06 December 2018

🔭Data Science: Randomization (Just the Quotes)

"It appears to be a quite general principle that, whenever there is a randomized way of doing something, then there is a nonrandomized way that delivers better performance but requires more thought." (Edwin T Jaynes, "Probability Theory: The Logic of Science", 1979)

"Managers construct, rearrange, single out, and demolish many objective features of their surroundings. When people act they unrandomize variables, insert vestiges of orderliness, and literally create their own constraints." (Karl E Weick, "Social Psychology of Organizing", 1979)

"When the statistician looks at the outside world, he cannot, for example, rely on finding errors that are independently and identically distributed in approximately normal distributions. In particular, most economic and business data are collected serially and can be expected, therefore, to be heavily serially dependent. So is much of the data collected from the automatic instruments which are becoming so common in laboratories these days. Analysis of such data, using procedures such as standard regression analysis which assume independence, can lead to gross error. Furthermore, the possibility of contamination of the error distribution by outliers is always present and has recently received much attention. More generally, real data sets, especially if they are long, usually show inhomogeneity in the mean, the variance, or both, and it is not always possible to randomize." (George E P Box, "Some Problems of Statistics and Everyday Life", Journal of the American Statistical Association, Vol. 74 (365), 1979)

"Randomization is usually a cheap and harmless way of improving the effectiveness of experimentation with very little extra effort." (Robert Hooke, "How to Tell the Liars from the Statisticians", 1983)

"When nearest neighbor effects exist, the randomized complete block analysis [can be] so poor as to deserver to be called catastrophic. It [can not] even be considered a serious form of analysis. It is extremely important to make this clear to the vast number of researchers who have near religious faith in the randomized complete block design." (Walt Stroup & D Mulitze, "Nearest Neighbor Adjusted Best Linear Unbiased Prediction", The American Statistician 45, 1991)

"Randomization puts systematic sources of variability into the error term." (Gerald van Belle, "Statistical Rules of Thumb", 2002)

"The correlational technique known as multiple regression is used frequently in medical and social science research. This technique essentially correlates many independent (or predictor) variables simultaneously with a given dependent variable (outcome or output). It asks, 'Net of the effects of all the other variables, what is the effect of variable A on the dependent variable?' Despite its popularity, the technique is inherently weak and often yields misleading results. The problem is due to self-selection. If we don’t assign cases to a particular treatment, the cases may differ in any number of ways that could be causing them to differ along some dimension related to the dependent variable. We can know that the answer given by a multiple regression analysis is wrong because randomized control experiments, frequently referred to as the gold standard of research techniques, may give answers that are quite different from those obtained by multiple regression analysis." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

"Expert knowledge is a term covering various types of knowledge that can help define or disambiguate causal relations between two or more variables. Depending on the context, expert knowledge might refer to knowledge from randomized controlled trials, laws of physics, a broad scope of experiences in a given area, and more." (Aleksander Molak, "Causal Inference and Discovery in Python", 2023)

"The causal interpretation of linear regression only holds when there are no spurious relationships in your data. This is the case in two scenarios: when you control for a set of all necessary variables (sometimes this set can be empty) or when your data comes from a properly designed randomized experiment." (Aleksander Molak, "Causal Inference and Discovery in Python", 2023)

"The first level of creativity [for evaluating causal models] is to use the refutation tests [...] The second level of creativity is available when you have access to historical data coming from randomized experiments. You can compare your observational model with the experimental results and try to adjust your model accordingly. The third level of creativity is to evaluate your modeling approach on simulated data with known outcomes. [...] The fourth level of creativity is sensitivity analysis." (Aleksander Molak, "Causal Inference and Discovery in Python", 2023)

05 December 2018

🔭Data Science: Numbers (Just the Quotes)

"Figures are not always facts." (Aesop, "The Widow and the Hen", cca. 6th century BC)

"Things that matter most
Must never be at the mercy of things that matter least.
The first sign we don’t know what we are doing is an obsession with numbers." (Johann Wolfgang von Goethe)

"Round numbers are always false." (Samuel Johnson, [Letter to Thomas Boswell], 1778)

