01 December 2018

🔭Data Science: Data Visualization (Just the Quotes)

"No matter how clever the choice of the information, and no matter how technologically impressive the encoding, a visualization fails if the decoding fails. Some display methods lead to efficient, accurate decoding, and others lead to inefficient, inaccurate decoding. It is only through scientific study of visual perception that informed judgments can be made about display methods." (William S Cleveland, "The Elements of Graphing Data", 1985)

"The greatest possibilities of visual display lie in vividness and inescapability of the intended message. A visual display can stop your mental flow in its tracks and make you think. A visual display can force you to notice what you never expected to see. One should see the intended at once; one should not even have to wait for it to appear." (John W Tukey, "Data-based graphics: Visual display in the decades to come", Statistical Science 5, 1990)

"Data that are skewed toward large values occur commonly. Any set of positive measurements is a candidate. Nature just works like that. In fact, if data consisting of positive numbers range over several powers of ten, it is almost a guarantee that they will be skewed. Skewness creates many problems. There are visualization problems. A large fraction of the data are squashed into small regions of graphs, and visual assessment of the data degrades. There are characterization problems. Skewed distributions tend to be more complicated than symmetric ones; for example, there is no unique notion of location and the median and mean measure different aspects of the distribution. There are problems in carrying out probabilistic methods. The distribution of skewed data is not well approximated by the normal, so the many probabilistic methods based on an assumption of a normal distribution cannot be applied." (William S Cleveland, "Visualizing Data", 1993)

"Many of the applications of visualization in this book give the impression that data analysis consists of an orderly progression of exploratory graphs, fitting, and visualization of fits and residuals. Coherence of discussion and limited space necessitate a presentation that appears to imply this. Real life is usually quite different. There are blind alleys. There are mistaken actions. There are effects missed until the very end when some visualization saves the day. And worse, there is the possibility of the nearly unmentionable: missed effects." (William S Cleveland, "Visualizing Data", 1993)

"One important aspect of reality is improvisation; as a result of special structure in a set of data, or the finding of a visualization method, we stray from the standard methods for the data type to exploit the structure or the finding." (William S Cleveland, "Visualizing Data", 1993)

"There are two components to visualizing the structure of statistical data - graphing and fitting. Graphs are needed, of course, because visualization implies a process in which information is encoded on visual displays. Fitting mathematical functions to data is needed too. Just graphing raw data, without fitting them and without graphing the fits and residuals, often leaves important aspects of data undiscovered." (William S Cleveland, "Visualizing Data", 1993)

"Visualization is an approach to data analysis that stresses a penetrating look at the structure of data. No other approach conveys as much information. […] Conclusions spring from data when this information is combined with the prior knowledge of the subject under investigation." (William S Cleveland, "Visualizing Data", 1993)

"Visualization is an effective framework for drawing inferences from data because its revelation of the structure of data can be readily combined with prior knowledge to draw conclusions. By contrast, because of the formalism of probablistic methods, it is typically impossible to incorporate into them the full body of prior information." (William S Cleveland, "Visualizing Data", 1993)

"When visualization tools act as a catalyst to early visual thinking about a relatively unexplored problem, neither the semantics nor the pragmatics of map signs is a dominant factor. On the other hand, syntactics (or how the sign-vehicles, through variation in the visual variables used to construct them, relate logically to one another) are of critical importance." (Alan M MacEachren, "How Maps Work: Representation, Visualization, and Design", 1995)

"The nature of maps and of their use in science and society is in the midst of remarkable change - change that is stimulated by a combination of new scientific and societal needs for geo-referenced information and rapidly evolving technologies that can provide that information in innovative ways. A key issue at the heart of this change is the concept of ‘visualization’." (Alan M MacEachren, "Exploratory cartographic visualization: advancing the agenda", 1997)

"Visualization for large data is an oxymoron - the art is to reduce size before one visualizes. The contradiction (and challenge) is that we may need to visualize first in order to find out how to reduce size." (Peter Huber, "Massive datasets workshop: Four years after", Journal of Computational and Graphical Statistics Vol 8, 1999)

"Functional visualizations are more than innovative statistical analyses and computational algorithms. They must make sense to the user and require a visual language system that uses color, shape, line, hierarchy and composition to communicate clearly and appropriately, much like the alphabetic and character-based languages used worldwide between humans." (Matt Woolman, "Digital Information Graphics", 2002)

"Visualizations can be used to explore data, to confirm a hypothesis, or to manipulate a viewer. [...] In exploratory visualization the user does not necessarily know what he is looking for. This creates a dynamic scenario in which interaction is critical. [...] In a confirmatory visualization, the user has a hypothesis that needs to be tested. This scenario is more stable and predictable. System parameters are often predetermined." (Usama Fayyad et al, "Information Visualization in Data Mining and Knowledge Discovery", 2002) 

"Dashboards and visualization are cognitive tools that improve your 'span of control' over a lot of business data. These tools help people visually identify trends, patterns and anomalies, reason about what they see and help guide them toward effective decisions. As such, these tools need to leverage people's visual capabilities. With the prevalence of scorecards, dashboards and other visualization tools now widely available for business users to review their data, the issue of visual information design is more important than ever." (Richard Brath & Michael Peters, "Dashboard Design: Why Design is Important," DM Direct, 2004)

"Merely drawing a plot does not constitute visualization. Visualization is about conveying important information to the reader accurately. It should reveal information that is in the data and should not impose structure on the data." (Robert Gentleman, "Bioinformatics and Computational Biology Solutions using R and Bioconductor", 2005)

"Exploratory Data Analysis is more than just a collection of data-analysis techniques; it provides a philosophy of how to dissect a data set. It stresses the power of visualisation and aspects such as what to look for, how to look for it and how to interpret the information it contains. Most EDA techniques are graphical in nature, because the main aim of EDA is to explore data in an open-minded way. Using graphics, rather than calculations, keeps open possibilities of spotting interesting patterns or anomalies that would not be apparent with a calculation (where assumptions and decisions about the nature of the data tend to be made in advance)." (Alan Graham, "Developing Thinking in Statistics", 2006) 

"Data visualization [...] expresses the idea that it involves more than just representing data in a graphical form (instead of using a table). The information behind the data should also be revealed in a good display; the graphic should aid readers or viewers in seeing the structure in the data. The term data visualization is related to the new field of information visualization. This includes visualization of all kinds of information, not just of data, and is closely associated with research by computer scientists." (Antony Unwin et al, "Introduction" [in "Handbook of Data Visualization"], 2008) 

"The main goal of data visualization is its ability to visualize data, communicating information clearly and effectively. It doesn’t mean that data visualization needs to look boring to be functional or extremely sophisticated to look beautiful. To convey ideas effectively, both aesthetic form and functionality need to go hand in hand, providing insights into a rather sparse and complex dataset by communicating its key aspects in a more intuitive way. Yet designers often tend to discard the balance between design and function, creating gorgeous data visualizations which fail to serve its main purpose - communicate information." (Vitaly Friedman, "Data Visualization and Infographics", Smashing Magazine, 2008)

"The purpose of visualization is insight, not pictures." (Ben Shneiderman, "Extreme visualization: squeezing a billion records into a million pixels",  SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD, 2008)

"With the ever increasing amount of empirical information that scientists from all disciplines are dealing with, there exists a great need for robust, scalable and easy to use clustering techniques for data abstraction, dimensionality reduction or visualization to cope with and manage this avalanche of data."  (Jörg Reichardt, "Structure in Complex Networks", 2009)

"So what is the difference between a chart or graph and a visualization? […] a chart or graph is a clean and simple atomic piece; bar charts contain a short story about the data being presented. A visualization, on the other hand, seems to contain much more ʻchart junkʼ, with many sometimes complex graphics or several layers of charts and graphs. A visualization seems to be the super-set for all sorts of data-driven design." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"The goal of visualization is to aid our understanding of data by leveraging the human visual system’s highly tuned ability to see patterns, spot trends, and identify outliers." (J Heer et al, "A tour through the visualization zoo", Queue 8, 2010) 

"All graphics present data and allow a certain degree of exploration of those same data. Some graphics are almost all presentation, so they allow just a limited amount of exploration; hence we can say they are more infographics than visualization, whereas others are mostly about letting readers play with what is being shown, tilting more to the visualization side of our linear scale. But every infographic and every visualization has a presentation and an exploration component: they present, but they also facilitate the analysis of what they show, to different degrees." (Alberto Cairo, "The Functional Art", 2011)

"Exploratory data visualizations are appropriate when you have a whole bunch of data and you’re not sure what’s in it. […] By contrast, explanatory data visualization is appropriate when you already know what the data has to say, and you are trying to tell that story to somebody else." (Noah Iliinsky & Julie Steele, "Designing Data Visualizations", 2011)

"In data visualization, the number one rule of thumb to bear is mind is: Function first, suave second." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"The first and main goal of any graphic and visualization is to be a tool for your eyes and brain to perceive what lies beyond their natural reach." (Alberto Cairo, "The Functional Art", 2011)

"Thinking of graphics as art leads many to put bells and whistles over substance and to confound infographics with mere illustrations." (Alberto Cairo, "The Functional Art", 2011)

"[...] the terms data visualization and information visualization (casually, data viz and info viz) are useful for referring to any visual representation of data that is: (•) algorithmically drawn (may have custom touches but is largely rendered with the help of computerized methods); (•) easy to regenerate with different data (the same form may be repurposed to represent different datasets with similar dimensions or characteristics); (•) often aesthetically barren (data is not decorated); and (•) relatively data-rich (large volumes of data are welcome and viable, in contrast to infographics)." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"Visualizations act as a campfire around which we gather to tell stories." (Al Shalloway, 2011)

"Good infographic design is about storytelling by combining data visualization design and graphic design." (Randy Krum, "Good Infographics: Effective Communication with Data Visualization and Design", 2013)

