31 December 2025

📉Graphical Representation: Usefulness (Just the Quotes)

"The graphical method has considerable superiority for the exposition of statistical facts over the tabular. A heavy bank of figures is grievously wearisome to the eye, and the popular mind is as incapable of drawing any useful lessons from it as of extracting sunbeams from cucumbers." (Arthur B Farquhar & Henry Farquhar, "Economic and Industrial Delusions", 1891)

"The primary purpose of a graph is to show diagrammatically how the values of one of two linked variables change with those of the other. One of the most useful applications of the graph occurs in connection with the representation of statistical data." (John F Kenney & E S Keeping, "Mathematics of Statistics" Vol. I, 1939)

"When numbers in tabular form are taboo and words will not do the work well as is often the case. There is one answer left: Draw a picture. About the simplest kind of statistical picture or graph, is the line variety. It is very useful for showing trends, something practically everybody is interested in showing or knowing about or spotting or deploring or forecasting." (Darell Huff, "How to Lie with Statistics", 1954)

"The scatterplot is a useful exploratory method for providing a first look at bivariate data to see how they are distributed throughout the plane, for example, to see clusters of points, outliers, and so forth." (William S Cleveland, "Visualizing Data", 1993)

"Data are raw facts and figures that by themselves may be useless. To be useful, data must be processed into finished information, that is, data converted into a meaningful and useful context for specific users. An increasing challenge for managers is being able to identify and access useful information." (Richard L Daft & Dorothy Marcic,"Understanding Management" 5th Ed., 2006)

"To extract useful information from such large and structured data sets, a first step is to be able to visualize their structure, identifying interesting patterns, trends, and complex relationships between the items. The main idea of visual data exploration is to produce a representation of the data in such a way that the human eye can gain insight into their structure and patterns." (George Michailidis,Data Visualization Through Their Graph Representations" [in "Handbook of Data Visualization"], 2008)

"[...] the terms data visualization and information visualization (casually, data viz and info viz) are useful for referring to any visual representation of data that is: (•) algorithmically drawn" (may have custom touches but is largely rendered with the help of computerized methods); (•) easy to regenerate with different data" (the same form may be repurposed to represent different datasets with similar dimensions or characteristics);" (•) often aesthetically barren (data is not decorated); and (•) relatively data-rich (large volumes of data are welcome and viable, in contrast to infographics)." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"A common mistake is that all visualization must be simple, but this skips a step. You should actually design graphics that lend clarity, and that clarity can make a chart 'simple' to read. However, sometimes a dataset is complex, so the visualization must be complex. The visualization might still work if it provides useful insights that you wouldn’t get from a spreadsheet. […] Sometimes a table is better. Sometimes it’s better to show numbers instead of abstract them with shapes. Sometimes you have a lot of data, and it makes more sense to visualize a simple aggregate than it does to show every data point." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"A signal is a useful message that resides in data. Data that isn’t useful is noise. […] When data is expressed visually, noise can exist not only as data that doesn’t inform but also as meaningless non-data elements of the display (e.g. irrelevant attributes, such as a third dimension of depth in bars, color variation that has no significance, and artificial light and shadow effects)." (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"With time series though, there is absolutely no substitute for plotting. The pertinent pattern might end up being a sharp spike followed by a gentle taper down. Or, maybe there are weird plateaus. There could be noisy spikes that have to be filtered out. A good way to look at it is this: means and standard deviations are based on the naïve assumption that data follows pretty bell curves, but there is no corresponding 'default' assumption for time series data" (at least, not one that works well with any frequency), so you always have to look at the data to get a sense of what’s normal. [...] Along the lines of figuring out what patterns to expect, when you are exploring time series data, it is immensely useful to be able to zoom in and out." (Field Cady, "The Data Science Handbook", 2017)

🔭Data Science: Usefulness (Just the Quotes)

"[…] wrong hypotheses, rightly worked from, have produced more useful results than unguided observation." (Augustus de Morgan, "A Budget of Paradoxes", 1872)

"A false hypothesis, if it serve as a guide for further enquiry, may, at the right stage of science, be as useful as, or more useful than, a truer one for which acceptable evidence is not yet at hand." (William C Dampier, "Science and the Human Mind, Science in the Ancient World", 1912) 

"Rule 1. Original data should be presented in a way that will preserve the evidence in the original data for all the predictions assumed to be useful." (Walter A Shewhart, "Economic Control of Quality of Manufactured Product", 1931)

"Without an adequate understanding of the statistical methods, the investigator in the social sciences may be like the blind man groping in a dark room for a black cat that is not there. The methods of Statistics are useful in an over-widening range of human activities in any field of thought in which numerical data may be had." (Frederick E Croxton & Dudley J Cowden, "Practical Business Statistics", 1937)

"Starting from statistical observations, it is possible to arrive at conclusions which not less reliable or useful than those obtained in any other exact science. It is only necessary to apply a clear and precise concept of probability to such observations. (Richard von Mises, "Probability, Statistics, and Truth", 1939)

"Analogies are useful for analysis in unexplored fields. By means of analogies an unfamiliar system may be compared with one that is better known. The relations and actions are more easily visualized, the mathematics more readily applied, and the analytical solutions more readily obtained in the familiar system." (Harry F Olson, "Dynamical Analogies", 1943)

"The view that machines cannot give rise to surprises is due, I believe, to a fallacy to which philosophers and mathematicians are particularly subject. This is the assumption that as soon as a fact is presented to a mind all consequences of that fact spring into the mind simultaneously with it. It is a very useful assumption under many circumstances, but one too easily forgets that it is false. A natural consequence of doing so is that one then assumes that there is no virtue in the mere working out of consequences from data and general principles." (Alan Turing, "Computing Machinery and Intelligence", Mind Vol. 59, 1950)

"Undoubtedly one of the most elegant, powerful, and useful techniques in modern statistical method is that of the Analysis of Variation and Co-variation by which the total variation in a set of data may be reduced to components associated with possible sources of variability whose relative importance we wish to assess. The precise form which any given analysis will take is intimately connected with the structure of the investigation from which the data are obtained. A simple structure will lead to a simple analysis; a complex structure to a complex analysis." (Michael J Moroney, "Facts from Figures", 1951)

"Extrapolations are useful, particularly in the form of soothsaying called forecasting trends. But in looking at the figures or the charts made from them, it is necessary to remember one thing constantly: The trend to now may be a fact, but the future trend represents no more than an educated guess. Implicit in it is 'everything else being equal' and 'present trends continuing'. And somehow everything else refuses to remain equal." (Darell Huff, "How to Lie with Statistics", 1954)

"The usefulness of the models in constructing a testable theory of the process is severely limited by the quickly increasing number of parameters which must be estimated in order to compare the predictions of the models with empirical results" (Anatol Rapoport, "Prisoner's Dilemma: A study in conflict and cooperation", 1965)

"A model is a useful (and often indispensable) framework on which to organize our knowledge about a phenomenon. […] It must not be overlooked that the quantitative consequences of any model can be no more reliable than the a priori agreement between the assumptions of the model and the known facts about the real phenomenon. When the model is known to diverge significantly from the facts, it is self-deceiving to claim quantitative usefulness for it by appeal to agreement between a prediction of the model and observation." (John R Philip, 1966)