"There is no inquiry which is not finally reducible to a question of Numbers; for there is none which may not be conceived of as consisting in the determination of quantities by each other, according to certain relations." (Auguste Comte, “The Positive Philosophy”, 1830)

"There are two aspects of statistics that are continually mixed, the method and the science. Statistics are used as a method, whenever we measure something, for example, the size of a district, the number of inhabitants of a country, the quantity or price of certain commodities, etc. […] There is, moreover, a science of statistics. It consists of knowing how to gather numbers, combine them and calculate them, in the best way to lead to certain results. But this is, strictly speaking, a branch of mathematics." (Alphonse P de Candolle, "Considerations on Crime Statistics", 1833)

"Most statistical arguments depend upon a few figures picked out at random." (William S Jevons, [letter to Richard Hutton] 1863)

"If statistical graphics, although born just yesterday, extends its reach every day, it is because it replaces long tables of numbers and it allows one not only to embrace at glance the series of phenomena, but also to signal the correspondences or anomalies, to find the causes, to identify the laws." (Émile Cheysson, cca. 1877) 

"[…] when you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the state of science." (William T Kelvin, "Electrical Units of Measurement", 1883)

"Statistics may, for instance, be called the science of counting. Counting appears at first sight to be a very simple operation, which any one can perform or which can be done automatically; but, as a matter of fact, when we come to large numbers, e.g., the population of the United Kingdom, counting is by no means easy, or within the power of an individual; limits of time and place alone prevent it being so carried out, and in no way can absolute accuracy be obtained when the numbers surpass certain limits." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"Statistics may rightly be called the science of averages. […] Great numbers and the averages resulting from them, such as we always obtain in measuring social phenomena, have great inertia. […] It is this constancy of great numbers that makes statistical measurement possible. It is to great numbers that statistical measurement chiefly applies." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"Statistics is the name for that science and art which deals with uncertain inferences - which uses numbers to find out something about nature and experience." (Warren Weaver, 1952)

"Extrapolations are useful, particularly in the form of soothsaying called forecasting trends. But in looking at the figures or the charts made from them, it is necessary to remember one thing constantly: The trend to now may be a fact, but the future trend represents no more than an educated guess. Implicit in it is 'everything else being equal' and 'present trends continuing'. And somehow everything else refuses to remain equal." (Darell Huff, "How to Lie with Statistics", 1954)

"Quantitative performance measurements - whether single, multiple, or composite - are seen to have undesirable consequences for over-all organizational performance. The complexity of large organizations requires better knowledge of organizational behavior for managers to make best use of the personnel available to them." (V F Ridgway, "Dysfunctional Consequences of Performance Measurements", Administrative Science Quarterly Vol. 1 (2), 1956)

"The purpose of computing is insight, not numbers […] sometimes […] the purpose of computing numbers is not yet in sight." (Richard Hamming, "Numerical Methods for Scientists and Engineers", 1962)

"A well constructed numerical estimate can be worth a thousand words." (Charles L Schultze, 1967)

"Every graph is at least an indication, by contrast with some common instances of numbers." (John W Tukey, "Data Analysis, Including Statistics", 1968)

"What goes wrong [in long-range planning] is that sensible anticipation gets converted into foolish numbers: and their validity always hinges on large loose assumptions." (Robert Heller, "The Naked Manager: Games Executives Play", 1972)

"[...] be wary of analysts that try to quantify the unquantifiable." (Ralph Keeney & Raiffa Howard, "Decisions with Multiple Objectives: Preferences and Value Trade-offs", 1976)

"Our mistake is not that we take our theories too seriously, but that we do not take them seriously enough. It is always hard to realize that these numbers and equations we play with at our desks have something to do with the real world." (Steven Weinberg, "The First Three Minutes", 1977)

"Numbers are the product of counting. Quantities are the product of measurement. This means that numbers can conceivably be accurate because there is a discontinuity between each integer and the next. Between two and three there is a jump. In the case of quantity there is no such jump, and because jump is missing in the world of quantity it is impossible for any quantity to be exact. You can have exactly three tomatoes. You can never have exactly three gallons of water. Always quantity is approximate." (Gregory Bateson, "Number is Different from Quantity", CoEvolution Quarterly, 1978)

