Business Intelligence Series |
In general, there are 5 types of reporting needs:
- OLTP (On-Line Transaction Processing) system providing reports with actual (live) data;
- OLAP (On-Line Analytical Processing) reports with drill-down, roll-up, slice and dice or pivoting functionality, working with historical data, the data source(s) being refreshed periodically;
- ad-hoc reports – reports provided on request, often satisfying one time reports or reports with sporadic needs;
- Data Mining tool(s) focusing on knowledge discovery (aka Data Science);
- direct data access and analysis (aka self-service BI).
OLAP solutions presume the existence of a data warehouse that reflects the business model, and when intelligently built it can satisfy an important percentage from the BI requirements. Building a data warehouse or a set of data marts is an expensive and time consuming endeavor and rarely arrives to satisfy everybody’s needs. There are also vendors that provide commercial off-the-shelf data models and solutions, and at a first view they look like an important deal, however such models are inflexible and seldom cover all requirements. One can end up by customizing and extending the model, running in all kind of issues involving model’s design, flexibility, quality, resources and costs.
The need for ad-hoc reports will be there no matter how complete and flexible are your existing reports. There are always new requirements that must be fulfilled in utile time and not rely on the long cycle time needed for an OLTP/OLAP report. Actually many of the reports start as ad-hoc reports and once their scope and logic stabilized they are moved to the reporting solution. Talking about new reports requirements, it worth to mention that many of the users don’t know exactly what they want, what is possible to get and what information it makes sense to show and at what level of detail in order to have a report that reflects the reality.
Data Mining tools and models are supposed to leverage the value of an ERP system beyond the functionality provided by analytic reports by helping to find hidden patterns and trends in data, to elaborate predictions and estimates. Here I resume only saying that DM makes sense only when the business reached a certain maturity, and I’m considering here mainly the costs/value ratio (the expected benefits needing to be greater than the costs) and effort required from business side in pursuing such a project.
There are situations in which the functionality provided by reporting tools doesn’t fulfill users’ requirements, one of such situations being when users (aka data citizens) need to analyze data by themselves, to link data from different sources, especially Excel sheets. It’s true that vendors tried to address such requirements, though I don’t think they are mature enough, easy to use or allow users to go beyond their skills and knowledge.