"An average is sometimes called a 'measure of central tendency' because individual values of the variable usually cluster around it. Averages are useful, however, for certain types of data in which there is little or no central tendency." (William A Spirr & Charles P Bonini, "Statistical Analysis for Business Decisions" 3rd Ed., 1967)

"[…] fitting lines to relationships between variables is often a useful and powerful method of summarizing a set of data. Regression analysis fits naturally with the development of causal explanations, simply because the research worker must, at a minimum, know what he or she is seeking to explain." (Edward R Tufte, 'Data Analysis for Politics and Policy", 1974)

"Models, of course, are never true, but fortunately it is only necessary that they be useful. For this it is usually needful only that they not be grossly wrong. I think rather simple modifications of our present models will prove adequate to take account of most realities of the outside world. The difficulties of computation which would have been a barrier in the past need not deter us now." (George E P Box, "Some Problems of Statistics and Everyday Life", Journal of the American Statistical Association, Vol. 74" (365), 1979)

"When a real situation involves chance we have to use probability mathematics to understand it quantitatively. Direct mathematical solutions sometimes exist […] but most real systems are too complicated for direct solutions. In these cases the computer, once taught to generate random numbers, can use simulation to get useful answers to otherwise impossible problems." (Robert Hooke, "How to Tell the Liars from the Statisticians", 1983)

"The fact that [the model] is an approximation does not necessarily detract from its usefulness because models are approximations. All models are wrong, but some are useful." (George Box, 1987)

"The heart of the scientific method is the problem-hypothesis-test process. And, necessarily, the scientific method involves predictions. And predictions, to be useful in scientific methodology, must be subject to test empirically." (Paul Davies, "The Cosmic Blueprint: New Discoveries in Nature's Creative Ability to, Order the Universe", 1988)

"Statistics is a tool. In experimental science you plan and carry out experiments, and then analyse and interpret the results. To do this you use statistical arguments and calculations. Like any other tool - an oscilloscope, for example, or a spectrometer, or even a humble spanner - you can use it delicately or clumsily, skillfully or ineptly. The more you know about it and understand how it works, the better you will be able to use it and the more useful it will be." (Roger Barlow, "Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences", 1989)

"Science is (or should be) a precise art. Precise, because data may be taken or theories formulated with a certain amount of accuracy; an art, because putting the information into the most useful form for investigation or for presentation requires a certain amount of creativity and insight." (Patricia H Reiff, "The Use and Misuse of Statistics in Space Physics", Journal of Geomagnetism and Geoelectricity 42, 1990)

"A useful description relates the systematic variation to one or more factors; if the residuals dwarf the effects for a factor, we may not be able to relate variation in the data to changes in the factor. Furthermore, changes in the factor may bring no important change in the response. Such comparisons of residuals and effects require a measure of the variation of overlays relative to each other." (Christopher H Schrnid, "Value Splitting: Taking the Data Apart", 1991)

"In constructing a model, we always attempt to maximize its usefulness. This aim is closely connected with the relationship among three key characteristics of every systems model: complexity, credibility, and uncertainty. This relationship is not as yet fully understood. We only know that uncertainty" (predictive, prescriptive, etc.) has a pivotal role in any efforts to maximize the usefulness of systems models. Although usually" (but not always) undesirable when considered alone, uncertainty becomes very valuable when considered in connection to the other characteristics of systems models: in general, allowing more uncertainty tends to reduce complexity and increase credibility of the resulting model. Our challenge in systems modelling is to develop methods by which an optimal level of allowable uncertainty can be estimated for each modelling problem." (George J Klir & Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", 1995)

"The point is that scientific descriptions of phenomena in all of these cases do not fully capture reality they are models. This is not a shortcoming but a strength of science much of the scientist's art lies in figuring out what to include and what to exclude in a model, and this ability allows science to make useful predictions without getting bogged down by intractable details." (Philip Ball, "The Self-Made Tapestry: Pattern Formation in Nature", 1998)

"We should push for de-emphasizing some topics, such as statistical significance tests - an unfortunate carry-over from the traditional elementary statistics course. We would suggest a greater focus on confidence intervals - these achieve the aim of formal hypothesis testing, often provide additional useful information, and are not as easily misinterpreted." (Gerry Hahn et al, "The Impact of Six Sigma Improvement: A Glimpse Into the Future of Statistics", The American Statistician, 1999)

"The point of a model is to get useful information about the relation between the response and predictor variables. Interpretability is a way of getting information. But a model does not have to be simple to provide reliable information about the relation between predictor and response variables; neither does it have to be a data model. The goal is not interpretability, but accurate information." (Leo Breiman, "Statistical Modeling: The Two Cultures, Statistical Science" Vol. 16(3), 2001)

"Models can be viewed and used at three levels. The first is a model that fits the data. A test of goodness-of-fit operates at this level. This level is the least useful but is frequently the one at which statisticians and researchers stop. For example, a test of a linear model is judged good when a quadratic term is not significant. A second level of usefulness is that the model predicts future observations. Such a model has been called a forecast model. This level is often required in screening studies or studies predicting outcomes such as growth rate. A third level is that a model reveals unexpected features of the situation being described, a structural model, [...] However, it does not explain the data." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"[…] studying methods for parametric models is useful for two reasons. First, there are some cases where background knowledge suggests that a parametric model provides a reasonable approximation. […] Second, the inferential concepts for parametric models provide background for understanding certain nonparametric methods." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"A model is a simplification or approximation of reality and hence will not reflect all of reality. […] Box noted that ‘all models are wrong, but some are useful’. While a model can never be ‘truth’, a model might be ranked from very useful, to useful, to somewhat useful to, finally, essentially useless.”" (Kenneth P Burnham & David R Anderson, 'Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach” 2nd Ed., 2005)

"First, we affirm that all models are wrong, some of them are useful. Since a model is an abstraction of reality, and that too only from a particular perspective, they are fundamentally wrong because they are not reality. That gives no license to models that are wrongly built - after all, two wrongs don’t make a right. So usefulness, or purpose, is what determines a model’s role, given that it is correctly formed. Models therefore have teleological value even though they are ontologically erroneous." (John Boardman & Brian Sauser, "Systems Thinking: Coping with 21st Century Problems", 2008)

"We face danger whenever information growth outpaces our understanding of how to process it. The last forty years of human history imply that it can still take a long time to translate information into useful knowledge, and that if we are not careful, we may take a step back in the meantime." (Nate Silver, "The Signal and the Noise", 2012)

"Complexity scientists concluded that there are just too many factors - both concordant and contrarian - to understand. And with so many potential gaps in information, almost nobody can see the whole picture. Complex systems have severe limits, not only to predictability but also to measurability. Some complexity theorists argue that modelling, while useful for thinking and for studying the complexities of the world, is a particularly poor tool for predicting what will happen." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"In general, when building statistical models, we must not forget that the aim is to understand something about the real world. Or predict, choose an action, make a decision, summarize evidence, and so on, but always about the real world, not an abstract mathematical world: our models are not the reality - a point well made by George Box in his oft-cited remark that “all models are wrong, but some are useful." (David Hand, "Wonderful examples, but let's not close our eyes", Statistical Science 29, 2014)