"People often feel inept when faced with numerical data. Many of us think that we lack numeracy, the ability to cope with numbers. […] The fault is not in ourselves, but in our data. Most data are badly presented and so the cure lies with the producers of the data. To draw an analogy with literacy, we do not need to learn to read better, but writers need to be taught to write better." (Andrew Ehrenberg, "The problem of numeracy", American Statistician 35(2), 1981)

“Data in isolation are meaningless, a collection of numbers. Only in context of a theory do they assume significance […]” (George Greenstein, “Frozen Star”, 1983)

"Inept graphics also flourish because many graphic artists believe that statistics are boring and tedious. It then follows that decorated graphics must pep up, animate, and all too often exaggerate what evidence there is in the data. […] If the statistics are boring, then you've got the wrong numbers." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"A final goal of any scientific theory must be the derivation of numbers. Theories stand or fall, ultimately, upon numbers." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"The drudgery of the numbers will make you free." (Harold Geneen, "Managing", 1984)

"The professional's grasp of the numbers is a measure of the control he has over the events that the figures represent." (Harold Geneen, "Managing", 1984)

"When you have mastered the numbers, you will in fact no longer be reading numbers, any more than you read words when reading a book. You will be reading meanings." (Harold Geneen & Alvin Moscow, "Managing", 1984)

"Numbers have undoubted powers to beguile and benumb, but critics must probe behind numbers to the character of arguments and the biases that motivate them." (Stephen J Gould, "An Urchin in the Storm: Essays About Books and Ideas", 1987)

"Whenever decisions are made strictly on the basis of bottom-line arithmetic, human beings get crunched along with the numbers." (Thomas R Horton, Management Review, 1987)

"When you are drowning in numbers you need a system to separate the wheat from the chaff." (Anthony Adams, The New York Times, 1988)

"Torture numbers, and they will confess to anything." (Gregg Easterbrook, New Republic, 1989)

"[…] you simply cannot make sense of any number without a contextual basis. Yet the traditional attempts to provide this contextual basis are often flawed in their execution. [...] Data have no meaning apart from their context. Data presented without a context are effectively rendered meaningless.(Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Big numbers warn us that the problem is a common one, compelling our attention, concern, and action. The media like to report statistics because numbers seem to be 'hard facts' - little nuggets of indisputable truth. [...] One common innumerate error involves not distinguishing among large numbers. [...] Because many people have trouble appreciating the differences among big numbers, they tend to uncritically accept social statistics (which often, of course, feature big numbers)." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Not all statistics start out bad, but any statistic can be made worse. Numbers - even good numbers - can be misunderstood or misinterpreted. Their meanings can be stretched, twisted, distorted, or mangled. These alterations create what we can call mutant statistics - distorted versions of the original figures." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Information needs representation. The idea that it is possible to communicate information in a 'pure' form is fiction. Successful risk communication requires intuitively clear representations. Playing with representations can help us not only to understand numbers (describe phenomena) but also to draw conclusions from numbers (make inferences). There is no single best representation, because what is needed always depends on the minds that are doing the communicating." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)

"Every number has its limitations; every number is a product of choices that inevitably involve compromise. Statistics are intended to help us summarize, to get an overview of part of the world’s complexity. But some information is always sacrificed in the process of choosing what will be counted and how. Something is, in short, always missing. In evaluating statistics, we should not forget what has been lost, if only because this helps us understand what we still have." (Joel Best, "More Damned Lies and Statistics: How numbers confuse public issues", 2004)

"In much the same way, people create statistics: they choose what to count, how to go about counting, which of the resulting numbers they share with others, and which words they use to describe and interpret those figures. Numbers do not exist independent of people; understanding numbers requires knowing who counted what, why they bothered counting, and how they went about it." (Joel Best, "More Damned Lies and Statistics: How numbers confuse public issues", 2004)

"Data, reason, and calculation can only produce conclusions; they do not inspire action. Good numbers are not the result of managing numbers." (Ronald J Baker, "Measure what Matters to Customers: Using Key Predictive Indicators", 2006)

"Statistics can certainly pronounce a fact, but they cannot explain it without an underlying context, or theory. Numbers have an unfortunate tendency to supersede other types of knowing. […] Numbers give the illusion of presenting more truth and precision than they are capable of providing." (Ronald J Baker, "Measure what Matters to Customers: Using Key Predictive Indicators", 2006)