"Good visualization is a winding process that requires statistics and design knowledge. Without the former, the visualization becomes an exercise only in illustration and aesthetics, and without the latter, one of only analyses. On their own, these are fine skills, but they make for incomplete data graphics. Having skills in both provides you with the luxury - which is growing into a necessity - to jump back and forth between data exploration and storytelling." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"The biggest thing to know is that data visualization is hard. Really difficult to pull off well. It requires harmonization of several skills sets and ways of thinking: conceptual, analytic, statistical, graphic design, programmatic, interface-design, story-telling, journalism - plus a bit of 'gut feel'. The end result is often simple and beautiful, but the process itself is usually challenging and messy." (David McCandless, 2013)

"Visualization can be appreciated purely from an aesthetic point of view, but it’s most interesting when it’s about data that’s worth looking at. That’s why you start with data, explore it, and then show results rather than start with a visual and try to squeeze a dataset into it. It’s like trying to use a hammer to bang in a bunch of screws. […] Aesthetics isn’t just a shiny veneer that you slap on at the last minute. It represents the thought you put into a visualization, which is tightly coupled with clarity and affects interpretation." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Visualization is what happens when you make the jump from raw data to bar graphs, line charts, and dot plots. […] In its most basic form, visualization is simply mapping data to geometry and color. It works because your brain is wired to find patterns, and you can switch back and forth between the visual and the numbers it represents. This is the important bit. You must make sure that the essence of the data isn’t lost in that back and forth between visual and the value it represents because if you can’t map back to the data, the visualization is just a bunch of shapes." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"What is good visualization? It is a representation of data that helps you see what you otherwise would have been blind to if you looked only at the naked source. It enables you to see trends, patterns, and outliers that tell you about yourself and what surrounds you. The best visualization evokes that moment of bliss when seeing something for the first time, knowing that what you see has been right in front of you, just slightly hidden. Sometimes it is a simple bar graph, and other times the visualization is complex because the data requires it." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Just because data is visualized doesn’t necessarily mean that it is accurate, complete, or indicative of the right course of action. Exhibiting a healthy skepticism is almost always a good thing." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"To be sure, data doesn’t always need to be visualized, and many data visualizations just plain suck. Look around you. It’s not hard to find truly awful representations of information. Some work in concept but fail because they are too busy; they confuse people more than they convey information [...]. Visualization for the sake of visualization is unlikely to produce desired results - and this goes double in an era of Big Data. Bad is still bad, even and especially at a larger scale." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"We are all becoming more comfortable with data. Data visualization is no longer just something we have to do at work. Increasingly, we want to do it as consumers and as citizens. Put simply, visualizing helps us understand what’s going on in our lives - and how to solve problems." (Phil Simon, "The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions", 2014)

"Creating effective visualizations is hard. Not because a dataset requires an exotic and bespoke visual representation - for many problems, standard statistical charts will suffice. And not because creating a visualization requires coding expertise in an unfamiliar programming language [...]. Rather, creating effective visualizations is difficult because the problems that are best addressed by visualization are often complex and ill-formed. The task of figuring out what attributes of a dataset are important is often conflated with figuring out what type of visualization to use. Picking a chart type to represent specific attributes in a dataset is comparatively easy. Deciding on which data attributes will help answer a question, however, is a complex, poorly defined, and user-driven process that can require several rounds of visualization and exploration to resolve." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"[…] no single visualization is ever quite able to show all of the important aspects of our data at once - there just are not enough visual encoding channels. […] designing effective visualizations to make sense of data is not an art - it is a systematic and repeatable process." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

 "[…] the data itself can lead to new questions too. In exploratory data analysis (EDA), for example, the data analyst discovers new questions based on the data. The process of looking at the data to address some of these questions generates incidental visualizations - odd patterns, outliers, or surprising correlations that are worth looking into further." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"The field of [data] visualization takes on that goal more broadly: rather than attempting to identify a single metric, the analyst instead tries to look more holistically across the data to get a usable, actionable answer. Arriving at that answer might involve exploring multiple attributes, and using a number of views that allow the ideas to come together. Thus, operationalization in the context of visualization is the process of identifying tasks to be performed over the dataset that are a reasonable approximation of the high-level question of interest." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"Apart from the technical challenge of working with the data itself, visualization in big data is different because showing the individual observations is just not an option. But visualization is essential here: for analysis to work well, we have to be assured that patterns and errors in the data have been spotted and understood. That is only possible by visualization with big data, because nobody can look over the data in a table or spreadsheet." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"As a first principle, any visualization should convey its information quickly and easily, and with minimal scope for misunderstanding. Unnecessary visual clutter makes more work for the reader’s brain to do, slows down the understanding (at which point they may give up) and may even allow some incorrect interpretations to creep in." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Data storytelling can be defined as a structured approach for communicating data insights using narrative elements and explanatory visuals." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Data storytelling involves the skillful combination of three key elements: data, narrative, and visuals. Data is the primary building block of every data story. It may sound simple, but a data story should always find its origin in data, and data should serve as the foundation for the narrative and visual elements of your story." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"(1) Good data visualization is trustworthy: Is it reliable? Is the portrayal of the data and the subject faithful? Do the representation and presentation design have integrity? (2) Good data visualization is accessible: Is it usable? Is the portrayal of the data and the subject relevant? Is the representation and presentation design suitably understandable? (3) Good data visualization is elegant: Is it aesthetic? Is the representation and presentation design appealing?" (Andy Kirk, "Data Visualisation: A Handbook for Data Driven Design" 2nd Ed., 2019)

"In addition to managing how the data is visualized to reduce noise, you can also decrease the visual interference by minimizing the extraneous cognitive load. In these cases, the nonrelevant information and design elements surrounding the data can cause extraneous noise. Poor design or display decisions by the data storyteller can inadvertently interfere with the communication of the intended signal. This form of noise can occur at both a macro and micro level." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"One very common problem in data visualization is that encoding numerical variables to area is incredibly popular, but readers can’t translate it back very well." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"There is often no one 'best' visualization, because it depends on context, what your audience already knows, how numerate or scientifically trained they are, what formats and conventions are regarded as standard in the particular field you’re working in, the medium you can use, and so on. It’s also partly scientific and partly artistic, so you get to express your own design style in it, which is what makes it so fascinating." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019) 

"When visuals are applied to data, they can enlighten the audience to insights that they wouldn’t see without charts or graphs. Many interesting patterns and outliers in the data would remain hidden in the rows and columns of data tables without the help of data visualizations. They connect with our visual nature as human beings and impart knowledge that couldn’t be obtained as easily using other approaches that involve just words or numbers." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"While visuals are an essential part of data storytelling, data visualizations can serve a variety of purposes from analysis to communication to even art. Most data charts are designed to disseminate information in a visual manner. Only a subset of data compositions is focused on presenting specific insights as opposed to just general information. When most data compositions combine both visualizations and text, it can be difficult to discern whether a particular scenario falls into the realm of data storytelling or not." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Another problem is that while data visualizations may appear to be objective, the designer has a great deal of control over the message a graphic conveys. Even using accurate data, a designer can manipulate how those data make us feel. She can create the illusion of a correlation where none exists, or make a small difference between groups look big." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"As presenters of data visualizations, often we just want our audience to understand something about their environment – a trend, a pattern, a breakdown, a way in which things have been progressing. If we ask ourselves what we want our audience to do with that information, we might have a hard time coming up with a clear answer sometimes. We might just want them to know something." (Ben Jones, "Avoiding Data Pitfalls: How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations", 2020)

"Data visualizations are either used (1) to help people complete a task, or (2) to give them a general awareness of the way things are, or (3) to enable them to explore the topic for themselves."  (Ben Jones, "Avoiding Data Pitfalls: How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations", 2020)

"Much of the data visualization that bombards us today is decoration at best, and distraction or even disinformation at worst. The decorative function is surprisingly common, perhaps because the data visualization teams of many media organizations are part of the art departments. They are led by people whose skills and experience are not in statistics but in illustration or graphic design. The emphasis is on the visualization, not on the data. It is, above all, a picture." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"A data visualization, or dashboard, is great for summarizing or describing what has gone on in the past, but if people don’t know how to progress beyond looking just backwards on what has happened, then they cannot diagnose and find the ‘why’ behind it." (Jordan Morrow, "Be Data Literate: The data literacy skills everyone needs to succeed", 2021)

"Data literacy is for the masses, and data visualization is powerful to simplify what could be very complicated." (Jordan Morrow, "Be Data Literate: The data literacy skills everyone needs to succeed", 2021)

"Understanding the entire data ecosystem, from the production of a data point to its consumption in a dashboard or a visualization, provides the ability to invoke action, which is more valuable than the mere sum of its parts." (Jesús Barrasa et al, "Knowledge Graphs: Data in Context for Responsive Businesses", 2021)

"Data visualization is a simplified approach to studying data." (Jordan Morrow, "Be Data Literate: The data literacy skills everyone needs to succeed", 2021)

"Data visualization is a mix of science and art. Sometimes we want to be closer to the science side of the spectrum - in other words, use visualizations that allow readers to more accurately perceive the absolute values of data and make comparisons. Other times we may want to be closer to the art side of the spectrum and create visuals that engage and excite the reader, even if they do not permit the most accurate comparisons." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"I agree that data visualizations should be visually appealing, driving and utilizing the appeal and power for individuals to utilize it effectively, but sometimes this can take too much time, taking it away from more valuable uses in data. Plus, if the data visualization is not moving the needle of a business goal or objective, how effective is that visualization?" (Jordan Morrow, "Be Data Literate: The data literacy skills everyone needs to succeed", 2021)

"Data becomes more useful once it’s transformed into a data visualization or used in a data story. Data storytelling is the ability to effectively communicate insights from a dataset using narratives and visualizations. It can be used to put data insights into context and inspire action from your audience. Color can be very helpful when you are trying to make information stand out within your data visualizations." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Data visualization is the practice of taking insights found in data analysis and turning them into numbers, graphs, charts, and other visual concepts to make them easier to grasp, understand, learn from, and utilize.[...] The visualization of data can be thought of as both a science and an art in that the way it is displayed is often as important to its understanding as the actual information that is being displayed." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Visualizations can remove the background noise from enormous sets of data so that only the most important points stand out to the intended audience. This is particularly important in the era of big data. The more data there is, the more chance for noise and outliers to interfere with the core concepts of the data set." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"The best approach is to build visualizations in the most digestible form, fitted to how that executive thinks. You will have to interact with executives, show them different visualizations, and see how they react in order to learn which forms work best for them. Be ready to fail often and learn fast, particularly with visualizations." (John Lucker)

