20 December 2011

📉Graphical Representation: Ambiguity (Just the Quotes)

"It is almost impossible to define 'time-sequence chart' in a clear and unambiguous manner because of the many forms and adaptations open to this type of chart. However. it might be said that, in essence, time-sequence chart portrays a chain of activities through time, indicates the type of activity in each link of the chain, shows clearly the position of the link in the total sequence chain, and indicates the duration of each activity. The time sequence chart may also contain verbal elements explaining when to begin an activity, how long to continue the activity, and a description of the activity. The chart may also indicate when to blend a given activity with another and the point at which a given activity is completed. The basic time-sequence chart may also be accompanied by verbal explanations and by secondary or contributory charts." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"Typically, data analysis is messy, and little details clutter it. Not only confounding factors, but also deviant cases, minor problems in measurement, and ambiguous results lead to frustration and discouragement, so that more data are collected than analyzed. Neglecting or hiding the messy details of the data reduces the researcher's chances of discovering something new." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"The more complex the shape of any object. the more difficult it is to perceive it. The nature of thought based on the visual apprehension of objective forms suggests, therefore, the necessity to keep all graphics as simple as possible. Otherwise, their meaning will be lost or ambiguous, and the ability to convey the intended information and to persuade will be inhibited." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"Clear, detailed, and thorough labeling should be used to defeat graphical distortion and ambiguity. Write out explanations of the data on the graphic itself. Label important events in the data." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Maps containing marks that indicate a variety of features at specific locations are easy to produce and often revealing for the reader. You can use dots, numbers, and shapes, with or without keys. The basic map must always be simple and devoid of unnecessary detail. There should be no ambiguity about what happens where." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Eliciting and mapping the participant's mental models, while necessary, is far from sufficient [...] the result of the elicitation and mapping process is never more than a set of causal attributions, initial hypotheses about the structure of a system, which must then be tested. Simulation is the only practical way to test these models. The complexity of the cognitive maps produced in an elicitation workshop vastly exceeds our capacity to understand their implications. Qualitative maps are simply too ambiguous and too difficult to simulate mentally to provide much useful information on the adequacy of the model structure or guidance about the future development of the system or the effects of policies." (John D Sterman, "Learning in and about complex systems", Systems Thinking Vol. 3 2003)

"The universal intelligibility of a pictogram is inversely proportional to its complexity and potential for interpretive ambiguity." (Joel Katz, "Designing Information: Human factors and common sense in information design", 2012)

"Metrics can serve two purposes: identifying problems and measuring performance. When the goal is to identify problems and pinpoint areas of operational inefficiency and ineffectiveness, defining the right metric requires a bit of detective work. It requires you to uncover the data residue of a problem and to determine what evidence can be found and how exactly it shows up. When the goal is to measure performance, the right success metrics focus on measures that can be controlled and where improvement in the metric is an unambiguously good thing." (Zach Gemignani et al, "Data Fluency", 2014)

"The omission of zero magnifies the ups and downs in the data, allowing us to detect changes that might otherwise be ambiguous. However, once zero has been omitted, the graph is no longer an accurate guide to the magnitude of the changes. Instead, we need to look at the actual numbers." (Gary Smith, "Standard Deviations", 2014)

"Usually, diagrams contain some noise – information unrelated to the diagram’s primary goal. Noise is decorations, redundant, and irrelevant data, unnecessarily emphasized and ambiguous icons, symbols, lines, grids, or labels. Every unnecessary element draws attention away from the central idea that the designer is trying to share. Noise reduces clarity by hiding useful information in a fog of useless data. You may quickly identify noise elements if you can remove them from the diagram or make them less intense and attractive without compromising the function." (Vasily Pantyukhin, "Principles of Design Diagramming", 2015)

"Commonly, data do not make a clear and unambiguous statement about our world, often requiring tools and methods to provide such clarity. These methods, called statistical data analysis, involve collecting, manipulating, analyzing, interpreting, and presenting data in a form that can be used, understood, and communicated to others." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"Understanding the context and the domain of the data is important to help disambiguate concepts. While reasonable defaults can be used to create a visualization, there should be no dead ends. Provide affordances for a user to understand, repair, and refine." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

📉Graphical Representation: Plots (Just the Quotes)

"Generally speaking, the plotting of a curve consists of graphically representing numbers and equations by the relation of points and lines with reference to other given lines or to a given point." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"Since a table is a collection of certain sets of data, a chart with one curve representing each set of data can be made to take the place of the table. Wherever a chart can be plotted by straight lines, the speed of this is infinitely greater than making out a table, and where the curvilinear law is known, or can be approximated by the use of the empiric law, the speed is but little less." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"In working through graphics one has, however, to be exceedingly cautious in certain particulars, for instance, when a set of figures, dynamical or financial, are available they are, so long as they are tabulated, instinctively taken merely at their face value. When plotted, however, there is a temptation to extrapolation which is well nigh irresistible to the untrained mind. Sometimes the process can be safely employed, but it requires a rather comprehensive knowledge of the facts that lie back of the data to tell when to go ahead and when to stop." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"The wandering of a line is more powerful in its effect on the mind than a tabulated statement; it shows what is happening and what is likely to take place just as quickly as the eye is capable of working." (A Lester Boddington, "Statistics And Their Application To Commerce", 1921)

"For most line charts the maximum number of plotted lines should not exceed five; three or fewer is the ideal number. When multiple plotted lines are shown each line should be differentiated by using (a) a different type of line and/or (b) different plotting marks, if shown, and (c) clearly differentiated labeling." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"The information on a plot should be relevant to the goals of the analysis. This means that in choosing graphical methods we should match the capabilities of the methods to our needs in the context of each application. [...] Scatter plots, with the views carefully selected as in draftsman's displays, casement displays, and multiwindow plots, are likely to be more informative. We must be careful, however, not to confuse what is relevant with what we expect or want to find. Often wholly unexpected phenomena constitute our most important findings." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"The quantile plot is a good general display since it is fairly easy to construct and does a good job of portraying many aspects of a distribution. Three convenient features of the plot are the following: First, in constructing it, we do not make any arbitrary choices of parameter values or cell boundaries [...] and no models for the data are fitted or assumed. Second, like a table, it is not a summary but a display of all the data. Third, on the quantile plot every point is plotted at a distinct location, even if there are duplicates in the data. The number of points that can be portrayed without overlap is limited only by the resolution of the plotting device. For a high resolution device several hundred points distinguished." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"The time-series plot is the most frequently used form of graphic design. With one dimension marching along to the regular rhythm of seconds, minutes, hours, days, weeks, months, years, centuries, or millennia, the natural ordering of the time scale gives this design a strength and efficiency of interpretation found in no other graphic arrangement." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"We can gain further insight into what makes good plots by thinking about the process of visual perception. The eye can assimilate large amounts of visual information, perceive unanticipated structure, and recognize complex patterns; however, certain kinds of patterns are more readily perceived than others. If we thoroughly understood the interaction between the brain, eye, and picture, we could organize displays to take advantage of the things that the eye and brain do best, so that the potentially most important patterns are associated with the most easily perceived visual aspects in the display." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"As a general rule, plotted points and graph lines should be given more 'weight' than the axes. In this way the 'meat' will be easily distinguishable from the 'bones'. Furthermore, an illustration composed of lines of unequal weights is always more attractive than one in which all the lines are of uniform thickness. It may not always be possible to emphasise the data in this way however. In a scattergram, for example, the more plotted points there are, the smaller they may need to be and this will give them a lighter appearance. Similarly, the more curves there are on a graph, the thinner the lines may need to be. In both cases, the axes may look better if they are drawn with a somewhat bolder line so that they are easily distinguishable from the data." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"The plotted points on a graph should always be made to stand out well. They are, after all, the most important feature of a graph, since any lines linking them are nearly always a matter of conjecture. These lines should stop just short of the plotted points so that the latter are emphasised by the space surrounding them. Where a point happens to fall on an axis line, the axis should be broken for a short distance on either side of the point." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"Boxplots provide information at a glance about center (median), spread (interquartile range), symmetry, and outliers. With practice they are easy to read and are especially useful for quick comparisons of two or more distributions. Sometimes unexpected features such as outliers, skew, or differences in spread are made obvious by boxplots but might otherwise go unnoticed." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"The scatterplot is a useful exploratory method for providing a first look at bivariate data to see how they are distributed throughout the plane, for example, to see clusters of points, outliers, and so forth." (William S Cleveland, "Visualizing Data", 1993)