"Our culture, obsessed with numbers, has given us the idea that what we can measure is more important than what we can't measure. Think about that for a minute. It means that we make quantity more important than quality." (Donella Meadows, "Thinking in Systems: A Primer", 2008)

"What gets measured gets managed - even when it’s pointless to measure and manage it, and even if it harms the purpose of the organisation to do so." (Simon Caulkin, "The rule is simple: be careful what you measure", 2008) [source]

"What gets measured gets managed - so be sure you have the right measures, because the wrong ones kill." (Simon Caulkin, "The rule is simple: be careful what you measure", 2008) [source]

"Numbers already rule your world. And you must not be in the dark about this fact. See how some applied scientists use statistical thinking to make our lives better. You will be amazed how you can use numbers to make everyday decisions in your own life." (Kaiser Fung, "Numbers Rule the World", 2010)

"Having NUMBERSENSE means: (•) Not taking published data at face value; (•) Knowing which questions to ask; (•) Having a nose for doctored statistics. [...] NUMBERSENSE is that bit of skepticism, urge to probe, and desire to verify. It’s having the truffle hog’s nose to hunt the delicacies. Developing NUMBERSENSE takes training and patience. It is essential to know a few basic statistical concepts. Understanding the nature of means, medians, and percentile ranks is important. Breaking down ratios into components facilitates clear thinking. Ratios can also be interpreted as weighted averages, with those weights arranged by rules of inclusion and exclusion. Missing data must be carefully vetted, especially when they are substituted with statistical estimates. Blatant fraud, while difficult to detect, is often exposed by inconsistency." (Kaiser Fung, "Numbersense: How To Use Big Data To Your Advantage", 2013)

"NUMBERSENSE is not taking numbers at face value. NUMBERSENSE is the ability to relate numbers here to numbers there, to separate the credible from the chimerical. It means drawing the dividing line between science hour and story time." (Kaiser Fung, "Numbersense: How To Use Big Data To Your Advantage", 2013)

"By giving numbers a proper shape, by visually encoding them, the graphic has saved you time and energy that you would otherwise waste if you had to use a table that was not designed to aid your mind." (Alberto Cairo, "The Functional Art", 2011)

"If the group is large enough, even very small differences can become statistically significant." (Victor Cohn & Lewis Cope, "News & Numbers: A writer’s guide to statistics" 3rd Ed, 2012)

"Most importantly, much of statistics involves clear thinking rather than numbers. And much, at least much of the statistical principles that reporters can most readily apply, is good sense." (Victor Cohn & Lewis Cope, "News & Numbers: A writer’s guide to statistics" 3rd Ed, 2012)

"The value of having numbers - data - is that they aren't subject to someone else's interpretation. They are just the numbers. You can decide what they mean for you." (Emily Oster, "Expecting Better", 2013)

"Comparisons are the lifeblood of empirical studies. We can’t determine if a medicine, treatment, policy, or strategy is effective unless we compare it to some alternative. But watch out for superficial comparisons: comparisons of percentage changes in big numbers and small numbers, comparisons of things that have nothing in common except that they increase over time, comparisons of irrelevant data. All of these are like comparing apples to prunes." (Gary Smith, "Standard Deviations", 2014)

"[…] humans make mistakes when they try to count large numbers in complicated systems. They make even greater errors when they attempt - as they always do - to reduce complicated systems to simple numbers." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"Most people do not relate to or retain columns of numbers, however much those numbers reflect something that they care about deeply. Statistics can be cold and dull." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"Numbers are not inherently tedious. They can be illuminating, fascinating, even entertaining. The trouble starts when we decide that it is more important for a graph to be artistic than informative." (Gary Smith, "Standard Deviations", 2014)

"The omission of zero magnifies the ups and downs in the data, allowing us to detect changes that might otherwise be ambiguous. However, once zero has been omitted, the graph is no longer an accurate guide to the magnitude of the changes. Instead, we need to look at the actual numbers." (Gary Smith, "Standard Deviations", 2014)