"To find signals in data, we must learn to reduce the noise - not just the noise that resides in the data, but also the noise that resides in us. It is nearly impossible for noisy minds to perceive anything but noise in data. […] Signals always point to something. In this sense, a signal is not a thing but a relationship. Data becomes useful knowledge of something that matters when it builds a bridge between a question and an answer. This connection is the signal." (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"Data visualization is marketed today as the miracle cure that will open the doors to success, whatever its shape. We have enough experience to realize that in reality it’s not always easy to distinguish between real usefulness and zealous marketing. After the initial excitement over the prospects of data visualization comes disillusionment, and after that the possibility of a balanced assessment. The key is to get to this point quickly, without disappointments and at a lower cost." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"Effects without an understanding of the causes behind them, on the other hand, are just bunches of data points floating in the ether, offering nothing useful by themselves. Big Data is information, equivalent to the patterns of light that fall onto the eye. Big Data is like the history of stimuli that our eyes have responded to. And as we discussed earlier, stimuli are themselves meaningless because they could mean anything. The same is true for Big Data, unless something transformative is brought to all those data sets… understanding." (Beau Lotto, "Deviate: The Science of Seeing Differently", 2017)

"The goal of data science is to improve decision making by basing decisions on insights extracted from large data sets. As a field of activity, data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting nonobvious and useful patterns from large data sets. It is closely related to the fields of data mining and machine learning, but it is broader in scope." (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"In machine learning, our data has biases as well as useful information for our task. The more exactly our machine learning model fits the data, the more it reflects these biases. This means that the predictions may be based on spurious relationships that incidentally occur in the training data." (Alex Thomas, "Natural Language Processing with Spark NLP", 2020)

🕸Systems Engineering: Limits (Just the Quotes)

"Every situation is an equilibrium of forces; every life is a struggle between opposing forces working within the limits of a certain equilibrium." (Henri-Frédéric Amiel, "Amiel's Journal", 1885)

"By some definitions 'systems engineering' is suggested to be a new discovery. Actually it is a common engineering approach which has taken on a new and important meaning because of the greater complexity and scope of problems to be solved in industry, business, and the military. Newly discovered scientific phenomena, new machines and equipment, greater speed of communications, increased production capacity, the demand for control over ever-extending areas under constantly changing conditions, and the resultant complex interactions, all have created a tremendously accelerating need for improved systems engineering. Systems engineering can be complex, but is simply defined as 'logical engineering within physical, economic and technical limits' - bridging the gap from fundamental laws to a practical operating system." (Instrumentation Technology, 1957)

"Clearly, if the state of the system is coupled to parameters of an environment and the state of the environment is made to modify parameters of the system, a learning process will occur. Such an arrangement will be called a Finite Learning Machine, since it has a definite capacity. It is, of course, an active learning mechanism which trades with its surroundings. Indeed it is the limit case of a self-organizing system which will appear in the network if the currency supply is generalized." (Gordon Pask, "The Natural History of Networks", 1960)

"Taking no action to solve these problems is equivalent of taking strong action. Every day of continued exponential growth brings the world system closer to the ultimate limits of that growth. A decision to do nothing is a decision to increase the risk of collapse." (Donella Meadows et al, "The Limits to Growth", 1972) 

"Technology can relieve the symptoms of a problem without affecting the underlying causes. Faith in technology as the ultimate solution to all problems can thus divert our attention from the most fundamental problem - the problem of growth in a finite system." (Donella A Meadows, "The Limits to Growth", 1972)

"Every day of continued exponential growth brings the world system closer to the ultimate limits of that growth." (Mihajlo D Mesarovic, "Mankind at the Turning Point", 1974)

"In a loosely coupled system there is more room available for self-determination by the actors. If it is argued that a sense of efficacy is crucial for human beings. when a sense of efficacy might be greater in a loosely coupled system with autonomous units than it would be in a tightly coupled system where discretion is limited." (Karl E Weick, "Educational organizations as loosely coupled systems", 1976)

"The greater the uncertainty, the greater the amount of decision making and information processing. It is hypothesized that organizations have limited capacities to process information and adopt different organizing modes to deal with task uncertainty. Therefore, variations in organizing modes are actually variations in the capacity of organizations to process information and make decisions about events which cannot be anticipated in advance." (John K Galbraith, "Organization Design", 1977)

"Prediction of the future is possible only in systems that have stable parameters like celestial mechanics. The only reason why prediction is so successful in celestial mechanics is that the evolution of the solar system has ground to a halt in what is essentially a dynamic equilibrium with stable parameters. Evolutionary systems, however, by their very nature have unstable parameters. They are disequilibrium systems and in such systems our power of prediction, though not zero, is very limited because of the unpredictability of the parameters themselves. If, of course, it were possible to predict the change in the parameters, then there would be other parameters which were unchanged, but the search for ultimately stable parameters in evolutionary systems is futile, for they probably do not exist… Social systems have Heisenberg principles all over the place, for we cannot predict the future without changing it." (Kenneth E Boulding, Evolutionary Economics, 1981)

"Prediction of the future is possible only in systems that have stable parameters like celestial mechanics. The only reason why prediction is so successful in celestial mechanics is that the evolution of the solar system has ground to a halt in what is essentially a dynamic equilibrium with stable parameters. Evolutionary systems, however, by their very nature have unstable parameters. They are disequilibrium systems and in such systems our power of prediction, though not zero, is very limited because of the unpredictability of the parameters themselves. If, of course, it were possible to predict the change in the parameters, then there would be other parameters which were unchanged, but the search for ultimately stable parameters in evolutionary systems is futile, for they probably do not exist… Social systems have Heisenberg principles all over the place, for we cannot predict the future without changing it." (Kenneth E Boulding, "Evolutionary Economics", 1981)

"Cellular automata are discrete dynamical systems with simple construction but complex self-organizing behaviour. Evidence is presented that all one-dimensional cellular automata fall into four distinct universality classes. Characterizations of the structures generated in these classes are discussed. Three classes exhibit behaviour analogous to limit points, limit cycles and chaotic attractors. The fourth class is probably capable of universal computation, so that properties of its infinite time behaviour are undecidable." (Stephen Wolfram, "Nonlinear Phenomena, Universality and complexity in cellular automata", Physica 10D, 1984)

"Regarding stability, the state trajectories of a system tend to equilibrium. In the simplest case they converge to one point (or different points from different initial states), more commonly to one" (or several, according to initial state) fixed point or limit cycle(s) or even torus(es) of characteristic equilibrial behaviour. All this is, in a rigorous sense, contingent upon describing a potential, as a special summation of the multitude of forces acting upon the state in question, and finding the fixed points, cycles, etc., to be minima of the potential function. It is often more convenient to use the equivalent jargon of 'attractors' so that the state of a system is 'attracted' to an equilibrial behaviour. In any case, once in equilibrial conditions, the system returns to its limit, equilibrial behaviour after small, arbitrary, and random perturbations." (Gordon Pask, "Different Kinds of Cybernetics", 1992)