"Visualisation is fundamentally limited by the number of pixels you can pump to a screen. If you have big data, you have way more data than pixels, so you have to summarise your data. Statistics gives you lots of really good tools for this." (Hadley Wickham)

"We often think of visualization as a design and programming task, but the process starts further back with the data. You have to understand the data - its trends and patterns, along with its flaws and imperfections - and the rest follows." (Nathan Yau)

🔭Data Science: The Science in Data Science (Just the Quotes)

"The aim of every science is foresight. For the laws of established observation of phenomena are generally employed to foresee their succession. All men, however little advanced make true predictions, which are always based on the same principle, the knowledge of the future from the past." (Auguste Compte, "Plan des travaux scientifiques nécessaires pour réorganiser la société", 1822)

"Science is nothing but the finding of analogy, identity, in the most remote parts." (Ralph W Emerson, 1837)

"Therefore science always goes abreast with the just elevation of the man, keeping step with religion and metaphysics; or, the state of science is an index of our self-knowledge." (Ralph W Emerson, "The Poet", 1844)

"It may sound quite strange, but for me, as for other scientists on whom these kinds of imaginative images have a greater effect than other poems do, no science is at its very heart more closely related to poetry, perhaps, than is chemistry." (Just Liebig, 1854)

"Science is the systematic classification of experience." (George H Lewes, "The Physical Basis of Mind", 1877)

"Science is the observation of things possible, whether present or past; prescience is the knowledge of things which may come to pass, though but slowly." (Leonardo da Vinci, "The Notebooks of Leonardo da Vinci", 1883)

"While science is pursuing a steady onward movement, it is convenient from time to time to cast a glance back on the route already traversed, and especially to consider the new conceptions which aim at discovering the general meaning of the stock of facts accumulated from day to day in our laboratories." (Dmitry Mendeleyev, "The Periodic Law of the Chemical Elements", Journal of the Chemical Society Vol. 55, 1889)

"The aim of science is always to reduce complexity to simplicity." (William James, "The Principles of Psychology", 1890)

"Science is not the monopoly of the naturalist or the scholar, nor is it anything mysterious or esoteric. Science is the search for truth, and truth is the adequacy of a description of facts." (Paul Carus, "Philosophy as a Science", 1909)

"Science is reduction. Mathematics is its ideal, its form par excellence, for it is in mathematics that assimilation, identification, is most perfectly realized. The universe, scientifically explained, would be a certain formula, one and eternal, regarded as the equivalent of the entire diversity and movement of things." (Émile Boutroux, "Natural law in Science and Philosophy", 1914)

"Abstract as it is, science is but an outgrowth of life. That is what the teacher must continually keep in mind. […] Let him explain […] science is not a dead system - the excretion of a monstrous pedantism - but really one of the most vigorous and exuberant phases of human life." (George A L Sarton, "The Teaching of the History of Science", The Scientific Monthly, 1918)

"The aim of science is to seek the simplest explanations of complex facts. We are apt to fall into the error of thinking that the facts are simple because simplicity is the goal of our quest. The guiding motto in the life of every natural philosopher should be, ‘Seek simplicity and distrust it’." (Alfred N Whitehead, "The Concept of Nature", 1919)

"Science is simply setting out on a fishing expedition to see whether it cannot find some procedure which it can call measurement of space and some procedure which it can call the measurement of time, and something which it can call a system of forces, and something which it can call masses." (Alfred N Whitehead, "The Concept of Nature", 1920)

"Science is a magnificent force, but it is not a teacher of morals. It can perfect machinery, but it adds no moral restraints to protect society from the misuse of the machine. It can also build gigantic intellectual ships, but it constructs no moral rudders for the control of storm tossed human vessel. It not only fails to supply the spiritual element needed but some of its unproven hypotheses rob the ship of its compass and thus endangers its cargo." (William J Bryan, "Undelivered Trial Summation Scopes Trial", 1925)

"Science is but a method. Whatever its material, an observation accurately made and free of compromise to bias and desire, and undeterred by consequence, is science." (Hans Zinsser, "Untheological Reflections", The Atlantic Monthly, 1929)

"Although this may seem a paradox, all exact science is dominated by the idea of approximation. When a man tells you that he knows the exact truth about anything, you are safe in inferring that he is an inexact man." (Bertrand Russell, "The Scientific Outlook", 1931)

"The common view of science is that it is a sort of machine for increasing the race’s store of dependable facts. It is that only in part; in even larger part it is a machine for upsetting undependable facts." (Will Durant, 1931)

"One has to recognize that science is not metaphysics, and certainly not mysticism; it can never bring us the illumination and the satisfaction experienced by one enraptured in ecstasy. Science is sobriety and clarity of conception, not intoxicated vision."(Ludwig Von Mises, "Epistemological Problems of Economics", 1933)

"Modern positivists are apt to see more clearly that science is not a system of concepts but rather a system of statements." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"Science is a system of statements based on direct experience, and controlled by experimental verification. Verification in science is not, however, of single statements but of the entire system or a sub-system of such statements." (Rudolf Carnap, "The Unity of Science", 1934)

"Science is the attempt to discover, by means of observation, and reasoning based upon it, first, particular facts about the world, and then laws connecting facts with one another and (in fortunate cases) making it possible to predict future occurrences." (Bertrand Russell, "Religion and Science, Grounds of Conflict", 1935)

"[…] that all science is merely a game can be easily discarded as a piece of wisdom too easily come by. But it is legitimate to enquire whether science is not liable to indulge in play within the closed precincts of its own method. Thus, for instance, the scientist’s continuous penchant for systems tends in the direction of play." (Johan Huizinga, "Homo Ludens", 1938)

"Science makes no pretension to eternal truth or absolute truth; some of its rivals do. That science is in some respects inhuman may be the secret of its success in alleviating human misery and mitigating human stupidity." (Eric T Bell, "Mathematics: Queen and Servant of Science", 1938)

"Science is the attempt to make the chaotic diversity of our sense experience correspond to a logically uniform system of thought." (Albert Einstein, "Considerations Concerning the Fundaments of Theoretical Physics", Science Vol. 91 (2369), 1940)

"Science is the organised attempt of mankind to discover how things work as causal systems. The scientific attitude of mind is an interest in such questions. It can be contrasted with other attitudes, which have different interests; for instance the magical, which attempts to make things work not as material systems but as immaterial forces which can be controlled by spells; or the religious, which is interested in the world as revealing the nature of God." (Conrad H Waddington, "The Scientific Attitude", 1941)

"Science, in the broadest sense, is the entire body of the most accurately tested, critically established, systematized knowledge available about that part of the universe which has come under human observation. For the most part this knowledge concerns the forces impinging upon human beings in the serious business of living and thus affecting man’s adjustment to and of the physical and the social world. […] Pure science is more interested in understanding, and applied science is more interested in control […]" (Austin L Porterfield, "Creative Factors in Scientific Research", 1941)

"Science is an interconnected series of concepts and schemes that have developed as a result of experimentation and observation and are fruitful of further experimentation and observation."(James B Conant, "Science and Common Sense", 1951)

"[…] theoretical science is essentially disciplined exploitation of metaphor." (Anatol Rapoport, "Operational Philosophy", 1953)

"Prediction is all very well; but we must make sense of what we predict. The mainspring of science is the conviction that by honest, imaginative enquiry we can build up a system of ideas about Nature which has some legitimate claim to ‘reality’." (Stephen Toulmin, "The Philosophy of Science: An Introduction", 1953)

"An engineering science aims to organize the design principles used in engineering practice into a discipline and thus to exhibit the similarities between different areas of engineering practice and to emphasize the power of fundamental concepts. In short, an engineering science is predominated by theoretical analysis and very often uses the tool of advanced mathematics." (Qian Xuesen, "Engineering cybernetics", 1954))

"The true aim of science is to discover a simple theory which is necessary and sufficient to cover the facts, when they have been purified of traditional prejudices." (Lancelot L Whyte, "Accent on Form", 1954)

"Science is the creation of concepts and their exploration in the facts. It has no other test of the concept than its empirical truth to fact." (Jacob Bronowski, "Science and Human Values", 1956)

"The progress of science is the discovery at each step of a new order which gives unity to what had seemed unlike." (Jacob Bronowski, "Science and Human Values", 1956)

"[…] any serious examination of the basic concepts of any science is far more difficult than the elaboration of their ultimate consequences." (George F J Temple, "Turning Points in Physics", 1959)

"Science is usually understood to depict a universe of strict order and lawfulness, of rigorous economy - one whose currency is energy, convertible against a service charge into a growing common pool called entropy." (Paul A Weiss,"Organic Form: Scientific and Aesthetic Aspects", 1960)

"[…] the progress of science is a little like making a jig-saw puzzle. One makes collections of pieces which certainly fit together, though at first it is not clear where each group should come in the picture as a whole, and if at first one makes a mistake in placing it, this can be corrected later without dismantling the whole group." (Sir George Thomson, "The Inspiration of Science", 1961)

"Science is the reduction of the bewildering diversity of unique events to manageable uniformity within one of a number of symbol systems, and technology is the art of using these symbol systems so as to control and organize unique events. Scientific observation is always a viewing of things through the refracting medium of a symbol system, and technological praxis is always handling of things in ways that some symbol system has dictated. Education in science and technology is essentially education on the symbol level." (Aldous L Huxley, "Essay", Daedalus, 1962)

"The important distinction between science and those other systematizations [i.e., art, philosophy, and theology] is that science is self-testing and self-correcting. Here the essential point of science is respect for objective fact. What is correctly observed must be believed [...] the competent scientist does quite the opposite of the popular stereotype of setting out to prove a theory; he seeks to disprove it." (George G Simpson, "Notes on the Nature of Science", 1962)