"The search for better numbers, like the quest for new technologies to improve our lives, is certainly worthwhile. But the belief that a few simple numbers, a few basic averages, can capture the multifaceted nature of national and global economic systems is a myth. Rather than seeking new simple numbers to replace our old simple numbers, we need to tap into both the power of our information age and our ability to construct our own maps of the world to answer the questions we need answering." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"We don’t need new indicators that replace old simple numbers with new simple numbers. We need instead bespoke indicators, tailored to the specific needs and specific questions of governments, businesses, communities, and individuals." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"Analysis is a two-step process that has an exploratory and an explanatory phase. In order to create a powerful data story, you must effectively transition from data discovery (when you’re finding insights) to data communication (when you’re explaining them to an audience). If you don’t properly traverse these two phases, you may end up with something that resembles a data story but doesn’t have the same effect. Yes, it may have numbers, charts, and annotations, but because it’s poorly formed, it won’t achieve the same results." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"Are your insights based on data that is accurate and reliable? Trustworthy data is correct or valid, free from significant defects and gaps. The trustworthiness of your data begins with the proper collection, processing, and maintenance of the data at its source. However, the reliability of your numbers can also be influenced by how they are handled during the analysis process. Clean data can inadvertently lose its integrity and true meaning depending on how it is analyzed and interpreted." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"One very common problem in data visualization is that encoding numerical variables to area is incredibly popular, but readers can’t translate it back very well." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"We tend to think of maths as being an 'exact' discipline, where answers are right or wrong. And it's true that there is a huge part of maths that is about exactness. But in everyday life, numerical answers are sometimes just the start of the debate. If we are trained to believe that every numerical question has a definite, 'right' answer then we miss the fact that numbers in the real world are a lot fuzzier than pure maths might suggest." (Rob Eastaway, "Maths on the Back of an Envelope", 2019)

"It’d be nice to fondly imagine that high-quality statistics simply appear in a spreadsheet somewhere, divine providence from the numerical heavens. Yet any dataset begins with somebody deciding to collect the numbers. What numbers are and aren’t collected, what is and isn’t measured, and who is included or excluded are the result of all-too-human assumptions, preconceptions, and oversights." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Numbers can easily confuse us when they are unmoored from a clear definition." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Premature enumeration is an equal-opportunity blunder: the most numerate among us may be just as much at risk as those who find their heads spinning at the first mention of a fraction. Indeed, if you’re confident with numbers you may be more prone than most to slicing and dicing, correlating and regressing, normalizing and rebasing, effortlessly manipulating the numbers on the spreadsheet or in the statistical package - without ever realizing that you don’t fully understand what these abstract quantities refer to. Arguably this temptation lay at the root of the last financial crisis: the sophistication of mathematical risk models obscured the question of how, exactly, risks were being measured, and whether those measurements were something you’d really want to bet your global banking system on." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"The whole discipline of statistics is built on measuring or counting things. […] it is important to understand what is being measured or counted, and how. It is surprising how rarely we do this. Over the years, as I found myself trying to lead people out of statistical mazes week after week, I came to realize that many of the problems I encountered were because people had taken a wrong turn right at the start. They had dived into the mathematics of a statistical claim - asking about sampling errors and margins of error, debating if the number is rising or falling, believing, doubting, analyzing, dissecting - without taking the ti- me to understand the first and most obvious fact: What is being measured, or counted? What definition is being used?" (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Unless we’re collecting data ourselves, there’s a limit to how much we can do to combat the problem of missing data. But we can and should remember to ask who or what might be missing from the data we’re being told about. Some missing numbers are obvious […]. Other omissions show up only when we take a close look at the claim in question." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"We should conclude nothing because that pair of numbers alone tells us very little. If we want to understand what’s happening, we need to step back and take in a broader perspective." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"[...] although numbers may seem to be pure facts that exist independently from any human judgment, they are heavily laden with context and shaped by decisions - from how they are calculated to the units in which they are expressed." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"For numbers to be transparent, they must be placed in an appropriate context. Numbers must presented in a way that allows for fair comparisons." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"Numbers are ideal vehicles for promulgating bullshit. They feel objective, but are easily manipulated to tell whatever story one desires. Words are clearly constructs of human minds, but numbers? Numbers seem to come directly from Nature herself. We know words are subjective. We know they are used to bend and blur the truth. Words suggest intuition, feeling, and expressivity. But not numbers. Numbers suggest precision and imply a scientific approach. Numbers appear to have an existence separate from the humans reporting them." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"People do care about how they are measured. What can we do about this? If you are in the position to measure something, think about whether measuring it will change people’s behaviors in ways that undermine the value of your results. If you are looking at quantitative indicators that others have compiled, ask yourself: Are these numbers measuring what they are intended to measure? Or are people gaming the system and rendering this measure useless?" (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"So what does it mean to tell an honest story? Numbers should be presented in ways that allow meaningful comparisons." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"As long as measurements are abused as a tool of control, measuring will remain the weakest area in a manager’s performance." (Peter Drucker)