"Construction refers to everything involved in the production of the graphical display, including questions of what to plot and how to plot. Deciding what to plot is not always easy and again depends on what we want to accomplish. In the initial phases of an analysis, two-dimensional displays of the response against each of the p predictors are obvious choices for gaining insights about the data, choices that are often recommended in the introductory regression literature. Displays of residuals from an initial exploratory fit are frequently used as well." (R Dennis Cook, "Regression Graphics: Ideas for studying regressions through graphics", 1998)

"If you want to show the growth of numbers which tend to grow by percentages, plot them on a logarithmic vertical scale. When plotted against a logarithmic vertical axis, equal percentage changes take up equal distances on the vertical axis. Thus, a constant annual percentage rate of change will plot as a straight line. The vertical scale on a logarithmic chart does not start at zero, as it shows the ratio of values (in this case, land values), and dividing by zero is impossible." (Herbert F Spirer et al, "Misused Statistics" 2nd Ed, 1998)

"A bar graph typically presents either averages or frequencies. It is relatively simple to present raw data (in the form of dot plots or box plots). Such plots provide much more information. and they are closer to the original data. If the bar graph categories are linked in some way - for example, doses of treatments - then a line graph will be much more informative. Very complicated bar graphs containing adjacent bars are very difficult to grasp. If the bar graph represents frequencies. and the abscissa values can be ordered, then a line graph will be much more informative and will have substantially reduced chart junk." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"Three key aspects of presenting high dimensional data are: rendering, manipulation, and linking. Rendering determines what is to be plotted, manipulation determines the structure of the relationships, and linking determines what information will be shared between plots or sections of the graph." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"Merely drawing a plot does not constitute visualization. Visualization is about conveying important information to the reader accurately. It should reveal information that is in the data and should not impose structure on the data." (Robert Gentleman, "Bioinformatics and Computational Biology Solutions using R and Bioconductor", 2005)

 "A useful feature of a stem plot is that the values maintain their natural order, while at the same time they are laid out in a way that emphasises the overall distribution of where the values are concentrated (that is, where the longer branches are). This enables you easily to pick out key values such as the median and quartiles." (Alan Graham, "Developing Thinking in Statistics", 2006)

"Mosaic plots […] are designed to show the dependencies and interactions between multiple categorical variables in one plot. […]. A spineplot can be regarded as a kind of one-dimensional mosaic plot. […] In contrast with a barchart, where the bars are aligned to an axis, the mosaic plot uses a rectangular region, which is subdivided into tiles according to the numbers of observations falling into the different classes. This subdivision is done recursively, or in statistical terms conditionally, as more variables are included." (Antony Unwin et al [in "Graphics of Large Datasets: Visualizing a Million"], 2006)

"The simplest way to plot univariate continuous data is a dotplot. Because the points are distributed along only one axis, overplotting is a serious problem, no matter how small the sample is. The usual technique to avoid overplotting is jittering, i.e., the data are randomly spread along a virtual second axis." (Antony Unwin et al [in "Graphics of Large Datasets: Visualizing a Million"], 2006)

"Symmetry and skewness can be judged, but boxplots are not entirely useful for judging shape. It is not possible to use a boxplot to judge whether or not a dataset is bell-shaped, nor is it possible to judge whether or not a dataset may be bimodal." (Jessica M Utts & Robert F Heckard, "Mind on Statistics", 2007)

"Plotting data is a useful first stage to any analysis and will show extreme observations together with any discernible patterns. In addition the relative sizes of categories are easier to see in a diagram (bar chart or pie chart) than in a table. Graphs are useful as they can be assimilated quickly, and are particularly helpful when presenting information to an audience. Tables can be useful for displaying information about many variables at once, while graphs can be useful for showing multiple observations on groups or individuals. Although there are no hard and fast rules about when to use a graph and when to use a table, in the context of a report or a paper it is often best to use tables so that the reader can scrutinise the numbers directly." (Jenny Freeman et al, "How to Display Data", 2008)

"There are two main reasons for using graphic displays of datasets: either to present or to explore data. Presenting data involves deciding what information you want to convey and drawing a display appropriate for the content and for the intended audience. [...] Exploring data is a much more individual matter, using graphics to find information and to generate ideas. Many displays may be drawn. They can be changed at will or discarded and new versions prepared, so generally no one plot is especially important, and they all have a short life span." (Antony Unwin, "Good Graphics?" [in "Handbook of Data Visualization"], 2008)

"No other statistical graphic can hold so much information at a time than the parallel coordinate plot. Thus this plot is ideal to get an initial overview of a dataset, or at the very least a large subgroup of the variables." (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009)

"Spineplots have the nice property that highlighted proportions can be compared directly. However, it must be noted that the x axis in a spinogram is no longer linear. It is only piecewise linear within the bars. Although this might be confusing at first sight, it yields two interesting characteristics. Areas where only very few cases have been observed are squeezed together and thus get less visual weight. [...] Spineplots use normalized bar lengths while the bar widths are proportional to the number of cases in the category" (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009)

"Need to consider outliers as they can affect statistics such as means, standard deviations, and correlations. They can either be explained, deleted, or accommodated (using either robust statistics or obtaining additional data to fill-in). Can be detected by methods such as box plots, scatterplots, histograms or frequency distributions." (Randall E Schumacker & Richard G Lomax, "A Beginner’s Guide to Structural Equation Modeling" 3rd Ed., 2010)

"[...] if you want to show change through time, use a time-series chart; if you need to compare, use a bar chart; or to display correlation, use a scatter-plot - because some of these rules make good common sense." (Alberto Cairo, "The Functional Art", 2011)

"Visualization is what happens when you make the jump from raw data to bar graphs, line charts, and dot plots. […] In its most basic form, visualization is simply mapping data to geometry and color. It works because your brain is wired to find patterns, and you can switch back and forth between the visual and the numbers it represents. This is the important bit. You must make sure that the essence of the data isn’t lost in that back and forth between visual and the value it represents because if you can’t map back to the data, the visualization is just a bunch of shapes." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"The term shrinkage is used in regression modeling to denote two ideas. The first meaning relates to the slope of a calibration plot, which is a plot of observed responses against predicted responses. When a dataset is used to fit the model parameters as well as to obtain the calibration plot, the usual estimation process will force the slope of observed versus predicted values to be one. When, however, parameter estimates are derived from one dataset and then applied to predict outcomes on an independent dataset, overfitting will cause the slope of the calibration plot (i.e., the shrinkage factor ) to be less than one, a result of regression to the mean. Typically, low predictions will be too low and high predictions too high. Predictions near the mean predicted value will usually be quite accurate. The second meaning of shrinkage is a statistical estimation method that preshrinks regression coefficients towards zero so that the calibration plot for new data will not need shrinkage as its calibration slope will be one." (Frank E. Harrell Jr., "Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis" 2nd Ed, 2015)

"A boxplot is a dotplot enhanced with a schematic that provides information about the center and spread of the data, including the median, quartiles, and so on. This is a very useful way of summarizing a variable's distribution. The dotplot can also be enhanced with a diamond-shaped schematic portraying the mean and standard deviation (or the standard error of the mean)." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"A scatterplot reveals the strength and shape of the relationship between a pair of variables. A scatterplot represents the two variables by axes drawn at right angles to each other, showing the observations as a cloud of points, each point located according to its values on the two variables. Various lines can be added to the plot to help guide our search for understanding." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"The most accurate but least interpretable form of data presentation is to make a table, showing every single value. But it is difficult or impossible for most people to detect patterns and trends in such data, and so we rely on graphs and charts. Graphs come in two broad types: Either they represent every data point visually (as in a scatter plot) or they implement a form of data reduction in which we summarize the data, looking, for example, only at means or medians." (Daniel J Levitin, "Weaponized Lies", 2017)

