing conclusions and, finally, perhaps for making decisions." (Fergus Daly et al, "Elements of Statistics", 1995)

"Unfortunately, just collecting the data in one place and making it easily available isn’t enough. When operational data from transactions is loaded into the data warehouse, it often contains missing or inaccurate data. How good or bad the data is a function of the amount of input checking done in the application that generates the transaction. Unfortunately, many deployed applications are less than stellar when it comes to validating the inputs. To overcome this problem, the operational data must go through a 'cleansing' process, which takes care of missing or out-of-range values. If this cleansing step is not done before the data is loaded into the data warehouse, it will have to be performed repeatedly whenever that data is used in a data mining operation." (Joseph P Bigus,"Data Mining with Neural Networks: Solving business problems from application development to decision support", 1996)

"Consideration needs to be given to the most appropriate data to be collected. Often the temptation is to collect too much data and not give appropriate attention to the most important. Filing cabinets and computer files world-wide are filled with data that have been collected because they may be of interest to someone in future. Most is never of interest to anyone and if it is, its existence is unknown to those seeking the information, who will set out to collect the data again, probably in a trial better designed for the purpose. In general, it is best to collect only the data required to answer the questions posed, when setting up the trial, and plan another trial for other data in the future, if necessary." (P Portmann & H Ketata, "Statistical Methods for Plant Variety Evaluation", 1997)

"Data are collected as a basis for action. Yet before anyone can use data as a basis for action the data have to be interpreted. The proper interpretation of data will require that the data be presented in context, and that the analysis technique used will filter out the noise."  (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Data are generally collected as a basis for action. However, unless potential signals are separated from probable noise, the actions taken may be totally inconsistent with the data. Thus, the proper use of data requires that you have simple and effective methods of analysis which will properly separate potential signals from probable noise." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Just as dynamics arise from feedback, so too all learning depends on feedback. We make decisions that alter the real world; we gather information feedback about the real world, and using the new information we revise our understanding of the world and the decisions we make to bring our perception of the state of the system closer to our goals." (John D Sterman, "Business dynamics: Systems thinking and modeling for a complex world", 2000) 

"Without meaningful data there can be no meaningful analysis. The interpretation of any data set must be based upon the context of those data. Unfortunately, much of the data reported to executives today are aggregated and summed over so many different operating units and processes that they cannot be said to have any context except a historical one - they were all collected during the same time period. While this may be rational with monetary figures, it can be devastating to other types of data." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Data is a fact of life. As time goes by, we collect more and more data, making our original reason for collecting the data harder to accomplish. We don't collect data just to waste time or keep busy; we collect data so that we can gain knowledge, which can be used to improve the efficiency of our organization, improve profit margins, and on and on. The problem is that as we collect more data, it becomes harder for us to use the data to derive this knowledge. We are being suffocated by this raw data, yet we need to find a way to use it." (Seth Paul et al. "Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis", 2002)

"Statistics depend on collecting information. If questions go unasked, or if they are asked in ways that limit responses, or if measures count some cases but exclude others, information goes ungathered, and missing numbers result. Nevertheless, choices regarding which data to collect and how to go about collecting the information are inevitable." (Joel Best, "More Damned Lies and Statistics: How numbers confuse public issues", 2004)

"Put simply, statistics is a range of procedures for gathering, organizing, analyzing and presenting quantitative data. […] Essentially […], statistics is a scientific approach to analyzing numerical data in order to enable us to maximize our interpretation, understanding and use. This means that statistics helps us turn data into information; that is, data that have been interpreted, understood and are useful to the recipient. Put formally, for your project, statistics is the systematic collection and analysis of numerical data, in order to investigate or discover relationships among phenomena so as to explain, predict and control their occurrence." (Reva B Brown & Mark Saunders, "Dealing with Statistics: What You Need to Know", 2008)

"Statistics is the art of learning from data. It is concerned with the collection of data, their subsequent description, and their analysis, which often leads to the drawing of conclusions." (Sheldon M Ross, "Introductory Statistics" 3rd Ed., 2009)

"Statistics is the science of collecting, organizing, analyzing, and interpreting data in order to make decisions." (Ron Larson & Betsy Farber, "Elementary Statistics: Picturing the World" 5th Ed., 2011)

"The discrepancy between our mental models and the real world may be a major problem of our times; especially in view of the difficulty of collecting, analyzing, and making sense of the unbelievable amount of data to which we have access today." (Ugo Bardi, "The Limits to Growth Revisited", 2011)

"In order to be effective a descriptive statistic has to make sense - it has to distill some essential characteristic of the data into a value that is both appropriate and understandable. […] the justification for computing any given statistic must come from the nature of the data themselves - it cannot come from the arithmetic, nor can it come from the statistic. If the data are a meaningless collection of values, then the summary statistics will also be meaningless - no arithmetic operation can magically create meaning out of nonsense. Therefore, the meaning of any statistic has to come from the context for the data, while the appropriateness of any statistic will depend upon the use we intend to make of that statistic." (Donald J Wheeler, "Myths About Data Analysis", International Lean & Six Sigma Conference, 2012)

"Each systems archetype embodies a particular theory about dynamic behavior that can serve as a starting point for selecting and formulating raw data into a coherent set of interrelationships. Once those relationships are made explicit and precise, the 'theory' of the archetype can then further guide us in our data-gathering process to test the causal relationships through direct observation, data analysis, or group deliberation." (Daniel H Kim, "Systems Archetypes as Dynamic Theories", The Systems Thinker Vol. 24 (1), 2013)

"Statistics is an integral part of the quantitative approach to knowledge. The field of statistics is concerned with the scientific study of collecting, organizing, analyzing, and drawing conclusions from data." (Kandethody M Ramachandran & Chris P Tsokos, "Mathematical Statistics with Applications in R" 2nd Ed., 2015)