"What, then, is science according to common opinion? Science is what scientists do. Science is knowledge, a body of information about the external world. Science is the ability to predict. Science is power, it is engineering. Science explains, or gives causes and reasons." (John Bremer "What Is Science?" [in "Notes on the Nature of Science"], 1962)

"Science is a matter of disinterested observation, patient ratiocination within some system of logically correlated concepts. In real-life conflicts between reason and passion the issue is uncertain. Passion and prejudice are always able to mobilize their forces more rapidly and press the attack with greater fury; but in the long run (and often, of course, too late) enlightened self-interest may rouse itself, launch a counterattack and win the day for reason." (Aldous L Huxley, "Literature and Science", 1963)

"Science is a way to teach how something gets to be known, what is not known, to what extent things are known (for nothing is known absolutely), how to handle doubt and uncertainty, what the rules of evidence are, how to think about things so that judgments can be made, how to distinguish truth from fraud, and from show." (Richard P Feynman, "The Problem of Teaching Physics in Latin America", Engineering and Science, 1963)

"The aim of science is to apprehend this purely intelligible world as a thing in itself, an object which is what it is independently of all thinking, and thus antithetical to the sensible world. [...] The world of thought is the universal, the timeless and spaceless, the absolutely necessary, whereas the world of sense is the contingent, the changing and moving appearance which somehow indicates or symbolizes it." (Robin G Collingwood, "Essays in the Philosophy of Art", 1964)

"The central task of a natural science is to make the wonderful commonplace: to show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos." (Herbert A Simon, "The Sciences of the Artificial", 1969)

"The central task of a natural science is to make the wonderful commonplace: to show that complexity, correctly viewed, is only a mask for simplicity; to find pattern hidden in apparent chaos." (Herbert A Simon, "The Sciences of the Artificial", 1969)

"Science is a product of man, of his mind; and science creates the real world in its own image." (Frank E Egler, "The Way of Science", 1970)

"To do science is to search for repeated patterns, not simply to accumulate facts [...]" (Robert H. MacArthur, "Geographical Ecology", 1972)

"Science is systematic organisation of knowledge about the universe on the basis of explanatory hypotheses which are genuinely testable. Science advances by developing gradually more comprehensive theories; that is, by formulating theories of greater generality which can account for observational statements and hypotheses which appear as prima facie unrelated." (Francisco J Ayala, "Studies in the Philosophy of Biology: Reduction and Related Problems", 1974)

"A mature science, with respect to the matter of errors in variables, is not one that measures its variables without error, for this is impossible. It is, rather, a science which properly manages its errors, controlling their magnitudes and correctly calculating their implications for substantive conclusions." (Otis D Duncan, "Introduction to Structural Equation Models", 1975)

"The very nature of science is such that scientists need the metaphor as a bridge between old and new theories." (Earl R MacCormac, "Metaphor and Myth in Science and Religion", 1976)

"Facts do not ‘speak for themselves’; they are read in the light of theory. Creative thought, in science as much as in the arts, is the motor of changing opinion. Science is a quintessentially human activity, not a mechanized, robot-like accumulation of objective information, leading by laws of logic to inescapable interpretation." (Stephen J Gould, "Ever Since Darwin", 1977)

"Science is not a heartless pursuit of objective information. It is a creative human activity, its geniuses acting more as artists than information processors. Changes in theory are not simply the derivative results of the new discoveries but the work of creative imagination influenced by contemporary social and political forces." (Stephen J Gould, "Ever Since Darwin: Reflections in Natural History", 1977)

"Engineering or Technology is the making of things that did not previously exist, whereas science is the discovering of things that have long existed." (David Billington, "The Tower and the Bridge: The New Art of Structural Engineering", 1983)

"Science is a process. It is a way of thinking, a manner of approaching and of possibly resolving problems, a route by which one can produce order and sense out of disorganized and chaotic observations. Through it we achieve useful conclusions and results that are compelling and upon which there is a tendency to agree." (Isaac Asimov, "‘X’ Stands for Unknown", 1984)

"If doing mathematics or science is looked upon as a game, then one might say that in mathematics you compete against yourself or other mathematicians; in physics your adversary is nature and the stakes are higher." (Mark Kac, "Enigmas Of Chance", 1985)

"Science is defined as a set of observations and theories about observations." (F Albert Matsen, "The Role of Theory in Chemistry", Journal of Chemical Education Vol. 62 (5), 1985)

"We expect to learn new tricks because one of our science based abilities is being able to predict. That after all is what science is about. Learning enough about how a thing works so you'll know what comes next. Because as we all know everything obeys the universal laws, all you need is to understand the laws." (James Burke, "The Day the Universe Changed", 1985)

"Science is human experience systematically extended (by intent, methodology and instrumentation) for the purpose of learning more about the natural world and for the critical empirical testing and possible falsification of all ideas about the natural world. Scientific hypotheses may incorporate only elements of the natural empirical world, and thus may contain no element of the supernatural." (Robert E Kofahl, Correctly Redefining Distorted Science: A Most Essential Task", Creation Research Society Quarterly Vol. 23, 1986)

"Science is not a given set of answers but a system for obtaining answers. The method by which the search is conducted is more important than the nature of the solution. Questions need not be answered at all, or answers may be provided and then changed. It does not matter how often or how profoundly our view of the universe alters, as long as these changes take place in a way appropriate to science. For the practice of science, like the game of baseball, is covered by definite rules." (Robert Shapiro, "Origins: A Skeptic’s Guide to the Creation of Life on Earth", 1986)

"Science doesn't purvey absolute truth. Science is a mechanism. It's a way of trying to improve your knowledge of nature. It's a system for testing your thoughts against the universe and seeing whether they match. And this works, not just for the ordinary aspects of science, but for all of life. I should think people would want to know that what they know is truly what the universe is like, or at least as close as they can get to it." (Isaac Asimov, [Interview by Bill Moyers] 1988)

"Science doesn’t purvey absolute truth. Science is a mechanism, a way of trying to improve your knowledge of nature. It’s a system for testing your thoughts against the universe, and seeing whether they match." (Isaac Asimov, [interview with Bill Moyers in The Humanist] 1989)

"The view of science is that all processes ultimately run down, but entropy is maximized only in some far, far away future. The idea of entropy makes an assumption that the laws of the space-time continuum are infinitely and linearly extendable into the future. In the spiral time scheme of the timewave this assumption is not made. Rather, final time means passing out of one set of laws that are conditioning existence and into another radically different set of laws. The universe is seen as a series of compartmentalized eras or epochs whose laws are quite different from one another, with transitions from one epoch to another occurring with unexpected suddenness." (Terence McKenna, "True Hallucinations", 1989)

"Science is (or should be) a precise art. Precise, because data may be taken or theories formulated with a certain amount of accuracy; an art, because putting the information into the most useful form for investigation or for presentation requires a certain amount of creativity and insight." (Patricia H Reiff, "The Use and Misuse of Statistics in Space Physics", Journal of Geomagnetism and Geoelectricity 42, 1990)

"In science if you know what you are doing you should not be doing it. In engineering if you do not know what you are doing you should not be doing it. Of course, you seldom, if ever, see either pure state." (Richard W Hamming, "The Art of Probability for Scientists and Engineers", 1991)

"On this view, we recognize science to be the search for algorithmic compressions. We list sequences of observed data. We try to formulate algorithms that compactly represent the information content of those sequences. Then we test the correctness of our hypothetical abbreviations by using them to predict the next terms in the string. These predictions can then be compared with the future direction of the data sequence. Without the development of algorithmic compressions of data all science would be replaced by mindless stamp collecting - the indiscriminate accumulation of every available fact. Science is predicated upon the belief that the Universe is algorithmically compressible and the modern search for a Theory of Everything is the ultimate expression of that belief, a belief that there is an abbreviated representation of the logic behind the Universe's properties that can be written down in finite form by human beings." (John D Barrow, "New Theories of Everything", 1991)

"The goal of science is to make sense of the diversity of Nature." (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"Science is not about control. It is about cultivating a perpetual condition of wonder in the face of something that forever grows one step richer and subtler than our latest theory about it. It is about  reverence, not mastery." (Richard Power, "Gold Bug Variations", 1993)

"Statistics as a science is to quantify uncertainty, not unknown." (Chamont Wang, "Sense and Nonsense of Statistical Inference: Controversy, Misuse, and Subtlety", 1993)

"Clearly, science is not simply a matter of observing facts. Every scientific theory also expresses a worldview. Philosophical preconceptions determine where facts are sought, how experiments are designed, and which conclusions are drawn from them." (Nancy R Pearcey & Charles B. Thaxton, "The Soul of Science: Christian Faith and Natural Philosophy", 1994)

"Science is distinguished not for asserting that nature is rational, but for constantly testing claims to that or any other affect by observation and experiment." (Timothy Ferris, "The Whole Shebang: A State-of-the Universe’s Report", 1996)

"Science is more than a mere attempt to describe nature as accurately as possible. Frequently the real message is well hidden, and a law that gives a poor approximation to nature has more significance than one which works fairly well but is poisoned at the root." (Robert H March, "Physics for Poets", 1996)

"The art of science is knowing which observations to ignore and which are the key to the puzzle." (Edward W Kolb, "Blind Watchers of the Sky", 1996)

"Mathematics is the study of analogies between analogies. All science is. Scientists want to show that things that don’t look alike are really the same. That is one of their innermost Freudian motivations. In fact, that is what we mean by understanding." (Gian-Carlo Rota, "Indiscrete Thoughts", 1997)

"Religion is the antithesis of science; science is competent to illuminate all the deep questions of existence, and does so in a manner that makes full use of, and respects the human intellect. I see neither need nor sign of any future reconciliation." (Peter W Atkins, "Religion - The Antithesis to Science", 1997)

"[…] the pursuit of science is more than the pursuit of understanding. It is driven by the creative urge, the urge to construct a vision, a map, a picture of the world that gives the world a little more beauty and coherence than it had before." (John A Wheeler, "Geons, Black Holes, and Quantum Foam: A Life in Physics", 1998)