"With time series though, there is absolutely no substitute for plotting. The pertinent pattern might end up being a sharp spike followed by a gentle taper down. Or, maybe there are weird plateaus. There could be noisy spikes that have to be filtered out. A good way to look at it is this: means and standard deviations are based on the naïve assumption that data follows pretty bell curves, but there is no corresponding 'default' assumption for time series data (at least, not one that works well with any frequency), so you always have to look at the data to get a sense of what’s normal. [...] Along the lines of figuring out what patterns to expect, when you are exploring time series data, it is immensely useful to be able to zoom in and out." (Field Cady, "The Data Science Handbook", 2017)

19 December 2011

📉Graphical Representation: Message (Just the Quotes)

"If the audience can see all the charts at once, they may get a different story from the one you want them to get. Show the charts one at a time. If you have only one chart, keep it covered until you are ready to use it. Take full advantage of the element of surprise. If you use charts which open like a book, use only one page for the message." (Edward J Hegarty, "How to Use a Set of Display Charts", The American Statistician Vol. 2" (5), 1948)

"While circle charts are not likely to present especially new or creative ideas, they do help the user to visualize relationships. The relationships depicted by circle charts do not tend to be very complex, in contrast to those of some line graphs. Normally, the circle chart is used to portray a common type of relationship" (namely. part-to-total) in an attractive manner and to expedite the message transfer from designer to user." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"Arbitrary category sequence and misplaced pie chart emphasis lead to general confusion and weaken messages. Although this can be used for quite deliberate and targeted deceit, manipulation of the category axis only really comes into its own with techniques that bend the relationship between the data and the optics in a more calculated way. Many of these techniques are just twins of similar ruses on the value axis. but are none the less powerful for that." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"We tend automatically to think of all the categories represented on the horizontal axis of a column Chart as being equally important. They vary of course on the value axis. Otherwise, there would be little point in the chart, but there is somehow this feeling that they are in other respects similar members of a group. This convention can be put to good use to manipulate the message of the most boring bar or column chart." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"What distinguishes data tables from graphics is explicit comparison and the data selection that this requires. While a data table obviously also selects information, this selection is less focused than a chart's on a particular comparison. To the extent that some figures in a table are visually emphasised. say in colour or size and style of print. the table is well on its way to becoming a chart. If you're making no comparisons - because you have no particular message and so need no selection" (in other words, if you are simply providing a database, number quarry or recycling facility) - tables are easier to use than charts." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"When displaying information visually, there are three questions one will find useful to ask as a starting point. Firstly and most importantly, it is vital to have a clear idea about what is to be displayed; for example, is it important to demonstrate that two sets of data have different distributions or that they have different mean values? Having decided what the main message is, the next step is to examine the methods available and to select an appropriate one. Finally, once the chart or table has been constructed, it is worth reflecting upon whether what has been produced truly reflects the intended message. If not, then refine the display until satisfied; for example if a chart has been used would a table have been better or vice versa?" (Jenny Freeman et al, "How to Display Data", 2008)

"A beautiful visualization has a clear goal, a message, or a particular perspective on the information that it is designed to convey. Access to this information should be as straightforward as possible, without sacrificing any necessary, relevant complexity. [...] Most importantly, beautiful visualizations reflect the qualities of the data that they represent, explicitly revealing properties and relationships inherent and implicit in the source data. As these properties and relationships become available to the reader, they bring new knowledge, insight, and enjoyment."  (Noah Iliinsky, "On Beauty", [in "Beautiful Visualization"] 2010)

"Bear in mind is that the use of color doesn’t always help. Use it sparingly and with a specific purpose in mind. Remember that the reader’s brain is looking for patterns, and will expect both recurrence itself and the absence of expected recurrence to carry meaning. If you’re using color to differentiate categorical data, then you need to let the reader know what the categories are. If the dimension of data you’re encoding isn’t significant enough to your message to be labeled or explained in some way - or if there is no dimension to the data underlying your use of difference colors - then you should limit your use so as not to confuse the reader." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"[...] you should not rely on social or cultural conventions to convey information. However, these conventions can be very powerful, and you should be aware that your reader brings them to the table. Making use of them, when possible, to reinforce your message will help you convey information efficiently. Avoid countering conventions where possible in order to avoid creating cognitive dissonance, a clash of habitual interpretation with the underlying message you are sending." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"Communication is the primary goal of data visualization. Any element that hinders - rather than helps - the reader, then, needs to be changed or removed: labels and tags that are in the way, colors that confuse or simply add no value, uncomfortable scales or angles. Each element needs to serve a particular purpose toward the goal of communicating and explaining information. Efficiency matters, because if you’re wasting a viewer’s time or energy, they’re going to move on without receiving your message." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"An infographic (short for information graphic) is a type of picture that blends data with design, helping individuals and organizations concisely communicate messages to their audience." (Mark Smiciklas, "The Power of Infographics: Using Pictures to Communicate and Connect with Your Audiences", 2012)

"A great infographic leads readers on a visual journey, telling them a story along the way. Powerful infographics are able to capture people’s attention in the first few seconds with a strong title and visual image, and then reel them in to digest the entire message. Infographics have become an effective way to speak for the creator, conveying information and image simultaneously." (Justin Beegel, "Infographics For Dummies", 2014)

"Any presentation of data, whether a simple calculated metric or a complex predictive model, is going to have a set of assumptions and choices that the producer has made to get to the output. The more that these can be made explicit, the more the audience of the data will be open to accepting the message offered by the presenter." (Zach Gemignani et al, "Data Fluency", 2014)

"Data visualizations are designed to emphasize patterns and deviations in data. In fact, each specific chart type is well suited to highlighting particular forms of insight. A skilled author of data products will choose the right visualization to emphasize a message. The data, chart, and supporting descriptions should work in harmony to point out what is interesting. The reader simply goes along for the ride." (Zach Gemignani et al, "Data Fluency", 2014)

"In fact, the analogy to storytelling is limited when applied to communicating with data. Data visualization has fundamental characteristics missing from traditional storytelling. For example, interactive data visualizations let audiences explore information to find insights that resonate with them. Visualizations take shape based to a large extent on the underlying data. And as this data changes, the emphasis and message of the visualization is likely to change." (Zach Gemignani et al, "Data Fluency", 2014)

"It’s the 'message' that decides the presentation. The numbers, visual, or text or a combination of these are to only support the way of putting the message across. This also changes the way one conceptualizes a graphic. The thought starts with the message and then gets into putting other related information together to support it instead of starting with the data and thinking of what to make of it [...] The advantage of taking this route is also that you are not just restricted by topics or numbers or just presenting “news.” You can go a step further and air your “views,” too, to make a point." (Raj Kamal, "Everyday Visuals as News", 2014)