"The term data, unlike the related terms facts and evidence, does not connote truth. Data is descriptive, but data can be erroneous. We tend to distinguish data from information. Data is a primitive or atomic state (as in ‘raw data’). It becomes information only when it is presented in context, in a way that informs. This progression from data to information is not the only direction in which the relationship flows, however; information can also be broken down into pieces, stripped of context, and stored as data. This is the case with most of the data that’s stored in computer systems. Data that’s collected and stored directly by machines, such as sensors, becomes information only when it’s reconnected to its context."  (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"Big data is, in a nutshell, large amounts of data that can be gathered up and analyzed to determine whether any patterns emerge and to make better decisions." (Daniel Covington, Analytics: Data Science, Data Analysis and Predictive Analytics for Business, 2016)

"Statistics can be defined as a collection of techniques used when planning a data collection, and when subsequently analyzing and presenting data." (Birger S Madsen, "Statistics for Non-Statisticians", 2016)

"Statistics is the science of collecting, organizing, and interpreting numerical facts, which we call data. […] Statistics is the science of learning from data." (Moore McCabe & Alwan Craig, "The Practice of Statistics for Business and Economics" 4th Ed., 2016)

"Collecting data through sampling therefore becomes a never-ending battle to avoid sources of bias. [...] While trying to obtain a random sample, researchers sometimes make errors in judgment about whether every person or thing is equally likely to be sampled." (Daniel J Levitin, "Weaponized Lies", 2017)

"Just because there’s a number on it, it doesn’t mean that the number was arrived at properly. […] There are a host of errors and biases that can enter into the collection process, and these can lead millions of people to draw the wrong conclusions. Although most of us won’t ever participate in the collection process, thinking about it, critically, is easy to learn and within the reach of all of us." (Daniel J Levitin, "Weaponized Lies", 2017)

"Measurements must be standardized. There must be clear, replicable, and precise procedures for collecting data so that each person who collects it does it in the same way." (Daniel J Levitin, "Weaponized Lies", 2017)

"To be any good, a sample has to be representative. A sample is representative if every person or thing in the group you’re studying has an equally likely chance of being chosen. If not, your sample is biased. […] The job of the statistician is to formulate an inventory of all those things that matter in order to obtain a representative sample. Researchers have to avoid the tendency to capture variables that are easy to identify or collect data on - sometimes the things that matter are not obvious or are difficult to measure." (Daniel J Levitin, "Weaponized Lies", 2017)

"The desire to collect as much data as possible must be balanced with an approximation of which data sources are useful to address a business issue. It is worth mentioning that often the value of internal data is high. Most internal data has been cleansed and transformed to suit the mission. It should not be overlooked simply because of the excitement of so much other available data." (Mike Fleckenstein & Lorraine Fellows, "Modern Data Strategy", 2018)

"A random collection of interesting but disconnected facts will lack the unifying theme to become a data story - it may be informative, but it won’t be insightful." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Are your insights based on data that is accurate and reliable? Trustworthy data is correct or valid, free from significant defects and gaps. The trustworthiness of your data begins with the proper collection, processing, and maintenance of the data at its source. However, the reliability of your numbers can also be influenced by how they are handled during the analysis process. Clean data can inadvertently lose its integrity and true meaning depending on how it is analyzed and interpreted." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019

"Each decision about what data to gather and how to analyze them is akin to standing on a pathway as it forks left and right and deciding which way to go. What seems like a few simple choices can quickly multiply into a labyrinth of different possibilities. Make one combination of choices and you’ll reach one conclusion; make another, equally reasonable, and you might find a very different pattern in the data." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"It’d be nice to fondly imagine that high-quality statistics simply appear in a spreadsheet somewhere, divine providence from the numerical heavens. Yet any dataset begins with somebody deciding to collect the numbers. What numbers are and aren’t collected, what is and isn’t measured, and who is included or excluded are the result of all-too-human assumptions, preconceptions, and oversights." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Unless we’re collecting data ourselves, there’s a limit to how much we can do to combat the problem of missing data. But we can and should remember to ask who or what might be missing from the data we’re being told about. Some missing numbers are obvious […]. Other omissions show up only when we take a close look at the claim in question." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"What is the purpose of collecting data? People gather and store data for at least three different reasons that I can discern. One reason is that they want to build an arsenal of evidence with which to prove a point or defend an agenda that they already had to begin with. This path is problematic for obvious reasons, and yet we all find ourselves traveling on it from time to time. Another reason people collect data is that they want to feed it into an artificial intelligence algorithm to automate some process or carry out some task. […] A third reason is that they might be collecting data in order to compile information to help them better understand their situation, to answer questions they have in their mind, and to unearth new questions that they didn't think to ask." (Ben Jones, "Avoiding Data Pitfalls: How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations", 2020)

[Murphy’s Laws of Analysis:] "(1) In any collection of data, the figures that are obviously correct contain errors. (2) It is customary for a decimal to be misplaced. (3) An error that can creep into a calculation, will. Also, it will always be in the direction that will cause the most damage to the calculation." (G C Deakly)

"[…] numerous samples collected without a clear idea of what is to be done with the data are commonly less useful than a moderate number of samples collected in accordance with a specific design." (William C Krumbein)

More quotes on " Data Collection" at the-web-of-knowledge.blogspot.com

🔭Data Science: Rare Events (Just the Quotes)

"We must rather seek for a cause, for every event whether probable or improbable must have some cause." (Polybius, "The Histories", cca. 100 BC)

"There is nothing in the nature of a miracle that should render it incredible: its credibility depends upon the nature of the evidence by which it is supported. An event of extreme probability will not necessarily command our belief unless upon a sufficiency of proof; and so an event which we may regard as highly improbable may command our belief if it is sustained by sufficient evidence. So that the credibility or incredibility of an event does not rest upon the nature of the event itself, but depends upon the nature and sufficiency of the proof which sustains it." (Charles Babbage, "Passages from the Life of a Philosopher", 1864)

"Events with a sufficiently small probability never occur, or at least we must act, in all circumstances, as if they were impossible." (Émile Borel, "Probabilities and Life", 1962)