"The rate of the development of science is not the rate at which you make observations alone but, much more important, the rate at which you create new things to test." (Richard Feynman, "The Meaning of It All", 1998)

"The passion and beauty and joy of science is that we humans have invented a process to understand the universe in a way that is true for everyone. We are finding universal truths." (Bill Nye, 2000)

"The poetry of science is in some sense embodied in its great equations, and these equations can also be peeled. But their layers represent their attributes and consequences, not their meanings." (Graham Farmelo, 2002)

"Science is the art of the appropriate approximation. While the flat earth model is usually spoken of with derision it is still widely used. Flat maps, either in atlases or road maps, use the flat earth model as an approximation to the more complicated shape." (Byron K. Jennings, "On the Nature of Science", Physics in Canada Vol. 63 (1), 2007)

"It is ironic but true: the one reality science cannot reduce is the only reality we will ever know. This is why we need art. By expressing our actual experience, the artist reminds us that our science is incomplete, that no map of matter will ever explain the immateriality of our consciousness." (Jonah Lehrer, "Proust Was a Neuroscientist", 2011)

"Science isn’t about being right. It is about convincing others of the correctness of an idea through a methodology all will accept using data everyone can trust. New ideas take time to be accepted because they compete with others that have already passed the test." (Tom Koch, "Commentary: Nobody loves a critic: Edmund A Parkes and John Snow’s cholera", International Journal of Epidemiology Vol. 42 (6), 2013)

"Science, at its core, is simply a method of practical logic that tests hypotheses against experience. Scientism, by contrast, is the worldview and value system that insists that the questions the scientific method can answer are the most important questions human beings can ask, and that the picture of the world yielded by science is a better approximation to reality than any other." (John M Greer, "After Progress: Reason and Religion at the End of the Industrial Age", 2015)

More quotes on "Science" at quotablemath.blogspot.com.

🔭Data Science: Parameters (Just the Quotes)

"The essential feature is that we express ignorance of whether the new parameter is needed by taking half the prior probability for it as concentrated in the value indicated by the null hypothesis and distributing the other half over the range possible." (Harold Jeffreys, "Theory of Probablitity", 1939)

"The general method involved may be very simply stated. In cases where the equilibrium values of our variables can be regarded as the solutions of an extremum (maximum or minimum) problem, it is often possible regardless of the number of variables involved to determine unambiguously the qualitative behavior of our solution values in respect to changes of parameters." (Paul Samuelson, "Foundations of Economic Analysis", 1947)

"A primary goal of any learning model is to predict correctly the learning curve - proportions of correct responses versus trials. Almost any sensible model with two or three free parameters, however, can closely fit the curve, and so other criteria must be invoked when one is comparing several models." (Robert R Bush & Frederick Mosteller, "A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"A satisfactory prediction of the sequential properties of learning data from a single experiment is by no means a final test of a model. Numerous other criteria - and some more demanding - can be specified. For example, a model with specific numerical parameter values should be invariant to changes in independent variables that explicitly enter in the model." (Robert R Bush & Frederick Mosteller,"A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"The usefulness of the models in constructing a testable theory of the process is severely limited by the quickly increasing number of parameters which must be estimated in order to compare the predictions of the models with empirical results" (Anatol Rapoport, "Prisoner's Dilemma: A study in conflict and cooperation", 1965)

"Since all models are wrong the scientist cannot obtain a ‘correct’ one by excessive elaboration. On the contrary following William of Occam he should seek an economical description of natural phenomena. Just as the ability to devise simple but evocative models is the signature of the great scientist so overelaboration and overparameterization is often the mark of mediocrity." (George Box, "Science and Statistics", Journal of the American Statistical Association 71, 1976)

"Mathematical model making is an art. If the model is too small, a great deal of analysis and numerical solution can be done, but the results, in general, can be meaningless. If the model is too large, neither analysis nor numerical solution can be carried out, the interpretation of the results is in any case very difficult, and there is great difficulty in obtaining the numerical values of the parameters needed for numerical results." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"A mechanistic model has the following advantages: 1. It contributes to our scientific understanding of the phenomenon under study. 2. It usually provides a better basis for extrapolation (at least to conditions worthy of further experimental investigation if not through the entire range of all input variables). 3. It tends to be parsimonious (i.e, frugal) in the use of parameters and to provide better estimates of the response." (George E P Box, "Empirical Model-Building and Response Surfaces", 1987)

"Whenever parameters can be quantified, it is usually desirable to do so." (Norman R Augustine, "Augustine's Laws", 1987)

"In addition to dimensionality requirements, chaos can occur only in nonlinear situations. In multidimensional settings, this means that at least one term in one equation must be nonlinear while also involving several of the variables. With all linear models, solutions can be expressed as combinations of regular and linear periodic processes, but nonlinearities in a model allow for instabilities in such periodic solutions within certain value ranges for some of the parameters." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"Bayesian inference is appealing when prior information is available since Bayes’ theorem is a natural way to combine prior information with data. Some people find Bayesian inference psychologically appealing because it allows us to make probability statements about parameters. […] In parametric models, with large samples, Bayesian and frequentist methods give approximately the same inferences. In general, they need not agree." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"The Bayesian approach is based on the following postulates: (B1) Probability describes degree of belief, not limiting frequency. As such, we can make probability statements about lots of things, not just data which are subject to random variation. […] (B2) We can make probability statements about parameters, even though they are fixed constants. (B3) We make inferences about a parameter θ by producing a probability distribution for θ. Inferences, such as point estimates and interval estimates, may then be extracted from this distribution." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"The important thing is to understand that frequentist and Bayesian methods are answering different questions. To combine prior beliefs with data in a principled way, use Bayesian inference. To construct procedures with guaranteed long run performance, such as confidence intervals, use frequentist methods. Generally, Bayesian methods run into problems when the parameter space is high dimensional." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"Each fuzzy set is uniquely defined by a membership function. […] There are two approaches to determining a membership function. The first approach is to use the knowledge of human experts. Because fuzzy sets are often used to formulate human knowledge, membership functions represent a part of human knowledge. Usually, this approach can only give a rough formula of the membership function and fine-tuning is required. The second approach is to use data collected from various sensors to determine the membership function. Specifically, we first specify the structure of membership function and then fine-tune the parameters of membership function based on the data." (Huaguang Zhang & Derong Liu, "Fuzzy Modeling and Fuzzy Control", 2006)

"It is also inevitable for any model or theory to have an uncertainty (a difference between model and reality). Such uncertainties apply both to the numerical parameters of the model and to the inadequacy of the model as well. Because it is much harder to get a grip on these types of uncertainties, they are disregarded, usually." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"Traditional statistics is strong in devising ways of describing data and inferring distributional parameters from sample. Causal inference requires two additional ingredients: a science-friendly language for articulating causal knowledge, and a mathematical machinery for processing that knowledge, combining it with data and drawing new causal conclusions about a phenomenon." (Judea Pearl, "Causal inference in statistics: An overview", Statistics Surveys 3, 2009)

"In negative feedback regulation the organism has set points to which different parameters (temperature, volume, pressure, etc.) have to be adapted to maintain the normal state and stability of the body. The momentary value refers to the values at the time the parameters have been measured. When a parameter changes it has to be turned back to its set point. Oscillations are characteristic to negative feedback regulation […]" (Gaspar Banfalvi, "Homeostasis - Tumor – Metastasis", 2014)

"Today we routinely learn models with millions of parameters, enough to give each elephant in the world his own distinctive wiggle. It’s even been said that data mining means 'torturing the data until it confesses'." (Pedro Domingos, "The Master Algorithm", 2015)

"An estimate (the mathematical definition) is a number derived from observed values that is as close as we can get to the true parameter value. Useful estimators are those that are 'better' in some sense than any others." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"Estimators are functions of the observed values that can be used to estimate specific parameters. Good estimators are those that are consistent and have minimum variance. These properties are guaranteed if the estimator maximizes the likelihood of the observations." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"What properties should a good statistical estimator have? Since we are dealing with probability, we start with the probability that our estimate will be very close to the true value of the parameter. We want that probability to become greater and greater as we get more and more data. This property is called consistency. This is a statement about probability. It does not say that we are sure to get the right answer. It says that it is highly probable that we will be close to the right answer." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

More quotes on "Parameters" the-web-of-knowledge.blogspot.com.

🔭Data Science: Iterations (Just the Quotes)

"Data analysis must be iterative to be effective. [...] The iterative and interactive interplay of summarizing by fit and exposing by residuals is vital to effective data analysis. Summarizing and exposing are complementary and pervasive." (John W Tukey & Martin B Wilk, "Data Analysis and Statistics: An Expository Overview", 1966)

"Statistical methods are tools of scientific investigation. Scientific investigation is a controlled learning process in which various aspects of a problem are illuminated as the study proceeds. It can be thought of as a major iteration within which secondary iterations occur. The major iteration is that in which a tentative conjecture suggests an experiment, appropriate analysis of the data so generated leads to a modified conjecture, and this in turn leads to a new experiment, and so on." (George E P Box & George C Tjao, "Bayesian Inference in Statistical Analysis", 1973)

"Iteration and experimentation are important for all of data analysis, including graphical data display. In many cases when we make a graph it is immediately clear that some aspect is inadequate and we regraph the data. In many other cases we make a graph, and all is well, but we get an idea for studying the data in a different way with a different graph; one successful graph often suggests another." (William S Cleveland, "The Elements of Graphing Data", 1985)

"Apart from power laws, iteration is one of the prime sources of self-similarity. Iteration here means the repeated application of some rule or operation - doing the same thing over and over again. […] A concept closely related to iteration is recursion. In an age of increasing automation and computation, many processes and calculations are recursive, and if a recursive algorithm is in fact repetitious, self-similarity is waiting in the wings."(Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Fitting is essential to visualizing hypervariate data. The structure of data in many dimensions can be exceedingly complex. The visualization of a fit to hypervariate data, by reducing the amount of noise, can often lead to more insight. The fit is a hypervariate surface, a function of three or more variables. As with bivariate and trivariate data, our fitting tools are loess and parametric fitting by least-squares. And each tool can employ bisquare iterations to produce robust estimates when outliers or other forms of leptokurtosis are present." (William S Cleveland, "Visualizing Data", 1993)