"Systems, acting dynamically, produce (and incidentally, reproduce) their own boundaries, as structures which are complementary (necessarily so) to their motion and dynamics. They are liable, for all that, to instabilities chaos, as commonly interpreted of chaotic form, where nowadays, is remote from the random. Chaos is a peculiar situation in which the trajectories of a system, taken in the traditional sense, fail to converge as they approach their limit cycles or 'attractors' or 'equilibria'. Instead, they diverge, due to an increase, of indefinite magnitude, in amplification or gain." (Gordon Pask, "Different Kinds of Cybernetics", 1992)

"As with subtle bifurcations, catastrophes also involve a control parameter. When the value of that parameter is below a bifurcation point, the system is dominated by one attractor. When the value of that parameter is above the bifurcation point, another attractor dominates. Thus the fundamental characteristic of a catastrophe is the sudden disappearance of one attractor and its basin, combined with the dominant emergence of another attractor. Any type of attractor static, periodic, or chaotic can be involved in this. Elementary catastrophe theory involves static attractors, such as points. Because multidimensional surfaces can also attract (together with attracting points on these surfaces), we refer to them more generally as attracting hypersurfaces, limit sets, or simply attractors." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"In spite of the insurmountable computational limits, we continue to pursue the many problems that possess the characteristics of organized complexity. These problems are too important for our well being to give up on them. The main challenge in pursuing these problems narrows down fundamentally to one question: how to deal with systems and associated problems whose complexities are beyond our information processing limits? That is, how can we deal with these problems if no computational power alone is sufficient? " (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"System dynamics models are not derived statistically from time-series data. Instead, they are statements about system structure and the policies that guide decisions. Models contain the assumptions being made about a system. A model is only as good as the expertise which lies behind its formulation. A good computer model is distinguished from a poor one by the degree to which it captures the essence of a system that it represents. Many other kinds of mathematical models are limited because they will not accept the multiple-feedback-loop and nonlinear nature of real systems." (Jay W Forrester, "Counterintuitive Behavior of Social Systems", 1995)

"The dimensionality and nonlinearity requirements of chaos do not guarantee its appearance. At best, these conditions allow it to occur, and even then under limited conditions relating to particular parameter values. But this does not imply that chaos is rare in the real world. Indeed, discoveries are being made constantly of either the clearly identifiable or arguably persuasive appearance of chaos. Most of these discoveries are being made with regard to physical systems, but the lack of similar discoveries involving human behavior is almost certainly due to the still developing nature of nonlinear analyses in the social sciences rather than the absence of chaos in the human setting. " (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"The only organization capable of unprejudiced growth, or unguided learning, is a network. All other topologies limit what can happen." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"A standalone object, no matter how well designed, has limited potential for new weirdness. A connected object, one that is a node in a network that interacts in some way with other nodes, can give birth to a hundred unique relationships that it never could do while unconnected. Out of this tangle of possible links come myriad new niches for innovations and interactions." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998)

"At present, there is far more to be gained by pushing the boundaries of what can be done by the bottom than by focusing on what can be done at the top. When it comes to control, there is plenty of room at the bottom. What we are discovering is that peer-based networks with millions of parts, minimal oversight, and maximum connection among them can do far more than anyone ever expected. We don’t yet know what the limits of decentralization are." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998)

"Don’t solve problems; pursue opportunities. […] In both the short and long term, our ability to solve social and economic problems will be limited primarily to our lack of imagination in seizing opportunities, rather than trying to optimize solutions. There is more to be gained by producing more opportunities than by optimizing existing ones." (Kevin Kelly, "New Rules for the New Economy: 10 radical strategies for a connected world", 1998) 

"Faced with the overwhelming complexity of the real world, time pressure, and limited cognitive capabilities, we are forced to fall back on rote procedures, habits, rules of thumb, and simple mental models to make decisions. Though we sometimes strive to make the best decisions we can, bounded rationality means we often systematically fall short, limiting our ability to learn from experience." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Changing measures are a particularly common problem with comparisons over time, but measures also can cause problems of their own. [...] We cannot talk about change without making comparisons over time. We cannot avoid such comparisons, nor should we want to. However, there are several basic problems that can affect statistics about change. It is important to consider the problems posed by changing - and sometimes unchanging - measures, and it is also important to recognize the limits of predictions. Claims about change deserve critical inspection; we need to ask ourselves whether apples are being compared to apples - or to very different objects." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Limiting factors in population dynamics play the role in ecology that friction does in physics. They stop exponential growth, not unlike the way in which friction stops uniform motion. Whether or not ecology is more like physics in a viscous liquid, when the growth-rate-based traditional view is sufficient, is an open question. We argue that this limit is an oversimplification, that populations do exhibit inertial properties that are noticeable. Note that the inclusion of inertia is a generalization—it does not exclude the regular rate-based, first-order theories. They may still be widely applicable under a strong immediate density dependence, acting like friction in physics." (Lev Ginzburg & Mark Colyvan, "Ecological Orbits: How Planets Move and Populations Grow", 2004)

"It is science that brings us an understanding of the true complexity of natural systems. The insights from the science of ecology are teaching us how to work with the checks and balances of nature, and encouraging a new, rational, limited-input, environmentally sound means of vineyard management that offers a third way between the ideologically driven approach of Biodynamics and conventional chemical-based agricultural systems." (Jamie Goode," The Science of Wine: From Vine to Glass", 2005)

"A great deal of the results in many areas of physics are presented in the form of conservation laws, stating that some quantities do not change during evolution of the system. However, the formulations in cybernetical physics are different. Since the results in cybernetical physics establish how the evolution of the system can be changed by control, they should be formulated as transformation laws, specifying the classes of changes in the evolution of the system attainable by control function from the given class, i.e., specifying the limits of control." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

"Humans have difficulty perceiving variables accurately […]. However, in general, they tend to have inaccurate perceptions of system states, including past, current, and future states. This is due, in part, to limited ‘mental models’ of the phenomena of interest in terms of both how things work and how to influence things. Consequently, people have difficulty determining the full implications of what is known, as well as considering future contingencies for potential systems states and the long-term value of addressing these contingencies." (William B. Rouse, "People and Organizations: Explorations of Human-Centered Design", 2007)

"The methodology of feedback design is borrowed from cybernetics (control theory). It is based upon methods of controlled system model’s building, methods of system states and parameters estimation (identification), and methods of feedback synthesis. The models of controlled system used in cybernetics differ from conventional models of physics and mechanics in that they have explicitly specified inputs and outputs. Unlike conventional physics results, often formulated as conservation laws, the results of cybernetical physics are formulated in the form of transformation laws, establishing the possibilities and limits of changing properties of a physical system by means of control." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

"[…] our mental models fail to take into account the complications of the real world - at least those ways that one can see from a systems perspective. It is a warning list. Here is where hidden snags lie. You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long-term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays. You are likely to mistreat, misdesign, or misread systems if you don’t respect their properties of resilience, self-organization, and hierarchy." (Donella H Meadows, "Thinking in Systems: A Primer", 2008)