"A signal is a useful message that resides in data. Data that isn’t useful is noise. […] When data is expressed visually, noise can exist not only as data that doesn’t inform but also as meaningless non-data elements of the display" (e.g. irrelevant attributes, such as a third dimension of depth in bars, color variation that has no significance, and artificial light and shadow effects)." (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"First, to whom are you communicating? It is important to have a good understanding of who your audience is and how they perceive you. This can help you to identify common ground that will help you ensure they hear your message. Second, What do you want your audience to know or do?" (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"Charts are always an interpretation of data, in the same way that a photo is an interpretation of reality, no matter how objective it may seem. This should be not only recognized but encouraged within an ethical framework that seeks to identify its own subjectivity and minimize its influence on choices. There can be no contradiction between 'what I want to say' and 'what the data say'. This difference is often difficult to detect, especially when the subject’s message is fully determined by his beliefs, ideological position, and activism." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"Ideally, the charts are designed in a way that gives your audience clarity and lets them understand the key insights very quickly. Color choices, highlighting, annotations, and other ways of drawing attention to your findings help in the process. By leaving white or blank space around your charts, you are able to keep the focus of your audience on the key message rather than distracting or confusing them." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Simplicity for data visualization often focuses on minimizing the number of elements that do not add value to your display. These include borders, gridlines, axes lines, and boxes, which can easily distract from your core message. This recommendation also relates to the information itself. You should strive to create a visualization that focuses on specific aspects of the data, rather than including all fields and metrics but not saying much about any of them." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"First, from an ethos perspective, the success of your data story will be shaped by your own credibility and the trustworthiness of your data. Second, because your data story is based on facts and figures, the logos appeal will be integral to your message. Third, as you weave the data into a convincing narrative, the pathos or emotional appeal makes your message more engaging. Fourth, having a visualized insight at the core of your message adds the telos appeal, as it sharpens the focus and purpose of your communication. Fifth, when you share a relevant data story with the right audience at the right time (kairos), your message can be a powerful catalyst for change." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"The relevance to data visualization is that we are always conveying a message to some extent, and in the case of associations between variables, that message is sometimes a step removed from the data itself. If you are making visualizations, be careful not to impose your own interpretation too much when showing associations. If you are reading them, don’t assume that the message accompanying the data is as sound and scientifically based as the data themselves." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"The term 'infographics' is used for eye-catching diagrams which get a simple message across. They are very popular in advertising and can convey an impression of scientific, reliable information, but they are not the same thing as data visualization. An infographic will typically only convey a few numbers, and not use visual presentations to allow the reader to make comparisons of their own." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Another problem is that while data visualizations may appear to be objective, the designer has a great deal of control over the message a graphic conveys. Even using accurate data, a designer can manipulate how those data make us feel. She can create the illusion of a correlation where none exists, or make a small difference between groups look big." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"Beyond basic charts, practitioners must also learn to compose visualizations together elegantly. The perceptual stage focuses on making the literal charts more precise as well as working to de-emphasize the entire piece. Design choices start to consider distractions, reducing visual clutter and centering on the message. Minimalism is espoused as a core value with an emphasis on shifting toward precision as accuracy. This is the most common next step for practitioners. Minimalism is also a key stage in maturation. It is experimentation at one extreme that helps practitioners distill down to core, shared practices." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Beyond the design of individual charts, the sequence of data visualizations creates grammar within the exposition. Cohesive visualizations follow common narrative structures to fully express their message. Order matters. " (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Chart choices can also create weight within the entire composition. Presenting information as a comprehensive visualization, such as in a dashboard, requires thinking beyond individual charts. In writing, we not only craft sentences, but write the composition as an entire piece. Certain sentences may drive the writing more, but all sentences play a role in conveying the message." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Communication requires the ability to expand or contract a message based on norms within a given culture or language. Expansion provides more detail, sometimes adding in information that is culturally relevant or needed for the person to understand. Contraction preserves the same intent but discards information that isn't needed by that person. Some concepts in certain situations require greater detail than others." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"The sizes of charts in space reflect how we convey information to a reader. In a dashboard context, the content, size, and space that the various charts occupy should reflect the form and function of the main message. As you saw with the bento box metaphor from the introduction, there needs to be deliberate thought put into the placement and size of each individual chart so that they all work together in harmony." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"When integrating written text with charts in a functionally aesthetic way, the reader should be able to find the key takeaways from the chart or dashboard, taking into account the context, constraints, and reading objectives of the overall message. " (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"A perfectly relevant visualization that breaks a few presentation rules is far more valuable - it’s better - than a perfectly executed, beautiful chart that contains the wrong data, communicates the wrong message, or fails to engage its audience." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"The lack of focus and commitment to color is a perplexing thing. When used correctly, color has no equal as a visualization tool - in advertising, in branding, in getting the message across to any audience you seek. Data analysts can make numbers dance and sing on command, but they sometimes struggle to create visually stimulating environments that convince the intended audience to tap their feet in time." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Graphic design is not just about making things look good. It is a powerful combination of form and function that uses visual elements to communicate a message. Form refers to the physical appearance of a design, such as its shape, color, and typography. Function refers to the purpose of a design, such as what it is trying to communicate or achieve. A good graphic design is both visually appealing and functional. It uses the right combination of form and function to communicate its message effectively. Graphic design is also a strategic and thoughtful craft. It requires careful planning and execution to create a design that is both effective and aesthetically pleasing." (Faith Aderemi, "The Essential Graphic Design Handbook", 2024)

📉Graphical Representation: Bar Charts (Just the Quotes)

"Pie charts have weaknesses and dangers inherent in their design and application. First, it is generally inadvisable to attempt to portray more than four or five categories in a circle chart, especially if several small sectors are of approximately the same size.  It may be very confusing to differentiate the relative values. Secondly, the pie chart loses effectiveness if an effort is made to compare the component values of several circles, as might occur in a temporal or geographical series. [...] Thirdly, although values are measured by distances along the arc of the circle, there is a tendency to estimate values in terms of areas by size of angle. The 100-percent bar chart is often preferable to the circle chart's angle and area comparison as it is easier to divide into parts, more convenient to use, has sections that may be shaded for contrast with grouping possible by bracketing, and has an easily readable percentage scale outside the bars." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Since bars represent magnitude by their length, the zero line must be shown and the arithmetic scale must not be broken. Occasionally an excessively long bar in a series of bars may be broken off at the end, and the amount involved shown directly beyond it, without distorting the general trend of the other bars, but this practice applies solely when only one bar exceeds the scale." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"The common bar chart is particularly appropriate for comparing magnitude or size of coordinate items or parts of a total. It is one of the most useful, simple, and adaptable techniques in graphic presentation. The basis of comparison in the bar chart is linear or one-dimensional. The length of each bar or of its components is proportional to the quantity or amount of each category represented." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"If you want to dramatize comparisons in relation to the whole. use a pie chart. If you want to add coherence to the narrative, the pie chart also helps because it depicts a whole. If your main interest is in stressing the relationship of one factor to another, use bar charts. If you wish to achieve all these effects. you can use either type of chart. and decide on the basis of which one is more aesthetically or pictorially interesting." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"Some believe that the vertical bar should be used when comparing similar items for different time periods and the horizontal bar for comparing different items for the same time period. However, most people find the vertical-bar format easier to prepare and read. and a more effective way to show most types of comparisons." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"The bar or column chart is the easiest type of graphic to prepare and use in reports. It employs a simple form: four straight lines that are joined to construct a rectangle or oblong box. When the box is shown horizontally it is called a bar; when it is shown vertically it is called a column. [...] The bar chart is an effective way to show comparisons between or among two or more items. It has the added advantage of being easily understood by readers who have little or no background in statistics and who are not accustomed to reading complex tables or charts." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"The bar graph and the column graph are popular because they are simple and easy to read. These are the most versatile of the graph forms. They can be used to display time series, to display the relationship between two items, to make a comparison among several items, and to make a comparison between parts and the whole (total). They do not appear to be as 'statistical', which is an advantage to those people who have negative attitudes toward statistics. The column graph shows values over time, and the bar graph shows values at a point in time. bar graph compares different items as of a specific time (not over time)." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"The bar of a bar chart has two aspects that can be used to visually decode quantitative information - size (length and area) and the relative position of the end of the bar along the common scale. The changing sizes of the bars is an important and imposing visual factor; thus it is important that size encode something meaningful. The sizes of bars encode the magnitudes of deviations from the baseline. If the deviations have no important interpretation, the changing sizes are wasted energy and even have the potential to mislead." (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38 (4) 1984) 

"A bar graph typically presents either averages or frequencies. It is relatively simple to present raw data (in the form of dot plots or box plots). Such plots provide much more information. and they are closer to the original data. If the bar graph categories are linked in some way - for example, doses of treatments - then a line graph will be much more informative. Very complicated bar graphs containing adjacent bars are very difficult to grasp. If the bar graph represents frequencies. and the abscissa values can be ordered, then a line graph will be much more informative and will have substantially reduced chart junk." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"Stacked bar graphs do not show data structure well. A trend in one of the stacked variables has to be deduced by scanning along the vertical bars. This becomes especially difficult when the categories do not move in the same direction." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"Choose scales wisely, as they have a profound influence on the interpretation of graphs. Not all scales require that zero be included, but bar graphs and other graphs where area is judged do require it." (Naomi B Robbins, "Creating More effective Graphs", 2005)

"Distance and detection also play a role in our ability to decode information from graphs. The closer together objects are, the easier it is to judge attributes that compare them. As distance between objects increases, accuracy of judgment decreases. It is certainly easier to judge the difference in lengths of two bars if they are next to one another than if they are pages apart." (Naomi B Robbins, "Creating More effective Graphs", 2005)

"Histograms use area to represent counts of a distribution. This makes them somewhat related to barcharts and mosaic plots, although the number or the width of the bins of a histogram is not determined a priori and the bins are drawn without gaps between them reflecting the continuous scale of the data. Whereas barcharts and mosaic plots show the exact distribution of the sample, a histogram is always just one approximation to the distribution of the data. Sometimes histograms are also used as crude density estimators for some 'true', but usually unknown, underlying distribution for the data. There are much better density estimation methods that produce smooth distribution displays." (Antony Unwin et al [in "Graphics of Large Datasets: Visualizing a Million"], 2006)