"Most accidents in well-designed systems involve two or more events of low probability occurring in the worst possible combination." (Robert E Machol, "Principles of Operations Research", 1975)

"[…] all human beings - professional mathematicians included - are easily muddled when it comes to estimating the probabilities of rare events. Even figuring out the right question to ask can be confusing." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"Bell curves don't differ that much in their bells. They differ in their tails. The tails describe how frequently rare events occur. They describe whether rare events really are so rare. This leads to the saying that the devil is in the tails." (Bart Kosko, "Noise", 2006)

"A Black Swan is a highly improbable event with three principal characteristics: It is unpredictable; it carries a massive impact; and, after the fact, we concoct an explanation that makes it appear less random, and more predictable, than it was. […] The Black Swan idea is based on the structure of randomness in empirical reality. [...] the Black Swan is what we leave out of simplification." (Nassim N Taleb, “The Black Swan”, 2007)

"A forecaster should almost never ignore data, especially when she is studying rare events […]. Ignoring data is often a tip-off that the forecaster is overconfident, or is overfitting her model - that she is interested in showing off rather than trying to be accurate."  (Nate Silver, "The Signal and the Noise: Why So Many Predictions Fail-but Some Don't", 2012)

"[…] according to the bell-shaped curve the likelihood of a very-large-deviation event (a major outlier) located in the striped region appears to be very unlikely, essentially zero. The same event, though, is several thousand times more likely if it comes from a set of events obeying a fat-tailed distribution instead of the bell-shaped one." (John L Casti, "X-Events: The Collapse of Everything", 2012)

"[…] both rarity and impact have to go into any meaningful characterization of how black any particular [black] swan happens to be." (John L Casti, "X-Events: The Collapse of Everything", 2012)

"Black Swans (capitalized) are large-scale unpredictable and irregular events of massive consequence - unpredicted by a certain observer, and such un - predictor is generally called the 'turkey' when he is both surprised and harmed by these events. [...] Black Swans hijack our brains, making us feel we 'sort of' or 'almost' predicted them, because they are retrospectively explainable. We don’t realize the role of these Swans in life because of this illusion of predictability. […] An annoying aspect of the Black Swan problem - in fact the central, and largely missed, point - is that the odds of rare events are simply not computable." (Nassim N Taleb, "Antifragile: Things that gain from disorder", 2012)

"Behavioral finance so far makes conclusions from statics not dynamics, hence misses the picture. It applies trade-offs out of context and develops the consensus that people irrationally overestimate tail risk (hence need to be 'nudged' into taking more of these exposures). But the catastrophic event is an absorbing barrier. No risky exposure can be analyzed in isolation: risks accumulate. If we ride a motorcycle, smoke, fly our own propeller plane, and join the mafia, these risks add up to a near-certain premature death. Tail risks are not a renewable resource." (Nassim N Taleb, "Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications" 2nd Ed., 2022)

"But note that any heavy tailed process, even a power law, can be described in sample (that is finite number of observations necessarily discretized) by a simple Gaussian process with changing variance, a regime switching process, or a combination of Gaussian plus a series of variable jumps (though not one where jumps are of equal size […])." (Nassim N Taleb, "Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications" 2nd Ed., 2022)

"[…] it is not merely that events in the tails of the distributions matter, happen, play a large role, etc. The point is that these events play the major role and their probabilities are not (easily) computable, not reliable for any effective use. The implication is that Black Swans do not necessarily come from fat tails; the problem can result from an incomplete assessment of tail events." (Nassim N Taleb, "Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications" 2nd Ed., 2022)

"Once we know something is fat-tailed, we can use heuristics to see how an exposure there reacts to random events: how much is a given unit harmed by them. It is vastly more effective to focus on being insulated from the harm of random events than try to figure them out in the required details (as we saw the inferential errors under thick tails are huge). So it is more solid, much wiser, more ethical, and more effective to focus on detection heuristics and policies rather than fabricate statistical properties." (Nassim N Taleb, "Statistical Consequences of Fat Tails: Real World Preasymptotics, Epistemology, and Applications" 2nd Ed., 2022)

🔭Data Science: Correlation (Just the Quotes)

"Reflection soon made it clear to me that not only were the two new problems identical in principle with the old one of kinship which I had already solved, but that all three of them were no more than special cases of a much more general problem - namely, that of Correlation." (Francis Galton,"Kinship and Correlation", 1890) 

"It had appeared from observation, and it was fully confirmed by this theory, that such a thing existed as an 'Index of Correlation', that is to say, a fraction, now commonly written T, that connects with close approximation every value of the deviation on the part of the subject, with the average of all the associated deviations of the Relative [...]" (Francis Galton, "Memories of My Life", 1908)

"One of the main duties of science is the correlation of phenomena, apparently disconnected and even contradictory." (Frederick Soddy, "The Interpretation of Radium and the Structure of the Atom", 1909)

"To speak of the cause of an event is therefore misleading. Any set of antecedents from which the event can theoretically be inferred by means of correlations might be called a cause of the event. But to speak of the cause is to imply a uniqueness [...]." (Bertrand Russell, "Mysticism and Logic: And Other Essays", 1910)

"'Correlation' is a term used to express the relation which exists between two series or groups of data where there is a causal connection. In order to have correlation it is not enough that the two sets of data should both increase or decrease simultaneously. For correlation it is necessary that one set of facts should have some definite causal dependence upon the other set [...]" (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

"'Causation' has been popularly used to express the condition of association, when applied to natural phenomena. There is no philosophical basis for giving it a wider meaning than partial or absolute association. In no case has it been proved that there is an inherent necessity in the laws of nature. Causation is correlation. [...] perfect correlation, when based upon sufficient experience, is causation in the scientific sense." (Henry E. Niles, "Correlation, Causation and Wright's Theory of 'Path Coefficients'", Genetics, 1922)

"The futile elaboration of innumerable measures of correlation, and the evasion of the real difficulties of sampling problems under cover of a contempt for small samples, were obviously beginning to make its pretensions ridiculous. These procedures were not only ill-aimed, but for all their elaboration, not sufficiently accurate." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)