"A quantity growing exponentially toward a limit reaches that limit in a surprisingly short time." (Donella Meadows, "Thinking in systems: A Primer", 2008)

"The other element of systems thinking is learning to influence the system with reinforcing feedback as an engine for growth or decline. [...] Without this kind of understanding, managers will hit blockages in the form of seeming limits to growth and resistance to change because the large complex system will appear impossible to manage. Systems thinking is a significant solution." (Richard L Daft, "The Leadership Experience" 4th Ed., 2008)

"This new model of development would be based clearly on the goal of sustainable human well-being. It would use measures of progress that clearly acknowledge this goal. It would acknowledge the importance of ecological sustainability, social fairness, and real economic efficiency. Ecological sustainability implies recognizing that natural and social capital are not infinitely substitutable for built and human capital, and that real biophysical limits exist to the expansion of the market economy." (Robert Costanza, "Toward a New Sustainable Economy", 2008)

"You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays." (Donella H Meadow, "Thinking in Systems: A Primer", 2008)

"A model is a representation in that it (or its properties) is chosen to stand for some other entity (or its properties), known as the target system. A model is a tool in that it is used in the service of particular goals or purposes; typically these purposes involve answering some limited range of questions about the target system." (Wendy S Parker, "Confirmation and Adequacy-for-Purpose in Climate Modelling", Proceedings of the Aristotelian Society, Supplementary Volumes, Vol. 83, 2009)

"Strange attractors, unlike regular ones, are geometrically very complicated, as revealed by the evolution of a small phase-space volume. For instance, if the attractor is a limit cycle, a small two-dimensional volume does not change too much its shape: in a direction it maintains its size, while in the other it shrinks till becoming a 'very thin strand' with an almost constant length. In chaotic systems, instead, the dynamics continuously stretches and folds an initial small volume transforming it into a thinner and thinner 'ribbon' with an exponentially increasing length." (Massimo Cencini et al, "Chaos: From Simple Models to Complex Systems", 2010)

"The first path of increasing complexity via innovation often faces limits as to how much complexity can be added or reduced in a given system. This is because if you change the complexity level in one place, a compensating change in the opposite direction generally occurs somewhere else." (John L Casti, "X-Events: The Collapse of Everything", 2012)

"Complexity scientists concluded that there are just too many factors - both concordant and contrarian - to understand. And with so many potential gaps in information, almost nobody can see the whole picture. Complex systems have severe limits, not only to predictability but also to measurability. Some complexity theorists argue that modelling, while useful for thinking and for studying the complexities of the world, is a particularly poor tool for predicting what will happen." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

🏗️Software Engineering: Limits (Just the Quotes)

"The competent programmer is fully aware of the strictly limited size of his own skull; therefore he approaches the programming task in full humility, and among other things he avoids clever tricks like the plague." (Edsger W Dijkstra, "The Humble Programmer", 1972) 

"Test input for validity and plausibility. [...] Make sure input cannot violate the limits of the program. [...] Identify bad input; recover if possible. [...] Test programs at their boundary values." (Brian W Kernighan & Phillip J Plauger, "The Elements of Programming Style", 1974)

"Throughout the software life cycle, there are many decision situations involving limited resources in which software engineering economics techniques provide useful assistance.(Barry Boehm, "Software Engineering Economics", 1984)

"Second law: The complexity barrier. Software complexity" (and therefore that of bugs) grows to the limits of our ability to manage that complexity." (Boris Beizer, "Software Testing Techniques", 1990)

"The complexity barrier. Software complexity" (and therefore that of bugs) grows to the limits of our ability to manage that complexity." (Boris Beizer, "Software Testing Techniques", 1990)

"The nature of our language tends to force us into 'yes-no', something is or is not, you either have a proof or you do not. But once we admit there is a changing standard of rigor we have to accept some proofs are more convincing than other proofs. If you view proofs on a scale much like probability, running from 0 to 1, then all proofs lie in the range and very likely never reach the upper limit of 1, certainty."" (Richard Hamming, "The Art of Doing Science and Engineering: Learning to Learn", 1997)

"But code as a design document does have its limits. It can overwhelm the reader with detail. Although its behavior is unambiguous, that doesn't mean it is obvious. And the meaning behind a behavior can be hard to convey. [...] A document shouldn't try to do what the code already does well. The code already supplies the detail. It is an exact specification of program behavior. Other documents need to illuminate meaning, to give insight into large-scale structures, and to focus attention on core elements. Documents can clarify design intent when the programming language does not support a straightforward implementation of a concept. Written documents should complement the code and the talking." (Eric Evans, "Domain-Driven Design: Tackling complexity in the heart of software", 2003)

"We are also limited by the fact that verbalization works best when mental model manipulation is an inherent element of the task of interest. Troubleshooting, computer programming, and mathematics are good examples of tasks where mental model manipulation is central and explicit. In contrast, the vast majority of tasks do not involve explicit manipulation of task representations. Thus, our access of mental models - and the access of people doing these tasks - is limited." (William B Rouse, "People and Organizations: Explorations of Human-Centered Design", 2007)

"Prototypes should command only as much time, effort, and investment as is necessary to generate useful feedback and drive an idea forward. The greater the complexity and expense, the more 'finished' it is likely to seem and the less likely its creators will be to profit from constructive feedback - or even to listen to it. The goal of prototyping is not to create a working model. It is to give form to an idea to learn about its strengths and weaknesses and to identify new directions for the next generation of more detailed, more refined prototypes. A prototype's scope should be limited. The purpose of early prototypes might be to understand whether an idea has functional value." (Tim Brown, "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", 2009)

"Complexity has shown that reductionism is limited, in the sense that emergent properties cannot be reduced. In other words, the properties at a given scale cannot be always described completely in terms of properties at a lower scale. This has led people to debate on the reality of phenomena at different scales." (Carlos Gershenson, "Complexity", 2011)

"Man is not born to solve the problems of the universe, but to find out where the problems begin, and then to take his stand within the limits of the intelligible." (Johann Wolfgang von Goethe)


19 December 2025

🤖〽️Prompt Engineering: Copilot Unabridged (Part 122: Human–Machine Ecologies - Evolution over Next Decade)

 

Prompt Engineering Series
Prompt Engineering Series

Prompt: "write a blog post of 600 words on the human-machine ecologies and their evolution over next decade focusing on the Foundations of Ambient Intelligence"

Introduction

Over the coming decade, human–machine ecologies will undergo a profound shift. We’re moving from a world where technology is something we use to one where it becomes something we live within. This transition - often described as the rise of ambient intelligence - marks the beginning of environments that sense, respond, and adapt to human presence with increasing subtlety. The next ten years will lay the groundwork for this transformation, shaping how we work, move, communicate, and care for one another.