"Data scientists combine entrepreneurship with patience, the willingness to build data products incrementally, the ability to explore, and the ability to iterate over a solution. They are inherently interdisciplinary. They can tackle all aspects of a problem, from initial data collection and data conditioning to drawing conclusions. They can think outside the box to come up with new ways to view the problem, or to work with very broadly defined problems: 'there’s a lot of data, what can you make from it?'" (Mike Loukides, "What Is Data Science?", 2011)

"Overfitting occurs when a formula describes a set of data very closely, but does not lead to any sensible explanation for the behavior of the data and does not predict the behavior of comparable data sets. In the case of overfitting, the formula is said to describe the noise of the system rather than the characteristic behavior of the system. Overfitting occurs frequently with models that perform iterative approximations on training data, coming closer and closer to the training data set with each iteration. Neural networks are an example of a data modeling strategy that is prone to overfitting." (Jules H Berman, "Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information", 2013)

"Geometric pattern repeated at progressively smaller scales, where each iteration is about a reproduction of the image to produce completely irregular shapes and surfaces that can not be represented by classical geometry. Fractals are generally self-similar (each section looks at all) and are not subordinated to a specific scale. They are used especially in the digital modeling of irregular patterns and structures in nature." (Mauro Chiarella, "Folds and Refolds: Space Generation, Shapes, and Complex Components", 2016)

"Cluster analysis refers to the grouping of observations so that the objects within each cluster share similar properties, and properties of all clusters are independent of each other. Cluster algorithms usually optimize by maximizing the distance among clusters and minimizing the distance between objects in a cluster. Cluster analysis does not complete in a single iteration but goes through several iterations until the model converges. Model convergence means that the cluster memberships of all objects converge and don’t change with every new iteration." (Danish Haroon, "Python Machine Learning Case Studies", 2017)

30 November 2018

🔭Data Science: p-value (Just the Quotes)

"What the use of a p-value implies, therefore, is that a hypothesis that may be true may be rejected because it has not predicted observable results that have not occurred." (Harold Jeffreys, "Theory of Probability", 1939)

"A quotation of a p-value is part of the ritual of science, a sprinkling of the holy waters in an effort to sanctify the data analysis and turn consumers of the results into true believers." (William Cleveland, "Visualizing Data", 1993)

"A common misconception is that an effect exists only if it is statistically significant and that it does not exist if it is not [statistically significant]." (Jonas Ranstam, "A common misconception about p-value and its consequences", Acta Orthopaedica Scandinavica 67, 1996)

"It’s a commonplace among statisticians that a chi-squared test (and, really, any p-value) can be viewed as a crude measure of sample size: When sample size is small, it’s very difficult to get a rejection (that is, a p-value below 0.05), whereas when sample size is huge, just about anything will bag you a rejection. With large n, a smaller signal can be found amid the noise. In general: small n, unlikely to get small p-values. Large n, likely to find something. Huge n, almost certain to find lots of small p-values." (Andrew Gelman, "The sample size is huge, so a p-value of 0.007 is not that impressive", 2009)

"The p-value is a concept so misaligned with intuition that no civilian can hold it firmly in mind. Nor can many statisticians." (Matt Briggs, "Why do statisticians answer silly questions that no one ever asks?", Significance Vol. 9(1), 2012)

"Statistical significance refers to the probability that something is true. It’s a measure of how probable it is that the effect we’re seeing is real (rather than due to chance occurrence), which is why it’s typically measured with a p-value. P, in this case, stands for probability. If you accept p-values as a measure of statistical significance, then the lower your p-value is, the less likely it is that the results you’re seeing are due to chance alone." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)

"When statistical inferences, such as p-values, follow extensive looks at the data, they no longer have their usual interpretation. Ignoring this reality is dishonest: it is like painting a bull’s eye around the landing spot of your arrow. This is known in some circles as p-hacking, and much has been written about its perils and pitfalls." (Robert E Kass et all, "Ten Simple Rules for Effective Statistical Practice", PLoS Comput Biol 12(6), 2016)

"Remember that a p-value merely indicates the probability of a particular set of data being generated by the null model–it has little to say about the size of a deviation from that model (especially in the tails of the distribution, where large changes in effect size cause only small changes in p-values)." (Clay Helberg)

🔭Data Science: Control (Just the Quotes)

"An inference, if it is to have scientific value, must constitute a prediction concerning future data. If the inference is to be made purely with the help of the distribution theory of statistics, the experiments that constitute evidence for the inference must arise from a state of statistical control; until that state is reached, there is no universe, normal or otherwise, and the statistician’s calculations by themselves are an illusion if not a delusion. The fact is that when distribution theory is not applicable for lack of control, any inference, statistical or otherwise, is little better than a conjecture. The state of statistical control is therefore the goal of all experimentation. (William E Deming, "Statistical Method from the Viewpoint of Quality Control", 1939)

"Sampling is the science and art of controlling and measuring the reliability of useful statistical information through the theory of probability." (William E Deming, "Some Theory of Sampling", 1950)

"The well-known virtue of the experimental method is that it brings situational variables under tight control. It thus permits rigorous tests of hypotheses and confidential statements about causation. The correlational method, for its part, can study what man has not learned to control. Nature has been experimenting since the beginning of time, with a boldness and complexity far beyond the resources of science. The correlator’s mission is to observe and organize the data of nature’s experiments." (Lee J Cronbach, "The Two Disciplines of Scientific Psychology", The American Psychologist Vol. 12, 1957)

"In complex systems cause and effect are often not closely related in either time or space. The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by nonlinear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops. In the complex system the cause of a difficulty may lie far back in time from the symptoms, or in a completely different and remote part of the system. In fact, causes are usually found, not in prior events, but in the structure and policies of the system." (Jay W Forrester, "Urban dynamics", 1969)

"To adapt to a changing environment, the system needs a variety of stable states that is large enough to react to all perturbations but not so large as to make its evolution uncontrollably chaotic. The most adequate states are selected according to their fitness, either directly by the environment, or by subsystems that have adapted to the environment at an earlier stage. Formally, the basic mechanism underlying self-organization is the (often noise-driven) variation which explores different regions in the system’s state space until it enters an attractor. This precludes further variation outside the attractor, and thus restricts the freedom of the system’s components to behave independently. This is equivalent to the increase of coherence, or decrease of statistical entropy, that defines self-organization." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"Science consists simply of the formulation and testing of hypotheses based on observational evidence; experiments are important where applicable, but their function is merely to simplify observation by imposing controlled conditions." (Henry L Batten, "Evolution of the Earth", 1971)

"Thus, the construction of a mathematical model consisting of certain basic equations of a process is not yet sufficient for effecting optimal control. The mathematical model must also provide for the effects of random factors, the ability to react to unforeseen variations and ensure good control despite errors and inaccuracies." (Yakov Khurgin, "Did You Say Mathematics?", 1974)

"Uncontrolled variation is the enemy of quality." (W Edwards Deming, 1980)

"The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"A mathematical model uses mathematical symbols to describe and explain the represented system. Normally used to predict and control, these models provide a high degree of abstraction but also of precision in their application." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"A model is an imitation of reality and a mathematical model is a particular form of representation. We should never forget this and get so distracted by the model that we forget the real application which is driving the modelling. In the process of model building we are translating our real world problem into an equivalent mathematical problem which we solve and then attempt to interpret. We do this to gain insight into the original real world situation or to use the model for control, optimization or possibly safety studies." (Ian T Cameron & Katalin Hangos, "Process Modelling and Model Analysis", 2001)

"Dashboards and visualization are cognitive tools that improve your 'span of control' over a lot of business data. These tools help people visually identify trends, patterns and anomalies, reason about what they see and help guide them toward effective decisions. As such, these tools need to leverage people's visual capabilities. With the prevalence of scorecards, dashboards and other visualization tools now widely available for business users to review their data, the issue of visual information design is more important than ever." (Richard Brath & Michael Peters, "Dashboard Design: Why Design is Important," DM Direct, 2004)

"The methodology of feedback design is borrowed from cybernetics (control theory). It is based upon methods of controlled system model’s building, methods of system states and parameters estimation (identification), and methods of feedback synthesis. The models of controlled system used in cybernetics differ from conventional models of physics and mechanics in that they have explicitly specified inputs and outputs. Unlike conventional physics results, often formulated as conservation laws, the results of cybernetical physics are formulated in the form of transformation laws, establishing the possibilities and limits of changing properties of a physical system by means of control." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

"Put simply, statistics is a range of procedures for gathering, organizing, analyzing and presenting quantitative data. […] Essentially […], statistics is a scientific approach to analyzing numerical data in order to enable us to maximize our interpretation, understanding and use. This means that statistics helps us turn data into information; that is, data that have been interpreted, understood and are useful to the recipient. Put formally, for your project, statistics is the systematic collection and analysis of numerical data, in order to investigate or discover relationships among phenomena so as to explain, predict and control their occurrence." (Reva B Brown & Mark Saunders, "Dealing with Statistics: What You Need to Know", 2008)

"One technique employing correlational analysis is multiple regression analysis (MRA), in which a number of independent variables are correlated simultaneously (or sometimes sequentially, but we won’t talk about that variant of MRA) with some dependent variable. The predictor variable of interest is examined along with other independent variables that are referred to as control variables. The goal is to show that variable A influences variable B 'net of' the effects of all the other variables. That is to say, the relationship holds even when the effects of the control variables on the dependent variable are taken into account." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

"The correlational technique known as multiple regression is used frequently in medical and social science research. This technique essentially correlates many independent (or predictor) variables simultaneously with a given dependent variable (outcome or output). It asks, 'Net of the effects of all the other variables, what is the effect of variable A on the dependent variable?' Despite its popularity, the technique is inherently weak and often yields misleading results. The problem is due to self-selection. If we don’t assign cases to a particular treatment, the cases may differ in any number of ways that could be causing them to differ along some dimension related to the dependent variable. We can know that the answer given by a multiple regression analysis is wrong because randomized control experiments, frequently referred to as the gold standard of research techniques, may give answers that are quite different from those obtained by multiple regression analysis." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