"When the relationship is of a quantitative nature, the appropriate statistical tool for discovering and measuring the relationship and expressing it in a brief formula is known as correlation." (Frederick E Croxton & Dudley J Cowden, "Practical Business Statistics", 1937)

"Graphic methods are very commonly used in business correlation problems. On the whole, carefully handled and skillfully interpreted graphs have certain advantages over mathematical methods of determining correlation in the usual business problems. The elements of judgment and special knowledge of conditions can be more easily introduced in studying correlation graphically. Mathematical correlation is often much too rigid for the data at hand." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1938)

"[…] statistical literacy. That is, the ability to read diagrams and maps; a 'consumer' understanding of common statistical terms, as average, percent, dispersion, correlation, and index number."  (Douglas Scates, "Statistics: The Mathematics for Social Problems", 1943)

"Another thing to watch out for is a conclusion in which a correlation has been inferred to continue beyond the data with which it has been demonstrated." (Darell Huff, "How to Lie with Statistics", 1954)

"Keep in mind that a correlation may be real and based on real cause and effect, and still be almost worthless in determining action in any single case." (Darell Huff, "How to Lie with Statistics", 1954)

"When you find somebody - usually an interested party - making a fuss about a correlation, look first of all to see if it is not one of this type, produced by the stream of events, the trend of the times." (Darell Huff, "How to Lie with Statistics", 1954)

"There is no correlation between the cause and the effect. The events reveal only an aleatory determination, connected not so much with the imperfection of our knowledge as with the structure of the human world." (Raymond Aron, "The Opium of the Intellectuals", 1955)

"The well-known virtue of the experimental method is that it brings situational variables under tight control. It thus permits rigorous tests of hypotheses and confidential statements about causation. The correlational method, for its part, can study what man has not learned to control. Nature has been experimenting since the beginning of time, with a boldness and complexity far beyond the resources of science. The correlator’s mission is to observe and organize the data of nature’s experiments." (Lee J Cronbach, "The Two Disciplines of Scientific Psychology", The American Psychologist Vol. 12, 1957)

"It has been said that data collection is like garbage collection: before you collect it you should have in mind what you are going to do with it." (Russell Fox & Max Gorbuny, "The Science of Science: Methods of Interpreting Physical Phenomena", 1964)

"Today we preach that science is not science unless it is quantitative. We substitute correlation for causal studies, and physical equations for organic reasoning. Measurements and equations are supposed to sharpen thinking, but [...] they more often tend to make the thinking non-causal and fuzzy." (John R Platt, "Strong Inference", Science Vol. 146 (3641), 1964)

"If we gather more and more data and establish more and more associations, however, we will not finally find that we know something. We will simply end up having more and more data and larger sets of correlations." (Kenneth N Waltz, "Theory of International Politics Source: Theory of International Politics", 1979)

"The invalid assumption that correlation implies cause is probably among the two or three most serious and common errors of human reasoning." (Stephen J Gould, "The Mismeasure of Man", 1980)

"Correlation analysis is a useful tool for uncovering a tenuous relationship, but it doesn't necessarily provide any real understanding of the relationship, and it certainly doesn't provide any evidence that the relationship is one of cause and effect. People who don't understand correlation tend to credit it with being a more fundamental approach than it is." (Robert Hooke, "How to Tell the Liars from the Statisticians", 1983)

"Only a 0 correlation is uninteresting, and in practice 0 correlations do not occur. When you stuff a bunch of numbers into the correlation formula, the chance of getting exactly 0, even if no correlation is truly present, is about the same as the chance of a tossed coin ending up on edge instead of heads or tails.(Robert Hooke, "How to Tell the Liars from the Statisticians", 1983)

"Correlation and causation are two quite different words, and the innumerate are more prone to mistake them than most." (John A Paulos, "Innumeracy: Mathematical Illiteracy and its Consequences", 1988)

"Nature normally hates power laws. In ordinary systems all quantities follow bell curves, and correlations decay rapidly, obeying exponential laws. But all that changes if the system is forced to undergo a phase transition. Then power laws emerge-nature's unmistakable sign that chaos is departing in favor of order. The theory of phase transitions told us loud and clear that the road from disorder to order is maintained by the powerful forces of self-organization and is paved by power laws. It told us that power laws are not just another way of characterizing a system's behavior. They are the patent signatures of self-organization in complex systems." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"If you flip a coin three times and it lands on heads each time, it's probably chance. If you flip it a hundred times and it lands on heads each time, you can be pretty sure the coin has heads on both sides. That's the concept behind statistical significance - it's the odds that the correlation (or other finding) is real, that it isn't just random chance." (T Colin Campbell, "The China Study", 2004)

"Nonetheless, the basic principles regarding correlations between variables are not that difficult to understand. We must look for patterns that reveal potential relationships and for evidence that variables are actually related. But when we do spot those relationships, we should not jump to conclusions about causality. Instead, we need to weigh the strength of the relationship and the plausibility of our theory, and we must always try to discount the possibility of spuriousness." (Joel Best, "More Damned Lies and Statistics: How numbers confuse public issues", 2004)