The Quiet Embedding of Intelligence

Ambient intelligence doesn’t arrive with fanfare. It emerges quietly, through the gradual embedding of sensors, micro‑processors, and adaptive software into the spaces we inhabit. Over the next decade, this embedding will accelerate. Homes will learn daily rhythms and adjust lighting, temperature, and energy use without explicit commands. Offices will become responsive ecosystems that optimize collaboration, comfort, and focus. Public spaces will adapt to crowd flow, environmental conditions, and accessibility needs in real time.

What makes this shift ecological is the interplay between humans and machines. These systems won’t simply automate tasks; they’ll form feedback loops. Human behavior shapes machine responses, and machine responses shape human behavior. The ecology becomes a living system - dynamic, adaptive, and co‑evolving.

From Devices to Distributed Intelligence

One of the biggest changes ahead is the move away from device‑centric thinking. Today, we still treat phones, laptops, and smart speakers as discrete tools. Over the next decade, intelligence will diffuse across environments. Instead of asking a specific device to perform a task, people will interact with a distributed network that understands context. 

Imagine walking into your kitchen and having the room know whether you’re preparing a meal, grabbing a quick snack, or hosting friends. The intelligence isn’t in a single gadget; it’s in the relationships between sensors, data, and human intention. This shift will redefine how we design spaces, workflows, and even social interactions.

The Rise of Predictive and Adaptive Systems

Ambient intelligence thrives on prediction. As machine learning models become more sophisticated, environments will anticipate needs rather than simply respond to them. Over the next decade, predictive systems will become more accurate, more personalized, and more seamlessly integrated.

Transportation networks will anticipate congestion before it forms. Healthcare environments will detect subtle changes in behavior or physiology and prompt early interventions. Workspaces will adjust to cognitive load, offering focus‑enhancing conditions during deep work and collaborative cues during team sessions.

The challenge - and opportunity - lies in ensuring that these predictions enhance human autonomy rather than constrain it. The most successful systems will be those that support human choice, not replace it.

Ethical Foundations for a Machine‑Rich Ecology

As machines become more present and more perceptive, ethical questions will move to the forefront. The next decade will force societies to confront issues of privacy, consent, transparency, and agency in environments where machines are always listening, watching, and learning.

Who owns the data generated by ambient systems? How do we ensure that adaptive environments don’t reinforce bias or exclusion? What does autonomy mean when environments are constantly nudging behavior?

These questions won’t be solved by technology alone. They will require new governance models, new cultural norms, and new forms of digital literacy. The foundations of ambient intelligence must be ethical as well as technical.

Human Flourishing in Machine‑Enhanced Spaces

Despite the complexity, the promise of ambient intelligence is compelling. Done well, it can create environments that are more humane, more sustainable, and more responsive to individual and collective needs. It can reduce cognitive load, enhance creativity, support well‑being, and help societies use resources more wisely.

The next decade is not about machines taking over; it’s about machines becoming better partners. Human–machine ecologies will evolve toward balance - where technology amplifies human potential rather than overshadowing it.

Disclaimer: The whole text was generated by Copilot (under Windows 11) at the first attempt. This is just an experiment to evaluate feature's ability to answer standard general questions, independently on whether they are correctly or incorrectly posed. Moreover, the answers may reflect hallucinations and other types of inconsistent or incorrect reasoning.

Previous Post <<||>> Next Post

18 December 2025

🤖〽️Prompt Engineering: Copilot Unabridged (Part 121: Human–Machine Ecologies - A 50‑Year Evolution, Decade by Decade)

 

Prompt Engineering Series
Prompt Engineering Series

Prompt: "write a blog post of 600 words on the human-machine ecologies and their evolution overnext 50 years split by decade"

Introduction

Human–machine ecologies - our intertwined systems of people, technologies, environments, and data - are entering a period of rapid transformation. Over the next half‑century, these ecologies will evolve from today’s loosely connected networks into deeply interdependent, adaptive ecosystems. Looking decade by decade helps reveal how this evolution might unfold and what it could mean for society, culture, and the planet.

2025–2035: Foundations of Ambient Intelligence

The next decade will be defined by the normalization of ambient, always‑present computational systems. Sensors, AI models, and connected devices will fade into the background of everyday life, forming the early scaffolding of human–machine ecologies.

Homes, workplaces, and public spaces will become context‑aware environments that adjust to human needs without explicit commands. Energy systems will self‑optimize, transportation networks will coordinate autonomously, and personal devices will collaborate rather than compete for attention.

This period will also bring the first major societal debates about autonomy, privacy, and data stewardship. As machines become more embedded in daily life, people will begin to question not just what these systems do, but how they shape behavior, choices, and relationships. Governance frameworks will emerge, though often reactively, as societies grapple with the implications of pervasive machine agency.

2035–2045: Cognitive Symbiosis and Shared Intelligence

By the mid‑2030s, human–machine ecologies will shift from environmental intelligence to cognitive partnership. AI systems will increasingly function as co‑thinkers - augmenting memory, creativity, and decision‑making.

Interfaces will evolve beyond screens and voice. Neural‑signal‑based interaction, gesture‑driven control, and adaptive conversational agents will blur the line between internal thought and external computation. People will begin to treat machine intelligence as an extension of their own cognitive toolkit.

At the societal level, organizations will restructure around hybrid teams of humans and AI systems. Knowledge work will become more fluid, with machines handling pattern recognition and humans focusing on interpretation, ethics, and meaning‑making.

This decade will also see the rise of 'ecology designers' - professionals who shape the interactions between humans, machines, and environments. Their work will be less about building tools and more about cultivating balanced, resilient ecosystems.

2045–2055: Ecological Integration and Adaptive Cities

As human–machine ecologies mature, they will expand from personal and organizational contexts into full urban and planetary systems. Cities will operate as adaptive organisms, using real‑time data to regulate energy, transportation, waste, and public health.

Infrastructure will become self‑healing and self‑optimizing. Buildings will negotiate energy loads with one another, autonomous vehicles will coordinate traffic flow dynamically, and environmental sensors will guide urban planning with unprecedented precision.

Human behavior will feed directly into these systems, creating feedback loops that allow cities to evolve continuously. The challenge will be ensuring that these ecologies remain inclusive and equitable. Without careful governance, adaptive systems could reinforce existing inequalities or create new forms of digital exclusion.

Culturally, machines will become collaborators in art, science, and design. Hybrid creativity - where humans and AI co‑produce ideas - will become a mainstream mode of expression.

2055–2075: Co‑Evolution and Ecological Maturity

By the final decades of this 50‑year arc, human–machine ecologies will reach a stage of co‑evolution. Machines will not simply adapt to humans; humans will adapt to machine‑mediated environments in return.

Education will shift toward ecological literacy - understanding how to navigate, shape, and sustain complex human–machine systems. Social norms will evolve around shared agency, where responsibility is distributed across humans, machines, and institutions.

At this stage, the most successful societies will be those that embrace diversity - of people, cultures, and machine systems - and allow for continuous adaptation rather than rigid control. Human–machine ecologies will feel less like technologies and more like living environments we inhabit, influence, and co‑create.