"Mosaic plots […] are designed to show the dependencies and interactions between multiple categorical variables in one plot. […] . A spineplot can be regarded as a kind of one-dimensional mosaic plot. […] In contrast with a barchart, where the bars are aligned to an axis, the mosaic plot uses a rectangular region, which is subdivided into tiles according to the numbers of observations falling into the different classes. This subdivision is done recursively, or in statistical terms conditionally, as more variables are included." (Antony Unwin et al [in "Graphics of Large Datasets: Visualizing a Million"], 2006)

"Use of a histogram should be strictly reserved for continuous numerical data or for data that can be effectively modelled as continuous […]. Unlike bar charts, therefore, the bars of a histogram corresponding to adjacent intervals should not have gaps between them, for obvious reasons." (Alan Graham, "Developing Thinking in Statistics", 2006)

"Generally pie charts are to be avoided, as they can be difficult to interpret particularly when the number of categories is greater than five. Small proportions can be very hard to discern […] In addition, unless the percentages in each of the individual categories are given as numbers it can be much more difficult to estimate them from a pie chart than from a bar chart […]." (Jenny Freeman et al, "How to Display Data", 2008)

"Mosaic plots are defined recursively, i.e., each variable that is introduced in a mosaic plot is plotted conditioned on the groups already established in the plot. As with barcharts, the area of bars or tiles is proportional to the number of observations (or the sum of the observation weights of a class). The direction along which bars are divided by a newly introduced variable is usually alternating, starting with the x-direction." (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009) 

"Sorting data is one of the most efficient actions to derive different views of data in order to see the variables from many angles. Sorting is usually not applied to the data itself, but to statistical objects of a plot. We might want to sort the bars in a barchart, the variables in a parallel boxplot or the categories in a boxplot y by x." (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009)

"So what is the difference between a chart or graph and a visualization? […] a chart or graph is a clean and simple atomic piece; bar charts contain a short story about the data being presented. A visualization, on the other hand, seems to contain much more ʻchart junkʼ, with many sometimes complex graphics or several layers of charts and graphs. A visualization seems to be the super-set for all sorts of data-driven design." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"[...] if you want to show change through time, use a time-series chart; if you need to compare, use a bar chart; or to display correlation, use a scatter-plot - because some of these rules make good common sense." (Alberto Cairo, "The Functional Art", 2011)

"Histograms are often mistaken for bar charts but there are important differences. Histograms show distribution through the frequency of quantitative values (y axis) against defined intervals of quantitative values(x axis). By contrast, bar charts facilitate comparison of categorical values. One of the distinguishing features of a histogram is the lack of gaps between the bars [...]" (Andy Kirk, "Data Visualization: A successful design process", 2012)

"There's a strand of the data viz world that argues that everything could be a bar chart. That’s possibly true but also possibly a world without joy." (Amanda Cox, [interview in ( Scott Berinato's "The Power of Visualization’s 'Aha!' Moments, Harvard Business Review] 2013)

"Visualization is what happens when you make the jump from raw data to bar graphs, line charts, and dot plots. […] In its most basic form, visualization is simply mapping data to geometry and color. It works because your brain is wired to find patterns, and you can switch back and forth between the visual and the numbers it represents. This is the important bit. You must make sure that the essence of the data isn’t lost in that back and forth between visual and the value it represents because if you can’t map back to the data, the visualization is just a bunch of shapes." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"If I had to pick a single go-to graph for categorical data, it would be the horizontal bar chart, which flips the vertical version on its side. Why? Because it is extremely easy to read. The horizontal bar chart is especially useful if your category names are long, as the text is written from left to right, as most audiences read, making your graph legible for your audience." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"Sometimes bar charts are avoided because they are common. This is a mistake. Rather, bar charts should be leveraged because they are common, as this means less of a learning curve for your audience." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"Visual clutter is one of the most serious issues with bar charts. Using a bar to represent a simple data point is clearly overkill that results in no room for more data. At times, this may make us overlook less obvious things. The population pyramids offer a glaring example of this. But dot plots are not only about reducing clutter and avoiding overstimulation. Because we don’t compare heights, dot plots actually allow us to break the scale to improve resolution, and that’s a big plus over bar charts." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"The radial bar chart, also called the polar bar chart, arranges the bars to radiate outward from the center of a circle. This graph lies lowers on the perceptual ranking list because it is harder to compare the heights of the bars arranged around a circle than when they are arranged along a single flat axis. But this layout does allow you to fit more values in a compact space, and makes the radial bar chart well-suited for showing more data, frequent changes (such as monthly or daily), or changes over a long period of time." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"Visualizations that use different lengths of rectangles to show quantities are called bar charts. The rectangles in bar charts are called bars, and each bar represents a single category from a categorical variable. [...] When the bars in a bar chart are standing up, these visualizations are sometimes called column charts. Column charts and bar charts work in exactly the same way, but you might choose one over the other to fit better on a page or because it suits the data better." (Nancy Organ, "Data Visualization for People of All Ages", 2024)

📉Graphical Representation: Scatter Charts (Just the Quotes)

"Pencil and paper for construction of distributions, scatter diagrams, and run-charts to compare small groups and to detect trends are more efficient methods of estimation than statistical inference that depends on variances and standard errors, as the simple techniques preserve the information in the original data." (William E Deming, "On Probability as Basis for Action" American Statistician Vol. 29 (4), 1975)

"As a general rule, plotted points and graph lines should be given more 'weight' than the axes. In this way the 'meat' will be easily distinguishable from the 'bones'. Furthermore, an illustration composed of lines of unequal weights is always more attractive than one in which all the lines are of uniform thickness. It may not always be possible to emphasise the data in this way however. In a scattergram, for example, the more plotted points there are, the smaller they may need to be and this will give them a lighter appearance. Similarly, the more curves there are on a graph, the thinner the lines may need to be. In both cases, the axes may look better if they are drawn with a somewhat bolder line so that they are easily distinguishable from the data." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"Scatter charts show the relationships between information, plotted as points on a grid. These groupings can portray general features of the source data, and are useful for showing where correlationships occur frequently. Some scatter charts connect points of equal value to produce areas within the grid which consist of similar features." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"The scatterplot is a useful exploratory method for providing a first look at bivariate data to see how they are distributed throughout the plane, for example, to see clusters of points, outliers, and so forth." (William S Cleveland, "Visualizing Data", 1993)

"How would a million be visualized today? If you have ever drawn a histogram or a scatterplot of a million cases, you know that it is possible, but that there are problems. The screen resolution of a computer cannot be high enough to show very small bars in the histogram, and in regions of high density the scatterplots look like black blobs with huge numbers of points piled on top of one another. (It is noteworthy - and useful - that the weaknesses of the two kinds of plot arise at opposite extremes of the distributional densities.) So what should be visualized? If the distributional form of the bulk of the data is of interest, then the histogram will be fine for one-dimensional views (and it may give some information about outliers too). If individual outliers are of interest, then the scatterplot will be pretty good (and it will give a fair bit of distributional information as well). One aim might be described as global, attempting to summarise the main structure, and the other as local, attempting to identify individual features. Ideally, both kinds of plot are needed to satisfy both aims." (Antony Unwin et al [in "Graphics of Large Datasets: Visualizing a Million"], 2006)

"There are plenty of graphical displays that work well for small datasets and that can be found in the commonly available software packages, but they do not automatically scale up. Dotplots, scatterplots, and parallel coordinate plots all suffer from overplotting with large datasets; just think of drawing a scatterplot of a million points." (Antony Unwin et al [in "Graphics of Large Datasets: Visualizing a Million"], 2006)

"One big advantage of parallel coordinate plots over scatterplot matrices. (i.e., the matrix of scatterplots of all variable pairs) is that parallel coordinate plots need less space to plot the same amount of data. On the other hand, parallel coordinate plots with p variables show only p - 1 adjacencies. However, adjacent variables reveal most of the information in a parallel coordinate plot. Reordering variables in a parallel coordinate plot is therefore essential." (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009) 