"Before best estimates are extracted from data sets by way of a regression analysis, the uncertainties of the individual data values must be determined.In this case care must be taken to recognize which uncertainty components are common to all the values, i.e., those that are correlated (systematic)." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"Correlation analysis can help us find the size of the formal relation between two properties. An equidirectional variation is present if we observe high values of one variable together with high values of the other variable (or low ones combined with low ones). In this case there is a positive correlation. If high values are combined with low values and low values with high values, the variation is counterdirectional, and the correlation is negative." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"In error analysis the so-called 'chi-squared' is a measure of the agreement between the uncorrelated internal and the external uncertainties of a measured functional relation. The simplest such relation would be time independence. Theory of the chi-squared requires that the uncertainties be normally distributed. Nevertheless, it was found that the test can be applied to most probability distributions encountered in practice." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"It is important that uncertainty components that are independent of each other are added quadratically. This is also true for correlated uncertainty components, provided they are independent of each other, i.e., as long as there is no correlation between the components." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"The fact that the same uncertainty (e.g., scale uncertainty) is uncorrelated if we are dealing with only one measurement, but correlated (i.e., systematic) if we look at more than one measurement using the same instrument shows that both types of uncertainties are of the same nature. Of course, an uncertainty keeps its characteristics (e.g., Poisson distributed), independent of the fact whether it occurs only once or more often." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"Given the important role that correlation plays in structural equation modeling, we need to understand the factors that affect establishing relationships among multivariable data points. The key factors are the level of measurement, restriction of range in data values (variability, skewness, kurtosis), missing data, nonlinearity, outliers, correction for attenuation, and issues related to sampling variation, confidence intervals, effect size, significance, sample size, and power." (Randall E Schumacker & Richard G Lomax, "A Beginner’s Guide to Structural Equation Modeling" 3rd Ed., 2010)

"[...] if you want to show change through time, use a time-series chart; if you need to compare, use a bar chart; or to display correlation, use a scatter-plot - because some of these rules make good common sense." (Alberto Cairo, "The Functional Art", 2011)

"Economists should study financial markets as they actually operate, not as they assume them to operate - observing the way in which information is actually processed, observing the serial correlations, bonanzas, and sudden stops, not assuming these away as noise around the edges of efficient and rational markets." (Adair Turner, "Economics after the Crisis: Objectives and means", 2012)

"Without precise predictability, control is impotent and almost meaningless. In other words, the lesser the predictability, the harder the entity or system is to control, and vice versa. If our universe actually operated on linear causality, with no surprises, uncertainty, or abrupt changes, all future events would be absolutely predictable in a sort of waveless orderliness." (Lawrence K Samuels, "Defense of Chaos", 2013)

"The problem of complexity is at the heart of mankind’s inability to predict future events with any accuracy. Complexity science has demonstrated that the more factors found within a complex system, the more chances of unpredictable behavior. And without predictability, any meaningful control is nearly impossible. Obviously, this means that you cannot control what you cannot predict. The ability ever to predict long-term events is a pipedream. Mankind has little to do with changing climate; complexity does." (Lawrence K Samuels, "The Real Science Behind Changing Climate", LewRockwell.com, August 1, 2014)

"The correlational technique known as multiple regression is used frequently in medical and social science research. This technique essentially correlates many independent (or predictor) variables simultaneously with a given dependent variable (outcome or output). It asks, 'Net of the effects of all the other variables, what is the effect of variable A on the dependent variable?' Despite its popularity, the technique is inherently weak and often yields misleading results. The problem is due to self-selection. If we don’t assign cases to a particular treatment, the cases may differ in any number of ways that could be causing them to differ along some dimension related to the dependent variable. We can know that the answer given by a multiple regression analysis is wrong because randomized control experiments, frequently referred to as the gold standard of research techniques, may give answers that are quite different from those obtained by multiple regression analysis." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

"The theory behind multiple regression analysis is that if you control for everything that is related to the independent variable and the dependent variable by pulling their correlations out of the mix, you can get at the true causal relation between the predictor variable and the outcome variable. That’s the theory. In practice, many things prevent this ideal case from being the norm." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

"A correlation is simply a bivariate relationship - a fancy way of saying that there is a relationship between two ('bi') variables ('variate'). And a bivariate relationship doesn’t prove that one thing caused the other. Think of it this way: you can observe that two things appear to be related statistically, but that doesn’t tell you the answer to any of the questions you might really care about - why is there a relationship and what does it mean to us as a consumer of data?" (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)

"Confirmation bias can affect nearly every aspect of the way you look at data, from sampling and observation to forecasting - so it’s something  to keep in mind anytime you’re interpreting data. When it comes to correlation versus causation, confirmation bias is one reason that some people ignore omitted variables - because they’re making the jump from correlation to causation based on preconceptions, not the actual evidence." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)

"In the real world, statistical issues rarely exist in isolation. You’re going to come across cases where there’s more than one problem with the data. For example, just because you identify some sampling errors doesn’t mean there aren’t also issues with cherry picking and correlations and averages and forecasts - or simply more sampling issues, for that matter. Some cases may have no statistical issues, some may have dozens. But you need to keep your eyes open in order to spot them all." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)

"Correlation is not equivalent to cause for one major reason. Correlation is well defined in terms of a mathematical formula. Cause is not well defined." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"The degree to which one variable can be predicted from another can be calculated as the correlation between them. The square of the correlation (R^2) is the proportion of the variance of one that can be 'explained' by knowledge of the other." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"It is convenient to use a single number to summarize a steadily increasing or decreasing relationship between the pairs of numbers shown on a scatter-plot. This is generally chosen to be the Pearson correlation coefficient [...]. A Pearson correlation runs between −1 and 1, and expresses how close to a straight line the dots or data-points fall. A correlation of 1 occurs if all the points lie on a straight line going upwards, while a correlation of −1 occurs if all the points lie on a straight line going downwards. A correlation near 0 can come from a random scatter of points, or any other pattern in which there is no systematic trend upwards or downwards [...]." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"Another problem is that while data visualizations may appear to be objective, the designer has a great deal of control over the message a graphic conveys. Even using accurate data, a designer can manipulate how those data make us feel. She can create the illusion of a correlation where none exists, or make a small difference between groups look big." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"Correlation doesn't imply causation - but apparently it doesn't sell newspapers either."(Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"Correlation quantifies the relationship between features. The purpose of correlation analysis is to understand the dependencies between features, so that observed effects can be explained or desired effects can be achieved." (Thomas A Runkler, "Data Analytics: Models and Algorithms for Intelligent Data Analysis" 3rd Ed., 2020)