Disclaimer: The whole text was generated by Copilot (under Windows 11) at the first attempt. This is just an experiment to evaluate feature's ability to answer standard general questions, independently on whether they are correctly or incorrectly posed. Moreover, the answers may reflect hallucinations and other types of inconsistent or incorrect reasoning.

Previous Post <<||>> Next Post

17 December 2025

🤖〽️Prompt Engineering: Copilot Unabridged (Part 120: Human–Machine Ecologies - The Next 50 Years)

 

Prompt Engineering Series
Prompt Engineering Series

Prompt: "write a blog post of 600 words on the human-machine ecologies and their evolution overnext 50 years"

Introduction

The relationship between humans and machines has always been dynamic, but we’re now entering a period where that relationship becomes ecological - interdependent, adaptive, and constantly evolving. Over the next 50 years, human–machine ecologies will shift from simple tool‑use to deeply integrated systems that shape how we live, work, and even understand ourselves.

The Rise of Symbiotic Systems

Today’s machines already sense, predict, and respond, but the coming decades will push this much further. Instead of isolated devices, we’ll inhabit environments where machines form distributed networks that learn from and adapt to human behavior. Homes, workplaces, and public spaces will function like living systems, adjusting lighting, temperature, information flow, and even social dynamics based on subtle cues.

This won’t be about convenience alone. As climate pressures intensify, these ecologies will help optimize energy use, reduce waste, and coordinate resources across entire cities. Think of buildings that negotiate energy loads with one another or transportation systems that self‑organize to minimize congestion. Humans will remain central, but machines will increasingly handle the orchestration.

Cognitive Ecosystems

The next half‑century will also redefine cognition. Instead of viewing intelligence as something that resides in individual humans or machines, we’ll see it as a property of networks. People will collaborate with AI systems that augment memory, creativity, and decision‑making. These systems won’t simply answer questions - they’ll help shape the questions worth asking.

As interfaces become more natural - voice, gesture, neural signals - the boundary between internal thought and external computation will blur. This doesn’t mean machines will replace human thinking; rather, they’ll extend it. The most successful societies will be those that treat intelligence as a shared resource, cultivated across human–machine collectives.

Ethical and Social Adaptation

Ecologies evolve not just through technology but through norms, values, and governance. Over the next 50 years, we’ll grapple with questions about autonomy, privacy, and agency in environments where machines are always present. Who controls the data that fuels these ecologies? How do we ensure that machine‑mediated environments remain inclusive and equitable?

Expect new professions to emerge - ecology designers, algorithmic ethicists, cognitive architects - whose job is to shape these systems with human flourishing in mind. The challenge won’t be building the technology; it will be aligning it with the messy, diverse, and sometimes contradictory needs of human communities.

Emotional and Cultural Integration

Machines will also become part of our emotional and cultural landscapes. Not as replacements for human relationships, but as companions, collaborators, and creative partners. We’ll see AI co‑authors, co‑musicians, and co‑inventors. Cultural production will become a hybrid process, blending human intuition with machine‑driven exploration.

This raises fascinating questions about authorship and authenticity. When a poem emerges from a dialogue between a human and an AI, who 'owns' the voice? Over time, society will likely shift from thinking in terms of ownership to thinking in terms of participation-valuing the interplay itself.

A Living, Evolving Ecology

By 2075, human–machine ecologies will feel less like tools and more like ecosystems we inhabit. They’ll evolve continuously, shaped by feedback loops between human behavior, machine learning, and environmental constraints. The most resilient ecologies will be those that embrace diversity - of people, cultures, and machine systems - and allow for adaptation rather than rigid control.

If the last 50 years were about digitizing the world, the next 50 will be about ecological integration. The future won’t be dominated by machines, nor will it be a nostalgic return to pre‑digital life. It will be something new: a co‑evolutionary dance where humans and machines learn, adapt, and grow together.

Disclaimer: The whole text was generated by Copilot (under Windows 11) at the first attempt. This is just an experiment to evaluate feature's ability to answer standard general questions, independently on whether they are correctly or incorrectly posed. Moreover, the answers may reflect hallucinations and other types of inconsistent or incorrect reasoning.

Previous Post <<||>> Next Post

06 December 2025

💎💫SQL Reloaded: Schema Differences between Database Versions - Part I: INFORMATION_SCHEMA version

During data migrations and other similar activities it's important to check what changed in the database at the various levels. Usually, it's useful to check when schemas, object names or table definitions changed, even if the changes are thoroughly documented. One can write a script to point out all the differences in one output, though it's recommended to check the differences at each level of detail

For this purpose one can use the INFORMATION_SCHEMA available for many of the RDBMS implementing it. This allows to easily port the scripts between platforms. The below queries were run on SQL Server 2025 in combination with Dynamics 365 schemas, though they should run on the earlier versions, incl. (Azure) SQL Databases. 

Such comparisons must be done from the both sides, this implying a FULL OUTER JOIN when writing a single SELECT statement, however the results can become easily hard to read and even interpret when the number of columns in output increases. Therefore, it's recommended to keep the number of columns at a minimum while addressing the scope, respectively break the FULL OUTER JOIN in two LEFT JOINs.

The simplest check is at schema level, and this can be easily done from both sides (note that database names needed to be replaced accordingly):

-- difference schemas (objects not available in the new schema)
SELECT *
FROM ( -- comparison
	SELECT DB1.CATALOG_NAME
	, DB1.SCHEMA_NAME
	, DB1.SCHEMA_OWNER
	, DB1.DEFAULT_CHARACTER_SET_NAME
	, DB2.SCHEMA_OWNER NEW_SCHEMA_OWNER
	, DB2.DEFAULT_CHARACTER_SET_NAME NEW_DEFAULT_CHARACTER_SET_NAME
	, CASE 
		WHEN DB2.SCHEMA_NAME IS NULL THEN 'schema only in old db'
		WHEN DB1.SCHEMA_OWNER <> IsNull(DB2.SCHEMA_OWNER, '') THEN 'different table type'
	  END Comment
        , CASE WHEN DB1.DEFAULT_CHARACTER_SET_NAME <> DB2.DEFAULT_CHARACTER_SET_NAME THEN 'different character sets' END Character_sets
	FROM [old database_name].INFORMATION_SCHEMA.SCHEMATA DB1
	     LEFT JOIN [new database name].INFORMATION_SCHEMA.SCHEMATA DB2
	       ON DB1.SCHEMA_NAME = DB2.SCHEMA_NAME
 ) DAT
WHERE DAT.Comment IS NOT NULL
ORDER BY DAT.CATALOG_NAME
, DAT.SCHEMA_NAME


-- difference schemas (new objects)
SELECT *
FROM ( -- comparison
	SELECT DB1.CATALOG_NAME
	, DB1.SCHEMA_NAME
	, DB1.SCHEMA_OWNER
	, DB1.DEFAULT_CHARACTER_SET_NAME
	, DB2.SCHEMA_OWNER OLD_SCHEMA_OWNER
	, DB2.DEFAULT_CHARACTER_SET_NAME OLD_DEFAULT_CHARACTER_SET_NAME
	, CASE 
		WHEN DB2.SCHEMA_NAME IS NULL THEN 'schema only in old db'
		WHEN DB1.SCHEMA_OWNER <> IsNull(DB2.SCHEMA_OWNER, '') THEN 'different table type'
	  END Comment
        , CASE WHEN DB1.DEFAULT_CHARACTER_SET_NAME <> DB2.DEFAULT_CHARACTER_SET_NAME THEN 'different character sets' END Character_sets
	FROM [new database name].INFORMATION_SCHEMA.SCHEMATA DB1
	     LEFT JOIN [old database name].INFORMATION_SCHEMA.SCHEMATA DB2
	       ON DB1.SCHEMA_NAME = DB2.SCHEMA_NAME
 ) DAT
WHERE DAT.Comment IS NOT NULL
ORDER BY DAT.CATALOG_NAME
, DAT.SCHEMA_NAME

Comments:
1) The two queries can be easily combined via a UNION ALL, though it might be a good idea then to add a column to indicate the direction of the comparison. 