"Parallel coordinate plots are often overrated concerning their ability to depict multivariate features. Scatterplots are clearly superior in investigating the relationship between two continuous variables and multivariate outliers do not necessarily stick out in a parallel coordinate plot. Nonetheless, parallel coordinate plots can help to find and understand features such as groups/clusters, outliers and multivariate structures in their multivariate context. The key feature is the ability to select and highlight individual cases or groups in the data, and compare them to other groups or the rest of the data." (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009)

"Raster maps - often also called raster images - represent measurements on a regular grid. They are usually a result of remote sensing techniques via satellites or airborne surveillance systems. They fit neither the construct of scatterplots nor that of maps. Nevertheless, both scatterplots and maps can be used to display raster maps within statistics software which has no extra GIS capabilities." (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009)

"A scatterplot would show the relationship between [...] two variables in more detail, but would not convey the spatial patterns shown in […] micromap panels. Using conditioning to define a comparative grid of panels, […] changes an investigation from a sequential filtering of one variable at a time to more of a multivariable approach. In this context we can assess functional relationships, densities, or geospatial patterns within panels as well as changes across panels." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"Need to consider outliers as they can affect statistics such as means, standard deviations, and correlations. They can either be explained, deleted, or accommodated (using either robust statistics or obtaining additional data to fill-in). Can be detected by methods such as box plots, scatterplots, histograms or frequency distributions." (Randall E Schumacker & Richard G Lomax, "A Beginner’s Guide to Structural Equation Modeling" 3rd Ed., 2010)

"Scatterplots are the preferred medium for adding smooth curves to show a causal functional relationship or an association […] However, despite the advantage of the scatterplot for seeing some types of patterns, the linked micromap design adds geographic location to the information displayed and so enables searches for geographic patterns that the scatterplot omits." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"[...] if you want to show change through time, use a time-series chart; if you need to compare, use a bar chart; or to display correlation, use a scatter-plot - because some of these rules make good common sense." (Alberto Cairo, "The Functional Art", 2011)

"The correlation coefficient has two fabulously attractive characteristics. First, for math reasons that have been relegated to the appendix, it is a single number ranging from –1 to 1. A correlation of 1, often described as perfect correlation, means that every change in one variable is associated with an equivalent change in the other variable in the same direction. A correlation of –1, or perfect negative correlation, means that every change in one variable is associated with an equivalent change in the other variable in the opposite direction. The closer the correlation is to 1 or –1, the stronger the association. […] The second attractive feature of the correlation coefficient is that it has no units attached to it. […] The correlation coefficient does a seemingly miraculous thing: It collapses a complex mess of data measured in different units (like our scatter plots of height and weight) into a single, elegant descriptive statistic." (Charles Wheelan, "Naked Statistics: Stripping the Dread from the Data", 2012)

"Scatterplots are still the go-to visualization when one is examining relationships between continuous variables. One of the problems with the traditional scatterplot is that all data points are presented as if they are on equal footing. [...] Bubble maps are scatterplots with added dimensions. The most common usage is to add weight to individual data points based on population." (Christopher Lysy, "Developments in Quantitative Data Display and Their Implications for Evaluation", 2013)

"The idiom of scatterplots encodes two quantitative value variables using both the vertical and horizontal spatial position channels, and the mark type is necessarily a point. Scatterplots are effective for the abstract tasks of providing overviews and characterizing distributions, and specifically for finding outliers and extreme values. Scatterplots are also highly effective for the abstract task of judging the correlation between two attributes. With this visual encoding, that task corresponds the easy perceptual judgement of noticing whether the points form a line along the diagonal. The stronger the correlation, the closer the points fall along a perfect diagonal line; positive correlation is an upward slope, and negative is downward." (Tamara Munzner, "Visualization Analysis and Design", 2014)

"A scatterplot reveals the strength and shape of the relationship between a pair of variables. A scatterplot represents the two variables by axes drawn at right angles to each other, showing the observations as a cloud of points, each point located according to its values on the two variables. Various lines can be added to the plot to help guide our search for understanding." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"Because we should, whenever possible, try to understand relationships between variables and not only describe each one of them in isolation, scatter plots are the most powerful charts available to us. The connected scatter plot is not easy to read at first, but I strongly encourage you to become familiar with it - at least during the exploratory stage - to check for relevant shapes in the relationships. Whenever you feel the need to use a dual-axis chart with two independent variables, you should try the connected scatter plot first." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"The ability to see meaningful shapes in the data represents the highest level of data visualization, because it represents the highest level of data integration and a richer graphical landscape. Line charts and scatter plots are frequently used for this shape visualization." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"Your goal when designing a scattr plot is to make the relationship between two variables as clear as possible, including the overall level of association but also revealing clusters and outliers. This is easier said than done. The data and a few bad design choices can make reading a scatter plot too complex or misleading." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"The most accurate but least interpretable form of data presentation is to make a table, showing every single value. But it is difficult or impossible for most people to detect patterns and trends in such data, and so we rely on graphs and charts. Graphs come in two broad types: Either they represent every data point visually (as in a scatter plot) or they implement a form of data reduction in which we summarize the data, looking, for example, only at means or medians." (Daniel J Levitin, "Weaponized Lies", 2017)

"Correlation does not imply causation: often some other missing third variable is influencing both of the variables you are correlating. […] The need for a scatterplot arose when scientists had to examine bivariate relations between distinct variables directly. As opposed to other graphic forms - pie charts, line graphs, and bar charts - the scatterplot offered a unique advantage: the possibility to discover regularity in empirical data (shown as points) by adding smoothed lines or curves designed to pass 'not through, but among them', so as to pass from raw data to a theory-based description, analysis, and understanding." (Michael Friendly & Howard Wainer, "A History of Data Visualization and Graphic Communication", 2021)

"Indeed, among all forms of statistical graphics, the scatterplot may be considered the most versatile and generally useful invention in the entire history of statistical graphics. Essential characteristics of a scatterplot are that two quantitative variables are measured on the same observational units (workers); the values are plotted as points referred to perpendicular axes; and the goal is to show something about the relation between these variables, typically how the ordinate variable, y, varies with the abscissa variable, x." (Michael Friendly & Howard Wainer, "A History of Data Visualization and Graphic Communication", 2021)

"[...] scatterplots had advantages over earlier graphic forms: the ability to see clusters, patterns, trends, and relations in a cloud of points. Perhaps most importantly, it allowed the addition of visual annotations (point symbols, lines, curves, enclosing contours, etc.) to make those relationships more coherent and tell more nuanced stories." (Michael Friendly & Howard Wainer, "A History of Data Visualization and Graphic Communication", 2021)

"Scatterplots are valuable because, without having to inspect each individual point, we can see overall aggregate patterns in potentially thousands of data points. But does this density of information come at a price - just how easy are they to read? [...] The truth is such charts can shed light on complex stories in a way words alone - or simpler charts you might be more familiar with - cannot." (Alan Smith, "How Charts Work: Understand and explain data with confidence", 2022)

"Scatterplots are great for statistics and mathematical data analysis, but their capabilities are limited within the context of business tasks." (Alex Kolokolov & Maxim Zelensky, "Data Visualization with Microsoft Power BI", 2024)

18 December 2011

📉Graphical Representation: Goals (Just the Quotes)

"If two or more data paths ate to appear on the graph. it is essential that these lines be labeled clearly, or at least a reference should be provided for the reader to make the necessary identifications. While clarity seems to be a most obvious goal, graphs with inadequate or confusing labeling do appear in publications, The user should not find identification of data paths troublesome or subject to misunderstanding. The designer normally should place no more than three data paths on the graph to prevent confusion - particularly if the data paths intersect at one or more points on the Cartesian plane." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"The information on a plot should be relevant to the goals of the analysis. This means that in choosing graphical methods we should match the capabilities of the methods to our needs in the context of each application. [...] Scatter plots, with the views carefully selected as in draftsman's displays, casement displays, and multiwindow plots, are likely to be more informative. We must be careful, however, not to confuse what is relevant with what we expect or want to find. Often wholly unexpected phenomena constitute our most important findings." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"We need [graphic] techniques because figures do not speak for themselves. Numbers alone seldom make a convincing case or polish their author's image - the twin goals of that other great mind bender, rhetoric. While rhetoric deals in qualitative argument, its quantitative equivalent is graphics. As rhetoric has declined in popularity, so graphics have risen along with our acceptance of quantitative arguments. In graphics, figures finally find their own means of expression." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"The main goal of data visualization is its ability to visualize data, communicating information clearly and effectively. It doesn’t mean that data visualization needs to look boring to be functional or extremely sophisticated to look beautiful. To convey ideas effectively, both aesthetic form and functionality need to go hand in hand, providing insights into a rather sparse and complex dataset by communicating its key aspects in a more intuitive way. Yet designers often tend to discard the balance between design and function, creating gorgeous data visualizations which fail to serve its main purpose - communicate information." (Vitaly Friedman, "Data Visualization and Infographics", Smashing Magazine, 2008)