"Correlation does not imply causation: often some other missing third variable is influencing both of the variables you are correlating. […] The need for a scatterplot arose when scientists had to examine bivariate relations between distinct variables directly. As opposed to other graphic forms - pie charts, line graphs, and bar charts - the scatterplot offered a unique advantage: the possibility to discover regularity in empirical data (shown as points) by adding smoothed lines or curves designed to pass 'not through, but among them', so as to pass from raw data to a theory-based description, analysis, and understanding." (Michael Friendly & Howard Wainer, "A History of Data Visualization and Graphic Communication", 2021)

"The practice of finding relationships between different sets of data - also known as correlations - is the bread and butter of what data analysis, and by proxy data visualization, is all about." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

More quotes on "Correlation" at the-web-of-knowledge.blogspot.com

🔭Data Science: Laws (Just the Quotes)

"[…] we must not measure the simplicity of the laws of nature by our facility of conception; but when those which appear to us the most simple, accord perfectly with observations of the phenomena, we are justified in supposing them rigorously exact." (Pierre-Simon Laplace, "The System of the World", 1809)

"Primary causes are unknown to us; but are subject to simple and constant laws, which may be discovered by observation, the study of them being the object of natural philosophy." (Jean-Baptiste-Joseph Fourier, "The Analytical Theory of Heat", 1822)

"The aim of every science is foresight. For the laws of established observation of phenomena are generally employed to foresee their succession. All men, however little advanced make true predictions, which are always based on the same principle, the knowledge of the future from the past." (Auguste Compte, "Plan des travaux scientifiques nécessaires pour réorganiser la société", 1822)

"But law is no explanation of anything; law is simply a generalization, a category of facts. Law is neither a cause, nor a reason, nor a power, nor a coercive force. It is nothing but a general formula, a statistical table." (Florence Nightingale, "Suggestions for Thought", 1860)

"The process of discovery is very simple. An unwearied and systematic application of known laws to nature, causes the unknown to reveal themselves. Almost any mode of observation will be successful at last, for what is most wanted is method." (Henry D Thoreau, "A Week on the Concord and Merrimack Rivers", 1862)

"Isolated facts and experiments have in themselves no value, however great their number may be. They only become valuable in a theoretical or practical point of view when they make us acquainted with the law of a series of uniformly recurring phenomena, or, it may be, only give a negative result showing an incompleteness in our knowledge of such a law, till then held to be perfect." (Hermann von Helmholtz, "The Aim and Progress of Physical Science", 1869)

"If statistical graphics, although born just yesterday, extends its reach every day, it is because it replaces long tables of numbers and it allows one not only to embrace at glance the series of phenomena, but also to signal the correspondences or anomalies, to find the causes, to identify the laws." (Émile Cheysson, cca. 1877)

"The history of thought should warn us against concluding that because the scientific theory of the world is the best that has yet been formulated, it is necessarily complete and final. We must remember that at bottom the generalizations of science or, in common parlance, the laws of nature are merely hypotheses devised to explain that ever-shifting phantasmagoria of thought which we dignify with the high-sounding names of the world and the universe." (Sir James G Frazer, "The Golden Bough: A Study in Magic and Religion", 1890)

"Even one well-made observation will be enough in many cases, just as one well-constructed experiment often suffices for the establishment of a law." (Émile Durkheim, "The Rules of Sociological Method", "The Rules of Sociological Method", 1895)

"An experiment is an observation that can be repeated, isolated and varied. The more frequently you can repeat an observation, the more likely are you to see clearly what is there and to describe accurately what you have seen. The more strictly you can isolate an observation, the easier does your task of observation become, and the less danger is there of your being led astray by irrelevant circumstances, or of placing emphasis on the wrong point. The more widely you can vary an observation, the more clearly will be the uniformity of experience stand out, and the better is your chance of discovering laws." (Edward B Titchener, "A Text-Book of Psychology", 1909)

"It is well to notice in this connection [the mutual relations between the results of counting and measuring] that a natural law, in the statement of which measurable magnitudes occur, can only be understood to hold in nature with a certain degree of approximation; indeed natural laws as a rule are not proof against sufficient refinement of the measuring tools." (Luitzen E J Brouwer, "Intuitionism and Formalism", Bulletin of the American Mathematical Society, Vol. 20, 1913)

"[…] as the sciences have developed further, the notion has gained ground that most, perhaps all, of our laws are only approximations." (William James, "Pragmatism: A New Name for Some Old Ways of Thinking", 1914)

"Scientific laws, when we have reason to think them accurate, are different in form from the common-sense rules which have exceptions: they are always, at least in physics, either differential equations, or statistical averages." (Bertrand A Russell, "The Analysis of Matter", 1927)

"Science is the attempt to discover, by means of observation, and reasoning based upon it, first, particular facts about the world, and then laws connecting facts with one another and (in fortunate cases) making it possible to predict future occurrences." (Bertrand Russell, "Religion and Science, Grounds of Conflict", 1935)

"Statistics is the fundamental and most important part of inductive logic. It is both an art and a science, and it deals with the collection, the tabulation, the analysis and interpretation of quantitative and qualitative measurements. It is concerned with the classifying and determining of actual attributes as well as the making of estimates and the testing of various hypotheses by which probable, or expected, values are obtained. It is one of the means of carrying on scientific research in order to ascertain the laws of behavior of things - be they animate or inanimate. Statistics is the technique of the Scientific Method." (Bruce D Greenschields & Frank M Weida, "Statistics with Applications to Highway Traffic Analyses", 1952)

"The world is not made up of empirical facts with the addition of the laws of nature: what we call the laws of nature are conceptual devices by which we organize our empirical knowledge and predict the future." (Richard B Braithwaite, "Scientific Explanation", 1953)

"The methods of science may be described as the discovery of laws, the explanation of laws by theories, and the testing of theories by new observations. A good analogy is that of the jigsaw puzzle, for which the laws are the individual pieces, the theories local patterns suggested by a few pieces, and the tests the completion of these patterns with pieces previously unconsidered." (Edwin P Hubble, "The Nature of Science and Other Lectures", 1954)

"Can there be laws of chance? The answer, it would seem should be negative, since chance is in fact defined as the characteristic of the phenomena which follow no law, phenomena whose causes are too complex to permit prediction." (Félix E Borel, "Probabilities and Life", 1962)