"The theory behind multiple regression analysis is that if you control for everything that is related to the independent variable and the dependent variable by pulling their correlations out of the mix, you can get at the true causal relation between the predictor variable and the outcome variable. That’s the theory. In practice, many things prevent this ideal case from being the norm." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

"Too little attention is given to the need for statistical control, or to put it more pertinently, since statistical control (randomness) is so rarely found, too little attention is given to the interpretation of data that arise from conditions not in statistical control." (William E Deming)

🔭Data Science: Conjecture (Just the Quotes)

"In the discovery of hidden things and the investigation of hidden causes, stronger reasons are obtained from sure experiments and demonstrated arguments than from probable conjectures and the opinions of philosophical speculators of the common sort […]" (William Gilbert, "De Magnete", 1600)

"The art of discovering the causes of phenomena, or true hypothesis, is like the art of deciphering, in which an ingenious conjecture greatly shortens the road." (Gottfried W Leibniz, "New Essays Concerning Human Understanding", 1704 [published 1765])

"We define the art of conjecture, or stochastic art, as the art of evaluating as exactly as possible the probabilities of things, so that in our judgments and actions we can always base ourselves on what has been found to be the best, the most appropriate, the most certain, the best advised; this is the only object of the wisdom of the philosopher and the prudence of the statesman." (Jacob Bernoulli, "Ars Conjectandi", 1713)

"One of the most intimate of all associations in the human mind is that of cause and effect. They suggest one another with the utmost readiness upon all occasions; so that it is almost impossible to contemplate the one, without having some idea of, or forming some conjecture about the other." (Joseph Priestley, "The History and Present State of Electricity", 1767

"We know the effects of many things, but the causes of few; experience, therefore, is a surer guide than imagination, and inquiry than conjecture." (Charles C Colton, "Lacon", 1820) 

"The rules of scientific investigation always require us, when we enter the domains of conjecture, to adopt that hypothesis by which the greatest number of known facts and phenomena may be reconciled." (Matthew F Maury, "The Physical Geography of the Sea", 1855)

"Scientific theories are not the digest of observations, but they are inventions - conjectures boldly put forward for trial, to be eliminated if they clashed with observations; with observations which were rarely accidental, but as a rule undertaken with the definite intention of testing a theory by obtaining, if possible, a decisive refutation." (Karl R Popper, "Conjectures and Refutations: The Growth of Scientific Knowledge", 1963)

"We wish to see [...] the typical attitude of the scientist who uses mathematics to understand the world around us [...] In the solution of a problem [...] there are typically three phases. The first phase is entirely or almost entirely a matter of physics; the third, a matter of mathematics; and the intermediate phase, a transition from physics to mathematics. The first phase is the formulation of the physical hypothesis or conjecture; the second, its translation into equations; the third, the solution of the equations. Each phase calls for a different kind of work and demands a different attitude." (George Pólya, "Mathematical Methods in Science", 1963) 

"We defined the art of conjecture, or stochastic art, as the art of evaluating as exactly as possible the probabilities of things, so that in our judgments and actions we can always base ourselves on what has been found to be the best, the most appropriate, the most certain, the best advised; this is the only object of the wisdom of the philosopher and the prudence of the statesman." (Bertrand de Jouvenel, "The Art of Conjecture", 1967)

"All advances of scientific understanding, at every level, begin with a speculative adventure, an imaginative preconception of what might be true.[...] [This] conjecture is then exposed to criticism to find out whether or not that imagined world is anything like the real one. Scientific reasoning is, therefore, at all levels an interaction between two episodes of thought - a dialogue between two voices, the one imaginative and the other critical [...]" (Sir Peter B Medawar,  "The Hope of Progress", 1972)

"In moving from conjecture to experimental data, (D), experiments must be designed which make best use of the experimenter's current state of knowledge and which best illuminate his conjecture. In moving from data to modified conjecture, (A), data must be analyzed so as to accurately present information in a manner which is readily understood by the experimenter." (George E P Box & George C Tjao, "Bayesian Inference in Statistical Analysis", 1973)

"Statistical methods are tools of scientific investigation. Scientific investigation is a controlled learning process in which various aspects of a problem are illuminated as the study proceeds. It can be thought of as a major iteration within which secondary iterations occur. The major iteration is that in which a tentative conjecture suggests an experiment, appropriate analysis of the data so generated leads to a modified conjecture, and this in turn leads to a new experiment, and so on." (George E P Box & George C Tjao, "Bayesian Inference in Statistical Analysis", 1973)

"The essential function of a hypothesis consists in the guidance it affords to new observations and experiments, by which our conjecture is either confirmed or refuted." (Ernst Mach, "Knowledge and Error: Sketches on the Psychology of Enquiry", 1976)

"The verb 'to theorize' is now conjugated as follows: 'I built a model; you formulated a hypothesis; he made a conjecture.'" (John M Ziman, "Reliable Knowledge", 1978)

"All advances of scientific understanding, at every level, begin with a speculative adventure, an imaginative preconception of what might be true - a preconception that always, and necessarily, goes a little way (sometimes a long way) beyond anything which we have logical or factual authority to believe in. It is the invention of a possible world, or of a tiny fraction of that world. The conjecture is then exposed to criticism to find out whether or not that imagined world is anything like the real one. Scientific reasoning is therefore at all levels an interaction between two episodes of thought - a dialogue between two voices, the one imaginative and the other critical; a dialogue, as I have put it, between the possible and the actual, between proposal and disposal, conjecture and criticism, between what might be true and what is in fact the case." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"The everyday usage of 'theory' is for an idea whose outcome is as yet undetermined, a conjecture, or for an idea contrary to evidence. But scientists use the word in exactly the opposite sense. [In science] 'theory' [...] refers only to a collection of hypotheses and predictions that is amenable to experimental test, preferably one that has been successfully tested. It has everything to do with the facts." (Tony Rothman & George Sudarshan, "Doubt and Certainty: The Celebrated Academy: Debates on Science, Mysticism, Reality, in General on the Knowable and Unknowable", 1998)

More quotes on "Conjecture" at the-web-of-knowledge.blogspot.com

29 November 2018

🔭Data Science: Invariance (Just the Quotes)

"[…] as every law of nature implies the existence of an invariant, it follows that every law of nature is a constraint. […] Science looks for laws; it is therefore much concerned with looking for constraints. […] the world around us is extremely rich in constraints. We are so familiar with them that we take most of them for granted, and are often not even aware that they exist. […] A world without constraints would be totally chaotic." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"[...] the existence of any invariant over a set of phenomena implies a constraint, for its existence implies that the full range of variety does not occur. The general theory of invariants is thus a part of the theory of constraints. Further, as every law of nature implies the existence of an invariant, it follows that every law of nature is a constraint." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Through all the meanings runs the basic idea of an 'invariant': that although the system is passing through a series of changes, there is some aspect that is unchanging; so some statement can be made that, in spite of the incessant changing, is true unchangingly." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"A satisfactory prediction of the sequential properties of learning data from a single experiment is by no means a final test of a model. Numerous other criteria - and some more demanding - can be specified. For example, a model with specific numerical parameter values should be invariant to changes in independent variables that explicitly enter in the model." (Robert R Bush & Frederick Mosteller,"A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"We know many laws of nature and we hope and expect to discover more. Nobody can foresee the next such law that will be discovered. Nevertheless, there is a structure in laws of nature which we call the laws of invariance. This structure is so far-reaching in some cases that laws of nature were guessed on the basis of the postulate that they fit into the invariance structure." (Eugene P Wigner, "The Role of Invariance Principles in Natural Philosophy", 1963)

"[..] principle of equipresence: A quantity present as an independent variable in one constitutive equation is so present in all, to the extent that its appearance is not forbidden by the general laws of Physics or rules of invariance. […] The principle of equipresence states, in effect, that no division of phenomena is to be laid down by constitutive equations." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"It is now natural for us to try to derive the laws of nature and to test their validity by means of the laws of invariance, rather than to derive the laws of invariance from what we believe to be the laws of nature." (Eugene P Wigner, "Symmetries and Reflections", 1967)

"As a metaphor - and I stress that it is intended as a metaphor - the concept of an invariant that arises out of mutually or cyclically balancing changes may help us to approach the concept of self. In cybernetics this metaphor is implemented in the ‘closed loop’, the circular arrangement of feedback mechanisms that maintain a given value within certain limits. They work toward an invariant, but the invariant is achieved not by a steady resistance, the way a rock stands unmoved in the wind, but by compensation over time. Whenever we happen to look in a feedback loop, we find the present act pitted against the immediate past, but already on the way to being compensated itself by the immediate future. The invariant the system achieves can, therefore, never be found or frozen in a single element because, by its very nature, it consists in one or more relationships - and relationships are not in things but between them."  (Ernst von Glasersfeld German, "Cybernetics, Experience and the Concept of Self", 1970)

"An essential condition for a theory of choice that claims normative status is the principle of invariance: different representations of the same choice problem should yield the same preference. That is, the preference between options should be independent of their description. Two characterizations that the decision maker, on reflection, would view as alternative descriptions of the same problem should lead to the same choice-even without the benefit of such reflection." (Amos Tversky & Daniel Kahneman, "Rational Choice and the Framing of Decisions", The Journal of Business Vol. 59 (4), 1986)

"Axiomatic theories of choice introduce preference as a primitive relation, which is interpreted through specific empirical procedures such as choice or pricing. Models of rational choice assume a principle of procedure invariance, which requires strategically equivalent methods of elicitation to yield the same preference order." (Amos Tversky et al, "The Causes of Preference Reversal", The American Economic Review Vol. 80 (1), 1990)

"Symmetry is basically a geometrical concept. Mathematically it can be defined as the invariance of geometrical patterns under certain operations. But when abstracted, the concept applies to all sorts of situations. It is one of the ways by which the human mind recognizes order in nature. In this sense symmetry need not be perfect to be meaningful. Even an approximate symmetry attracts one's attention, and makes one wonder if there is some deep reason behind it." (Eguchi Tohru & ‎K Nishijima ," Broken Symmetry: Selected Papers Of Y Nambu", 1995)