The next step would be to check which objects has been changed:

-- table-based objects only in the old schema (tables & views)
SELECT *
FROM ( -- comparison
	SELECT DB1.TABLE_CATALOG
	, DB1.TABLE_SCHEMA
	, DB1.TABLE_NAME
	, DB1.TABLE_TYPE
	, DB2.TABLE_CATALOG NEW_TABLE_CATALOG
	, DB2.TABLE_TYPE NEW_TABLE_TYPE
	, CASE 
		WHEN DB2.TABLE_NAME IS NULL THEN 'objects only in old db'
		WHEN DB1.TABLE_TYPE <> IsNull(DB2.TABLE_TYPE, '') THEN 'different table type'
		--WHEN DB1.TABLE_CATALOG <> IsNull(DB2.TABLE_CATALOG, '') THEN 'different table catalog'
	  END Comment
	FROM [old database name].INFORMATION_SCHEMA.TABLES DB1
	    LEFT JOIN [new database name].INFORMATION_SCHEMA.TABLES DB2
	      ON DB1.TABLE_SCHEMA = DB2.TABLE_SCHEMA
	     AND DB1.TABLE_NAME = DB2.TABLE_NAME
 ) DAT
WHERE DAT.Comment IS NOT NULL
ORDER BY DAT.TABLE_SCHEMA
, DAT.TABLE_NAME

Comments:
1) If the database was imported under another name, then the TABLE_CATALOG will have different values as well.

At column level, the query increases in complexity, given the many aspects that must be considered:

-- difference columns (columns not available in the new scheam, respectively changes in definitions)
SELECT *
FROM ( -- comparison
	SELECT DB1.TABLE_CATALOG
	, DB1.TABLE_SCHEMA
	, DB1.TABLE_NAME
	, DB1.COLUMN_NAME 
	, DB2.TABLE_CATALOG NEW_TABLE_CATALOG
	, CASE WHEN DB2.TABLE_NAME IS NULL THEN 'column only in old db' END Comment
	, DB1.DATA_TYPE
	, DB2.DATA_TYPE NEW_DATA_TYPE
	, CASE WHEN DB2.TABLE_NAME IS NOT NULL AND IsNull(DB1.DATA_TYPE, '') <> IsNull(DB2.DATA_TYPE, '') THEN 'Yes' END Different_data_type
	, DB1.CHARACTER_MAXIMUM_LENGTH
	, DB2.CHARACTER_MAXIMUM_LENGTH NEW_CHARACTER_MAXIMUM_LENGTH
	, CASE WHEN DB2.TABLE_NAME IS NOT NULL AND IsNull(DB1.CHARACTER_MAXIMUM_LENGTH, '') <> IsNull(DB2.CHARACTER_MAXIMUM_LENGTH, '') THEN 'Yes' END Different_maximum_length
	, DB1.NUMERIC_PRECISION
	, DB2.NUMERIC_PRECISION NEW_NUMERIC_PRECISION
	, CASE WHEN DB2.TABLE_NAME IS NOT NULL AND IsNull(DB1.NUMERIC_PRECISION, '') <> IsNull(DB2.NUMERIC_PRECISION, '') THEN 'Yes' END Different_numeric_precision
	, DB1.NUMERIC_SCALE
	, DB2.NUMERIC_SCALE NEW_NUMERIC_SCALE
	, CASE WHEN DB2.TABLE_NAME IS NOT NULL AND IsNull(DB1.NUMERIC_SCALE, '') <> IsNull(DB2.NUMERIC_SCALE,'') THEN 'Yes' END Different_numeric_scale
	, DB1.CHARACTER_SET_NAME
	, DB2.CHARACTER_SET_NAME NEW_CHARACTER_SET_NAME
	, CASE WHEN DB2.TABLE_NAME IS NOT NULL AND IsNull(DB1.CHARACTER_SET_NAME, '') <> IsNull(DB2.CHARACTER_SET_NAME, '') THEN 'Yes' END Different_character_set_name 
	, DB1.COLLATION_NAME
	, DB2.COLLATION_NAME NEW_COLLATION_NAME
	, CASE WHEN DB2.TABLE_NAME IS NOT NULL AND IsNull(DB1.COLLATION_NAME, '') <> IsNull(DB2.COLLATION_NAME, '') THEN 'Yes' END Different_collation_name
	, DB1.ORDINAL_POSITION
	, DB2.ORDINAL_POSITION NEW_ORDINAL_POSITION
	, DB1.COLUMN_DEFAULT
	, DB2.COLUMN_DEFAULT NEW_COLUMN_DEFAULT
	, DB1.IS_NULLABLE
	, DB2.IS_NULLABLE NEW_IS_NULLABLE
	FROM [old database name].INFORMATION_SCHEMA.COLUMNS DB1
	    LEFT JOIN [new database name].INFORMATION_SCHEMA.COLUMNS DB2
	      ON DB1.TABLE_SCHEMA = DB2.TABLE_SCHEMA
	     AND DB1.TABLE_NAME = DB2.TABLE_NAME
	     AND DB1.COLUMN_NAME = DB2.COLUMN_NAME
 ) DAT
WHERE DAT.Comment IS NOT NULL
  OR IsNull(DAT.Different_data_type,'') = 'Yes'
  OR IsNull(DAT.Different_maximum_length,'') = 'Yes'
  OR IsNull(DAT.Different_numeric_precision,'') = 'Yes'
  OR IsNull(DAT.Different_numeric_scale,'') = 'Yes'
  OR IsNull(DAT.Different_character_set_name,'') = 'Yes'
  OR IsNull(DAT.Different_collation_name,'') = 'Yes'
ORDER BY DAT.TABLE_SCHEMA
, DAT.TABLE_NAME
, DAT.COLLATION_NAME

Comments:
1) The query targets only the most common scenarios, therefore must be changed to handle further cases (e.g. different column defaults, different attributes like nullable, etc.)!
2) The other perspective can be obtained by inverting the table names (without aliases) and changing the name of the columns from "NEW_' to "OLD_" (see the queries for schemas).
3) One can move the column-based conditions for the differences in the main query, though then is needed to duplicate the logic, which will make the code more challenging to change and debug. 

Happy coding!

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.