"Each piece, or part, of the whole of nature is always merely an approximation to the complete truth, or the complete truth so far as we know it. In fact, everything we know is only some kind of approximation, because we know that we do not know all the laws as yet. Therefore, things must be learned only to be unlearned again or, more likely, to be corrected." (Richard Feynman, "The Feynman Lectures on Physics" Vol. 1, 1964)

"At each level of complexity, entirely new properties appear. [And] at each stage, entirely new laws, concepts, and generalizations are necessary, requiring inspiration and creativity to just as great a degree as in the previous one." (Herb Anderson, 1972)

"A good scientific law or theory is falsifiable just because it makes definite claims about the world. For the falsificationist, If follows fairly readily from this that the more falsifiable a theory is the better, in some loose sense of more. The more a theory claims, the more potential opportunities there will be for showing that the world does not in fact behave in the way laid down by the theory. A very good theory will be one that makes very wide-ranging claims about the world, and which is consequently highly falsifiable, and is one that resists falsification whenever it is put to the test." (Alan F Chalmers,  "What Is This Thing Called Science?", 1976)

"Scientific laws give algorithms, or procedures, for determining how systems behave. The computer program is a medium in which the algorithms can be expressed and applied. Physical objects and mathematical structures can be represented as numbers and symbols in a computer, and a program can be written to manipulate them according to the algorithms. When the computer program is executed, it causes the numbers and symbols to be modified in the way specified by the scientific laws. It thereby allows the consequences of the laws to be deduced." (Stephen Wolfram, "Computer Software in Science and Mathematics", 1984)

"The connection between a model and a theory is that a model satisfies a theory; that is, a model obeys those laws of behavior that a corresponding theory explicity states or which may be derived from it. [...[] Computers make possible an entirely new relationship between theories and models. [...] A theory written in the form of a computer program is [...] both a theory and, when placed on a computer and run, a model to which the theory applies." (Joseph Weizenbaum, "Computer Power and Human Reason", 1984)

"We expect to learn new tricks because one of our science based abilities is being able to predict. That after all is what science is about. Learning enough about how a thing works so you'll know what comes next. Because as we all know everything obeys the universal laws, all you need is to understand the laws." (James Burke, "The Day the Universe Changed", 1985)

"A law explains a set of observations; a theory explains a set of laws. […] Unlike laws, theories often postulate unobservable objects as part of their explanatory mechanism." (John L Casti, "Searching for Certainty", 1990)

"So we pour in data from the past to fuel the decision-making mechanisms created by our models, be they linear or nonlinear. But therein lies the logician's trap: past data from real life constitute a sequence of events rather than a set of independent observations, which is what the laws of probability demand. [...] It is in those outliers and imperfections that the wildness lurks." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996) 

"A scientific theory is a concise and coherent set of concepts, claims, and laws (frequently expressed mathematically) that can be used to precisely and accurately explain and predict natural phenomena." (Mordechai Ben-Ari, "Just a Theory: Exploring the Nature of Science", 2005)

"[...] things that seem hopelessly random and unpredictable when viewed in isolation often turn out to be lawful and predictable when viewed in aggregate." (Steven Strogatz, "The Joy of X: A Guided Tour of Mathematics, from One to Infinity", 2012)

15 December 2018

🔭Data Science: Probability (Just the Quotes)

"Probability is a degree of possibility." (Gottfried W Leibniz, "On estimating the uncertain", 1676)

"Probability, however, is not something absolute, [it is] drawn from certain information which, although it does not suffice to resolve the problem, nevertheless ensures that we judge correctly which of the two opposites is the easiest given the conditions known to us." (Gottfried W Leibniz, "Forethoughts for an encyclopaedia or universal science", cca. 1679)

"[…] the highest probability amounts not to certainty, without which there can be no true knowledge." (John Locke, "An Essay Concerning Human Understanding", 1689)

"As mathematical and absolute certainty is seldom to be attained in human affairs, reason and public utility require that judges and all mankind in forming their opinions of the truth of facts should be regulated by the superior number of the probabilities on the one side or the other whether the amount of these probabilities be expressed in words and arguments or by figures and numbers." (William Murray, 1773)

"All certainty which does not consist in mathematical demonstration is nothing more than the highest probability; there is no other historical certainty." (Voltaire, "A Philosophical Dictionary", 1881)

"Nature prefers the more probable states to the less probable because in nature processes take place in the direction of greater probability. Heat goes from a body at higher temperature to a body at lower temperature because the state of equal temperature distribution is more probable than a state of unequal temperature distribution." (Max Planck, "The Atomic Theory of Matter", 1909)

"Sometimes the probability in favor of a generalization is enormous, but the infinite probability of certainty is never reached." (William Dampier-Whetham, "Science and the Human Mind", 1912)

"There can be no unique probability attached to any event or behaviour: we can only speak of ‘probability in the light of certain given information’, and the probability alters according to the extent of the information." (Sir Arthur S Eddington, "The Nature of the Physical World", 1928)

"[…] the statistical prediction of the future from the past cannot be generally valid, because whatever is future to any given past, is in tum past for some future. That is, whoever continually revises his judgment of the probability of a statistical generalization by its successively observed verifications and failures, cannot fail to make more successful predictions than if he should disregard the past in his anticipation of the future. This might be called the ‘Principle of statistical accumulation’." (Clarence I Lewis, "Mind and the World-Order: Outline of a Theory of Knowledge", 1929)

"Science does not aim, primarily, at high probabilities. It aims at a high informative content, well backed by experience. But a hypothesis may be very probable simply because it tells us nothing, or very little." (Karl Popper, "The Logic of Scientific Discovery", 1934)