"How deep truths can be defined as invariants – things that do not change no matter what; how invariants are defined by symmetries, which in turn define which properties of nature are conserved, no matter what. These are the selfsame symmetries that appeal to the senses in art and music and natural forms like snowflakes and galaxies. The fundamental truths are based on symmetry, and there’s a deep kind of beauty in that." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)

"Each of the most basic physical laws that we know corresponds to some invariance, which in turn is equivalent to a collection of changes which form a symmetry group. […] whilst leaving some underlying theme unchanged. […] for example, the conservation of energy is equivalent to the invariance of the laws of motion with respect to translations backwards or forwards in time […] the conservation of linear momentum is equivalent to the invariance of the laws of motion with respect to the position of your laboratory in space, and the conservation of angular momentum to an invariance with respect to directional orientation… discovery of conservation laws indicated that Nature possessed built-in sustaining principles which prevented the world from just ceasing to be." (John D Barrow, "New Theories of Everything", 2007)

"The concept of symmetry (invariance) with its rigorous mathematical formulation and generalization has guided us to know the most fundamental of physical laws. Symmetry as a concept has helped mankind not only to define ‘beauty’ but also to express the ‘truth’. Physical laws tries to quantify the truth that appears to be ‘transient’ at the level of phenomena but symmetry promotes that truth to the level of ‘eternity’." (Vladimir G Ivancevic & Tijana T Ivancevic,"Quantum Leap", 2008)

"The concept of symmetry is used widely in physics. If the laws that determine relations between physical magnitudes and a change of these magnitudes in the course of time do not vary at the definite operations (transformations), they say, that these laws have symmetry (or they are invariant) with respect to the given transformations. For example, the law of gravitation is valid for any points of space, that is, this law is in variant with respect to the system of coordinates." (Alexey Stakhov et al, "The Mathematics of Harmony", 2009)

"In dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behaviour. Generally, at a bifurcation, the local stability properties of equilibria, periodic orbits or other invariant sets changes." (Gregory Faye, "An introduction to bifurcation theory",  2011)

"Data analysis and data mining are concerned with unsupervised pattern finding and structure determination in data sets. The data sets themselves are explicitly linked as a form of representation to an observational or otherwise empirical domain of interest. 'Structure' has long been understood as symmetry which can take many forms with respect to any transformation, including point, translational, rotational, and many others. Symmetries directly point to invariants, which pinpoint intrinsic properties of the data and of the background empirical domain of interest. As our data models change, so too do our perspectives on analysing data." (Fionn Murtagh, "Data Science Foundations: Geometry and Topology of Complex Hierarchic Systems and Big Data Analytics", 2018)

More quotes on "Invariance" at the-web-of-knowledge.blogspot.com.

🔭Data Science: Analysis (Just the Quotes)

"Analysis is a method where one assumes that which is sought, and from this, through a series of implications, arrives at something which is agreed upon on the basis of synthesis; because in analysis, one assumes that which is sought to be known, proved, or constructed, and examines what this is a consequence of and from what this latter follows, so that by backtracking we end up with something that is already known or is part of the starting points of the theory; we call such a method analysis; it is, in a sense, a solution in reversed direction. In synthesis we work in the opposite direction: we assume the last result of the analysis to be true. Then we put the causes from analysis in their natural order, as consequences, and by putting these together we obtain the proof or the construction of that which is sought. We call this synthesis." (Pappus of Alexandria, cca. 4th century BC)

"Analysis is the obtaining of the thing sought by assuming it and so reasoning up to an admitted truth; synthesis is the obtaining of the thing sought by reasoning up to the inference and proof of it." (Eudoxus, cca. 4th century BC)

"The analysis of concepts is for the understanding nothing more than what the magnifying glass is for sight." (Moses Mendelssohn, 1763)

"As the analysis of a substantial composite terminates only in a part which is not a whole, that is, in a simple part, so synthesis terminates only in a whole which is not a part, that is, the world." (Immanuel Kant, "Inaugural Dissertation", 1770)

"But ignorance of the different causes involved in the production of events, as well as their complexity, taken together with the imperfection of analysis, prevents our reaching the same certainty about the vast majority of phenomena. Thus there are things that are uncertain for us, things more or less probable, and we seek to compensate for the impossibility of knowing them by determining their different degrees of likelihood. So it was that we owe to the weakness of the human mind one of the most delicate and ingenious of mathematical theories, the science of chance or probability." (Pierre-Simon Laplace, "Recherches, 1º, sur l'Intégration des Équations Différentielles aux Différences Finies, et sur leur Usage dans la Théorie des Hasards", 1773)

"It has never yet been supposed, that all the facts of nature, and all the means of acquiring precision in the computation and analysis of those facts, and all the connections of objects with each other, and all the possible combinations of ideas, can be exhausted by the human mind." (Nicolas de Condorcet, "Outlines Of An Historical View Of The Progress Of The Human Mind", 1795)

"It is interesting thus to follow the intellectual truths of analysis in the phenomena of nature. This correspondence, of which the system of the world will offer us numerous examples, makes one of the greatest charms attached to mathematical speculations." (Pierre-Simon Laplace, "Exposition du système du monde", 1799)

"With the synthesis of every new concept in the aggregation of coordinate characteristics the extensive or complex distinctness is increased; with the further analysis of concepts in the series of subordinate characteristics the intensive or deep distinctness is increased. The latter kind of distinctness, as it necessarily serves the thoroughness and conclusiveness of cognition, is therefore mainly the business of philosophy and is carried farthest especially in metaphysical investigations." (Immanuel Kant, "Logic", 1800)

"It is easily seen from a consideration of the nature of demonstration and analysis that there can and must be truths which cannot be reduced by any analysis to identities or to the principle of contradiction but which involve an infinite series of reasons which only God can see through." (Gottfried W Leibniz, "Nouvelles lettres et opuscules inédits", 1857)

"Analysis and synthesis, though commonly treated as two different methods, are, if properly understood, only the two necessary parts of the same method. Each is the relative and correlative of the other. Analysis, without a subsequent synthesis, is incomplete; it is a mean cut of from its end. Synthesis, without a previous analysis, is baseless; for synthesis receives from analysis the elements which it recomposes." (Sir William Hamilton, "Lectures on Metaphysics and Logic: 6th Lecture on Metaphysics", 1858)

"Hence, even in the domain of natural science the aid of the experimental method becomes indispensable whenever the problem set is the analysis of transient and impermanent phenomena, and not merely the observation of persistent and relatively constant objects." (Wilhelm Wundt, "Principles of Physiological Psychology", 1874)

"In fact, the opposition of instinct and reason is mainly illusory. Instinct, intuition, or insight is what first leads to the beliefs which subsequent reason confirms or confutes; but the confirmation, where it is possible, consists, in the last analysis, of agreement with other beliefs no less instinctive. Reason is a harmonising, controlling force rather than a creative one. Even in the most purely logical realms, it is insight that first arrives at what is new." (Bertrand Russell, "Our Knowledge of the External World", 1914)

"In obedience to the feeling of reality, we shall insist that, in the analysis of propositions, nothing 'unreal' is to be admitted. But, after all, if there is nothing unreal, how, it may be asked, could we admit anything unreal? The reply is that, in dealing with propositions, we are dealing in the first instance with symbols, and if we attribute significance to groups of symbols which have no significance, we shall fall into the error of admitting unrealities, in the only sense in which this is possible, namely, as objects described." (Bertrand Russell, "Introduction to Mathematical Philosophy" , 1919)

"It requires a very unusual mind to undertake the analysis of the obvious." (Alfred N Whitehead, "Science in the Modern World", 1925)

"The failure of the social sciences to think through and to integrate their several responsibilities for the common problem of relating the analysis of parts to the analysis of the whole constitutes one of the major lags crippling their utility as human tools of knowledge." (Robert S Lynd, "Knowledge of What?", 1939)

"Analogies are useful for analysis in unexplored fields. By means of analogies an unfamiliar system may be compared with one that is better known. The relations and actions are more easily visualized, the mathematics more readily applied, and the analytical solutions more readily obtained in the familiar system." (Harry F Olson, "Dynamical Analogies", 1943)

"Only by the analysis and interpretation of observations as they are made, and the examination of the larger implications of the results, is one in a satisfactory position to pose new experimental and theoretical questions of the greatest significance." (John A Wheeler, "Elementary Particle Physics", American Scientist, 1947)

"The study of the conditions for change begins appropriately with an analysis of the conditions for no change, that is, for the state of equilibrium." (Kurt Lewin, "Quasi-Stationary Social Equilibria and the Problem of Permanent Change", 1947)

"A synthetic approach where piecemeal analysis is not possible due to the intricate interrelationships of parts that cannot be treated out of context of the whole;" (Walter F Buckley, "Sociology and modern systems theory", 1967)

"In general, complexity and precision bear an inverse relation to one another in the sense that, as the complexity of a problem increases, the possibility of analysing it in precise terms diminishes. Thus 'fuzzy thinking' may not be deplorable, after all, if it makes possible the solution of problems which are much too complex for precise analysis." (Lotfi A Zadeh, "Fuzzy languages and their relation to human intelligence", 1972)

"Discovery is a double relation of analysis and synthesis together. As an analysis, it probes for what is there; but then, as a synthesis, it puts the parts together in a form by which the creative mind transcends the bare limits, the bare skeleton, that nature provides." (Jacob Bronowski, "The Ascent of Man", 1973)

"The complexities of cause and effect defy analysis." (Douglas Adams, "Dirk Gently's Holistic Detective Agency", 1987)

"The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"Either one or the other [analysis or synthesis] may be direct or indirect. The direct procedure is when the point of departure is known-direct synthesis in the elements of geometry. By combining at random simple truths with each other, more complicated ones are deduced from them. This is the method of discovery, the special method of inventions, contrary to popular opinion." (André-Marie Ampère)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.