"Communication is the primary goal of data visualization. Any element that hinders - rather than helps - the reader, then, needs to be changed or removed: labels and tags that are in the way, colors that confuse or simply add no value, uncomfortable scales or angles. Each element needs to serve a particular purpose toward the goal of communicating and explaining information. Efficiency matters, because if you’re wasting a viewer’s time or energy, they’re going to move on without receiving your message." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"Graphics, charts, and maps aren’t just tools to be seen, but to be read and scrutinized. The first goal of an infographic is not to be beautiful just for the sake of eye appeal, but, above all, to be understandable first, and beautiful after that; or to be beautiful thanks to its exquisite functionality." (Alberto Cairo, "The Functional Art", 2011)

"The first and main goal of any graphic and visualization is to be a tool for your eyes and brain to perceive what lies beyond their natural reach." (Alberto Cairo, "The Functional Art", 2011)

"Pie charts can be used effectively to summarize a single categorical data set if there are not too many different categories. However, pie charts are not usually the best tool if the goal is to compare groups on the basis of a categorical variable." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"Good design is an important part of any visualization, while decoration (or chart-junk) is best omitted. Statisticians should also be careful about comparing themselves to artists and designers; our goals are so different that we will fare poorly in comparison." (Hadley Wickham, "Graphical Criticism: Some Historical Notes", Journal of Computational and Graphical Statistics Vol. 22(1), 2013) 

"Usually, diagrams contain some noise – information unrelated to the diagram’s primary goal. Noise is decorations, redundant, and irrelevant data, unnecessarily emphasized and ambiguous icons, symbols, lines, grids, or labels. Every unnecessary element draws attention away from the central idea that the designer is trying to share. Noise reduces clarity by hiding useful information in a fog of useless data. You may quickly identify noise elements if you can remove them from the diagram or make them less intense and attractive without compromising the function." (Vasily Pantyukhin, "Principles of Design Diagramming", 2015)

"One of the main problems with the visual approach to statistical data analysis is that it is too easy to generate too many plots: We can easily become totally overwhelmed by the shear number and variety of graphics that we can generate. In a sense, we have been too successful in our goal of making it easy for the user: Many, many plots can be generated, so many that it becomes impossible to understand our data." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"A data story starts out like any other story, with a beginning and a middle. However, the end should never be a fixed event, but rather a set of options or questions to trigger an action from the audience. Never forget that the goal of data storytelling is to encourage and energize critical thinking for business decisions." (James Richardson, 2017)

📉Graphical Representation: Grids (Just the Quotes)

"The number of grid lines should be kept to a minimum. This means that there should be just enough coordinate lines in the field so that the eye can readily interpret the values at any point on the curve. No definite rule can be specified as to the optimum number of lines in a grid. This must be left to the discretion of the chart-maker and can come only from experience. The size of the chart, the type and range of the data. the number of curves, the length and detail of the period covered, as well as other factors, will help to determine the number of grid lines." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"Where the values of a series are such that a large part the grid would be superfluous, it is the practice to break the grid thus eliminating the unused portion of the scale, but at the same time indicating the zero line. Failure to include zero in the vertical scale is a very common omission which distorts the data and gives an erroneous visual impression." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"In line charts the grid structure plays a controlling role in interpreting facts. The number of vertical rulings should be sufficient to indicate the frequency of the plottings, facilitate the reading of the time values on the horizontal scale. and indicate the interval or subdivision of time." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"The impression created by a chart depends to a great extent on the shape of the grid and the distribution of time and amount scales. When your individual figures are a part of a series make sure your own will harmonize with the other illustrations in spacing of grid rulings, lettering, intensity of lines, and planned to take the same reduction by following the general style of the presentation." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"The scales used are important; contracting or expanding the vertical or horizontal scales will change the visual picture. The trend lines need enough grid lines to obviate difficulty in reading the results properly. One must be careful in the use of cross-hatching and shading, both of which can create illusions. Horizontal rulings tend to reduce the appearance. while vertical lines enlarge it. In summary, graphs must be reliable, and reliability depends not only on what is presented but also on how it is presented." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"Scatter charts show the relationships between information, plotted as points on a grid. These groupings can portray general features of the source data, and are useful for showing where correlationships occur frequently. Some scatter charts connect points of equal value to produce areas within the grid which consist of similar features." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)

"Gray grids almost always work well and, with a delicate line, may promote more accurate data reading and reconstruction than a heavy grid. Dark grid lines are chartjunk. When a graphic serves as a look-up table (rare indeed), then a grid may help with reading and interpolation. But even then the grid should be muted relative to the data." (Edward R Tufte, "Envisioning Information", 1990)

"The binders, the charts, the grids may seem formidable, but the meetings themselves are built around informality, trust, emotion and humor." (Jack Welch, "Jack: Straight from the Gut", 2001)

"Usually, diagrams contain some noise – information unrelated to the diagram’s primary goal. Noise is decorations, redundant, and irrelevant data, unnecessarily emphasized and ambiguous icons, symbols, lines, grids, or labels. Every unnecessary element draws attention away from the central idea that the designer is trying to share. Noise reduces clarity by hiding useful information in a fog of useless data. You may quickly identify noise elements if you can remove them from the diagram or make them less intense and attractive without compromising the function." (Vasily Pantyukhin, "Principles of Design Diagramming", 2015)

"It is generally a good idea to avoid gridlines, vertical lines, and double lines. Use single horizontal lines to separate the title, headers, and content. Lines are also employed to identify column spanners, which are used to group particular columns of data." (John Hoffmann, "Principles of Data Management and Presentation", 2017)

17 December 2011

📉Graphical Representation: Misleading (Just the Quotes)

"The zero of the scale should appear on every chart, and should shown by a heavy line carried across the sheet. If this is not done the reader may assume the bottom of the sheet to be zero and so be misled. The scale should be graduated from zero to a little over the maximum figure to be plotted on the charts, so that there will be a space between the highest peak on the curve and the top of the chart." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"Under certain conditions, however, the ordinary form of graphic chart is slightly misleading. It will be conceded that its true function is to portray comparative fluctuations. This result is practically secured when the factors or quantities compared are nearly of the same value or volume, but analysis will show that this is not accomplished when the amounts compared differ greatly in value or volume. [...] The same criticism applies to charts which employ or more scales for various curve. If the different scale are in proper proportion, the result is the same as with one scale, but when two or more scales are used which are not proportional an indication may be given with respect to comparative fluctuations which is absolutely false." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"When plotting any curve the vertical scale should, if possible, be chosen so that the zero of the scale will appear on the chart. Otherwise, the reader may assume the bottom of the chart to be zero and so be grossly misled. Zero should always be indicated by a broad line much wider than the ordinary co-ordinate lines used for the background of the chart." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"Admittedly a chart is primarily a picture, and for presentation purposes should be treated as such; but in most charts it is desirable to be able to read the approximate magnitudes by reference to the scales. Such reference is almost out of the question without some rulings to guide the eye. Second, the picture itself may be misleading without enough rulings to keep the eye 'honest'. Although sight is the most reliable of our senses for measuring" (and most other) purposes, the unaided eye is easily deceived; and there are numerous optical illusions to prove it. A third reason, not vital, but still of some importance, is that charts without rulings may appear weak and empty and may lack the structural unity desirable in any illustration." (Kenneth W Haemer, "Hold That Line. A Plea for the Preservation of Chart Scale Ruling", The American Statistician Vol. 1" (1) 1947)