"The most important application of the theory of probability is to what we may call 'chance-like' or 'random' events, or occurrences. These seem to be characterized by a peculiar kind of incalculability which makes one disposed to believe - after many unsuccessful attempts - that all known rational methods of prediction must fail in their case. We have, as it were, the feeling that not a scientist but only a prophet could predict them. And yet, it is just this incalculability that makes us conclude that the calculus of probability can be applied to these events." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"Equiprobability in the physical world is purely a hypothesis. We may exercise the greatest care and the most accurate of scientific instruments to determine whether or not a penny is symmetrical. Even if we are satisfied that it is, and that our evidence on that point is conclusive, our knowledge, or rather our ignorance, about the vast number of other causes which affect the fall of the penny is so abysmal that the fact of the penny’s symmetry is a mere detail. Thus, the statement 'head and tail are equiprobable' is at best an assumption." (Edward Kasner & James R Newman, "Mathematics and the Imagination", 1940)

"Probabilities must be regarded as analogous to the measurement of physical magnitudes; that is to say, they can never be known exactly, but only within certain approximation." (Emile Borel, "Probabilities and Life", 1943)

"Just as entropy is a measure of disorganization, the information carried by a set of messages is a measure of organization. In fact, it is possible to interpret the information carried by a message as essentially the negative of its entropy, and the negative logarithm of its probability. That is, the more probable the message, the less information it gives. Clichés, for example, are less illuminating than great poems." (Norbert Wiener, "The Human Use of Human Beings", 1950)

"To say that observations of the past are certain, whereas predictions are merely probable, is not the ultimate answer to the question of induction; it is only a sort of intermediate answer, which is incomplete unless a theory of probability is developed that explains what we should mean by ‘probable’ and on what ground we can assert probabilities." (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

"Uncertainty is introduced, however, by the impossibility of making generalizations, most of the time, which happens to all members of a class. Even scientific truth is a matter of probability and the degree of probability stops somewhere short of certainty." (Wayne C Minnick, "The Art of Persuasion", 1957)

"Everybody has some idea of the meaning of the term 'probability' but there is no agreement among scientists on a precise definition of the term for the purpose of scientific methodology. It is sufficient for our purpose, however, if the concept is interpreted in terms of relative frequency, or more simply, how many times a particular event is likely to occur in a large population." (Alfred R Ilersic, "Statistics", 1959)

"Incomplete knowledge must be considered as perfectly normal in probability theory; we might even say that, if we knew all the circumstances of a phenomenon, there would be no place for probability, and we would know the outcome with certainty." (Félix E Borel, Probability and Certainty", 1963)

"Probability is the mathematics of uncertainty. Not only do we constantly face situations in which there is neither adequate data nor an adequate theory, but many modem theories have uncertainty built into their foundations. Thus learning to think in terms of probability is essential. Statistics is the reverse of probability (glibly speaking). In probability you go from the model of the situation to what you expect to see; in statistics you have the observations and you wish to estimate features of the underlying model." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985) 

"Probability plays a central role in many fields, from quantum mechanics to information theory, and even older fields use probability now that the presence of 'noise' is officially admitted. The newer aspects of many fields start with the admission of uncertainty." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Probabilities are summaries of knowledge that is left behind when information is transferred to a higher level of abstraction." (Judea Pearl, "Probabilistic Reasoning in Intelligent Systems: Network of Plausible, Inference", 1988)

"[In statistics] you have the fact that the concepts are not very clean. The idea of probability, of randomness, is not a clean mathematical idea. You cannot produce random numbers mathematically. They can only be produced by things like tossing dice or spinning a roulette wheel. With a formula, any formula, the number you get would be predictable and therefore not random. So as a statistician you have to rely on some conception of a world where things happen in some way at random, a conception which mathematicians don’t have." (Lucien LeCam, [interview] 1988)

"So we pour in data from the past to fuel the decision-making mechanisms created by our models, be they linear or nonlinear. But therein lies the logician's trap: past data from real life constitute a sequence of events rather than a set of independent observations, which is what the laws of probability demand. [...] It is in those outliers and imperfections that the wildness lurks." (Peter L Bernstein, "Against the Gods: The Remarkable Story of Risk", 1996) 

"Often, we use the word random loosely to describe something that is disordered, irregular, patternless, or unpredictable. We link it with chance, probability, luck, and coincidence. However, when we examine what we mean by random in various contexts, ambiguities and uncertainties inevitably arise. Tackling the subtleties of randomness allows us to go to the root of what we can understand of the universe we inhabit and helps us to define the limits of what we can know with certainty." (Ivars Peterson, "The Jungles of Randomness: A Mathematical Safari", 1998)

"In the laws of probability theory, likelihood distributions are fixed properties of a hypothesis. In the art of rationality, to explain is to anticipate. To anticipate is to explain." (Eliezer S. Yudkowsky, "A Technical Explanation of Technical Explanation", 2005)

"For some scientific data the true value cannot be given by a constant or some straightforward mathematical function but by a probability distribution or an expectation value. Such data are called probabilistic. Even so, their true value does not change with time or place, making them distinctly different from  most statistical data of everyday life." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"In fact, H [entropy] measures the amount of uncertainty that exists in the phenomenon. If there were only one event, its probability would be equal to 1, and H would be equal to 0 - that is, there is no uncertainty about what will happen in a phenomenon with a single event because we always know what is going to occur. The more events that a phenomenon possesses, the more uncertainty there is about the state of the phenomenon. In other words, the more entropy, the more information." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"The four questions of data analysis are the questions of description, probability, inference, and homogeneity. [...] Descriptive statistics are built on the assumption that we can use a single value to characterize a single property for a single universe. […] Probability theory is focused on what happens to samples drawn from a known universe. If the data happen to come from different sources, then there are multiple universes with different probability models.  [...] Statistical inference assumes that you have a sample that is known to have come from one universe." (Donald J Wheeler," Myths About Data Analysis", International Lean & Six Sigma Conference, 2012)

"Entropy is a measure of amount of uncertainty or disorder present in the system within the possible probability distribution. The entropy and amount of unpredictability are directly proportional to each other." (G Suseela & Y Asnath V Phamila, "Security Framework for Smart Visual Sensor Networks", 2019)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.