"[….] double-scale charts are likely to be misleading unless the two zero values coincide" (either on or off the chart). To insure an accurate comparison of growth the scale intervals should be so chosen that both curves meet at some point. This treatment produces the effect of percentage relatives or simple index numbers with the point of juncture serving as the base point. The principal advantage of this form of presentation is that it is a short-cut method of comparing the relative change of two or more series without computation. It is especially useful for bringing together series that either vary widely in magnitude or are measured in different units and hence cannot be compared conveniently on a chart having only one absolute-amount scale. In general, the double scale treatment should not be used for presenting growth comparisons to the general reader." (Kenneth W Haemer, "Double Scales Are Dangerous", The American Statistician Vol. 2" (3) , 1948)

"An important rule in the drafting of curve charts is that the amount scale should begin at zero. In comparisons of size the omission of the zero base, unless clearly indicated, is likely to give a misleading impression of the relative values and trend." (Rufus R Lutz, "Graphic Presentation Simplified", 1949)

"Percentages offer a fertile field for confusion. And like the ever-impressive decimal they can lend an aura of precision to the inexact. […] Any percentage figure based on a small number of cases is likely to be misleading. It is more informative to give the figure itself. And when the percentage is carried out to decimal places, you begin to run the scale from the silly to the fraudulent." (Darell Huff, "How to Lie with Statistics", 1954)

"Just like the spoken or written word, statistics and graphs can lie. They can lie by not telling the full story. They can lead to wrong conclusions by omitting some of the important facts. [...] Always look at statistics with a critical eye, and you will not be the victim of misleading information." (Dyno Lowenstein, "Graphs", 1976)

"Probably one of the most common misuses" (intentional or otherwise) of a graph is the choice of the wrong scale - wrong, that is, from the standpoint of accurate representation of the facts. Even though not deliberate, selection of a scale that magnifies or reduces - even distorts - the appearance of a curve can mislead the viewer." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"Graphs are used to meet the need to condense all the available information into a more usable quantity. The selection process of combining and condensing will inevitably produce a less than complete study and will lead the user in certain directions, producing a potential for misleading." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"Reliability is highly valued by accountants and has been defined as 'the faithfulness with which it" (information) represents what it purports to represent'. The reason reliability is so important is that an essential characteristic of an accounting report is its acceptance, and if a report is considered to be misleading or superfluous, it and future reports will be disregarded." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"There are two kinds of misrepresentation. In one. the numerical data do not agree with the data in the graph, or certain relevant data are omitted. This kind of misleading presentation. while perhaps hard to determine, clearly is wrong and can be avoided. In the second kind of misrepresentation, the meaning of the data is different to the preparer and to the user." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"The bar of a bar chart has two aspects that can be used to visually decode quantitative information-size" (length and area) and the relative position of the end of the bar along the common scale. The changing sizes of the bars is an important and imposing visual factor; thus it is important that size encode something meaningful. The sizes of bars encode the magnitudes of deviations from the baseline. If the deviations have no important interpretation, the changing sizes are wasted energy and even have the potential to mislead." (William S. Cleveland, "Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multibased Logging", The American Statistician Vol. 38 (4) 1984) 

"Comparing normal distributions reduces to comparing only means and standard deviations. If standard deviations are the same, the task even simpler: just compare means. On the other hand, means and standard deviations may be incomplete or misleading as summaries for nonnormal distributions." (Lawrence C Hamilton, "Regression with Graphics: A second course in applied statistics", 1991)

"Sometimes, when visualization thoroughly reveals the structure of a set of data, there is a tendency to underrate the power of the method for the application. Little effort is expended in seeing the structure once the right visualization method is used, so we are mislead into thinking nothing exciting has occurred." (William S Cleveland, "Visualizing Data", 1993)

"The rule is that a graph of a change in a variable with time should always have a vertical scale that starts with zero. Otherwise, it is inherently misleading." (Douglas A Downing & Jeffrey Clark, "Forgotten Statistics: A Self-Teaching Refresher Course", 1996)

"Averages, ranges, and histograms all obscure the time-order for the data. If the time-order for the data shows some sort of definite pattern, then the obscuring of this pattern by the use of averages, ranges, or histograms can mislead the user. Since all data occur in time, virtually all data will have a time-order. In some cases this time-order is the essential context which must be preserved in the presentation." (Donald J Wheeler," Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000

"Displaying numerical information always involves selection. The process of selection needs to be described so that the reader will not be misled." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"[...] when data is presented in certain ways, the patterns can be readily perceived. If we can understand how perception works, our knowledge can be translated into rules for displaying information. Following perception‐based rules, we can present our data in such a way that the important and informative patterns stand out. If we disobey the rules, our data will be incomprehensible or misleading." (Colin Ware, "Information Visualization: Perception for Design" 2nd Ed., 2004)

"Comparing series visually can be misleading […]. Local variation is hidden when scaling the trends. We first need to make the series stationary" (removing trend and/or seasonal components and/or differences in variability) and then compare changes over time. To do this, we log the series" (to equalize variability) and difference each of them by subtracting last year’s value from this year’s value." (Leland Wilkinson, "The Grammar of Graphics" 2nd Ed., 2005)

"[…] a graph is nothing but a visual metaphor. To be truthful, it must correspond closely to the phenomena it depicts: longer bars or bigger pie slices must correspond to more, a rising line must correspond to an increasing amount. If a graphical depiction of data does not faithfully follow this principle, it is almost sure to be misleading. But the metaphoric attachment of a graphic goes farther than this. The character of the depiction ism a necessary and sufficient condition for the character of the data. When the data change, so too must their depiction; but when the depiction changes very little, we assume that the data, likewise, are relatively unchanging. If this convention is not followed, we are usually misled." (Howard Wainer, "Graphic Discovery: A trout in the milk and other visuals" 2nd, 2008)

"Good graphic design is not a panacea for bad copy, poor layout or misleading statistics. If any one of these facets are feebly executed it reflects poorly on the work overall, and this includes bad graphs and charts." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"It is tempting to make charts more engaging by introducing fancy graphics or three dimensions so they leap of f the page, but doing so obscures the real data and misleads people, intentionally or not." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

The best advice for guiding your decisions about using color is to refer to the two key rules [...] - make sure it is used unobtrusively and it does not mislead by implying representation when it shouldn't be. As with all design layers, the sensible objective here should be to strive for elegance rather than novelty, eye-candy, or attractiveness. To achieve this, it is important to be aware of the different functions, choices, and potential issues surrounding color deployment." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"Your goal when designing a scattr plot is to make the relationship between two variables as clear as possible, including the overall level of association but also revealing clusters and outliers. This is easier said than done. The data and a few bad design choices can make reading a scatter plot too complex or misleading." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"Calculating the percent change between two percentages is not completely inaccurate, but it can be very misleading. Instead, you should use the absolute change when you are working with percentages and want to show the difference between two points in time." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"With skewed data, quantiles will reflect the skew, while adding standard deviations assumes symmetry in the distribution and can be misleading." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"The way we explore data today, we often aren't constrained by rigid hypothesis testing or statistical rigor that can slow down the process to a crawl. But we need to be careful with this rapid pace of exploration, too. Modern business intelligence and analytics tools allow us to do so much with data so quickly that it can be easy to fall into a pitfall by creating a chart that misleads us in the early stages of the process." (Ben Jones, "Avoiding Data Pitfalls: How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations", 2020) 

"There are many ways for error to creep into facts and figures that seem entirely straightforward. Quantities can be miscounted. Small samples can fail to accurately reflect the properties of the whole population. Procedures used to infer quantities from other information can be faulty. And then, of course, numbers can be total bullshit, fabricated out of whole cloth in an effort to confer credibility on an otherwise flimsy argument. We need to keep all of these things in mind when we look at quantitative claims. They say the data never lie - but we need to remember that the data often mislead." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"Data literacy empowers us to know the usage of data and how an algorithm can potentially be misleading, biased, and so forth; data literacy empowers us with the right type of skepticism that is needed to question everything." (Jordan Morrow, "Be Data Literate: The data literacy skills everyone needs to succeed", 2021)

In truth, no one knows how much bad data quality costs a company – even companies with mature data quality initiatives in place, who are measuring hundreds of data points for their quality struggle to accurately measure quantitative impact. This is often a deal-breaker for senior leaders when trying to get approval for a budget for data quality work. Data quality initiatives often seek substantial budgets and are up against projects with more tangible benefits." (Robert Hawker, "Practical Data Quality", 2023)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.