"If the statistics are boring, you've got the wrong numbers." (Edward Tufte)

"Nothing is so fallacious as facts, except figures." (George Canning) [attributed]

"Sometimes the numbers don’t explain everything. The numbers are not the business - they are symbols of the business." (Gerald Deitchle)

"Strategic planning is not strategic thinking. Indeed, strategic planning often spoils strategic thinking, causing managers to confuse real vision with the manipulation of numbers." (Henry Mintzberg)

🔭Data Science: Variables (Just the Quotes)

"Every scientific problem can be stated most clearly if it is thought of as a search for the nature of the relation between two definitely stated variables. Very often a scientific problem is felt and stated in other terms, but it cannot be so clearly stated in any way as when it is thought of as a function by which one variable is shown to be dependent upon or related to some other variable." (Louis L Thurstone, "The Fundamentals of Statistics", 1925)

"[Disorganized complexity] is a problem in which the number of variables is very large, and one in which each of the many variables has a behavior which is individually erratic, or perhaps totally unknown. However, in spite of this helter-skelter, or unknown, behavior of all the individual variables, the system as a whole possesses certain orderly and analyzable average properties. [...] [Organized complexity is] not problems of disorganized complexity, to which statistical methods hold the key. They are all problems which involve dealing simultaneously with a sizable number of factors which are interrelated into an organic whole. They are all, in the language here proposed, problems of organized complexity." (Warren Weaver, "Science and Complexity", American Scientist Vol. 36, 1948)

"The primary purpose of a graph is to show diagrammatically how the values of one of two linked variables change with those of the other. One of the most useful applications of the graph occurs in connection with the representation of statistical data." (John F Kenney & E S Keeping, "Mathematics of Statistics" Vol. I 3rd Ed., 1954)

"The well-known virtue of the experimental method is that it brings situational variables under tight control. It thus permits rigorous tests of hypotheses and confidential statements about causation. The correlational method, for its part, can study what man has not learned to control. Nature has been experimenting since the beginning of time, with a boldness and complexity far beyond the resources of science. The correlator’s mission is to observe and organize the data of nature’s experiments." (Lee J Cronbach, "The Two Disciplines of Scientific Psychology", The American Psychologist Vol. 12, 1957)

"A satisfactory prediction of the sequential properties of learning data from a single experiment is by no means a final test of a model. Numerous other criteria - and some more demanding - can be specified. For example, a model with specific numerical parameter values should be invariant to changes in independent variables that explicitly enter in the model." (Robert R Bush & Frederick Mosteller,"A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"[A] sequence is random if it has every property that is shared by all infinite sequences of independent samples of random variables from the uniform distribution." (Joel N Franklin, 1962)

"The most valuable use of such [mathematical] models usually lies less in turning out the answer in an uncertain world than in shedding light on how much difference an alteration in the assumptions and/or variables used would make in the answer yielded by the models." (Edward G. Bennion, "New Decision-Making Tools for Managers", 1963)

"Most of our beliefs about complex organizations follow from one or the other of two distinct strategies. The closed-system strategy seeks certainty by incorporating only those variables positively associated with goal achievement and subjecting them to a monolithic control network. The open-system strategy shifts attention from goal achievement to survival and incorporates uncertainty by recognizing organizational interdependence with environment. A newer tradition enables us to conceive of the organization as an open system, indeterminate and faced with uncertainty, but subject to criteria of rationality and hence needing certainty." (James D Thompson, "Organizations in Action", 1967)

"The less we understand a phenomenon, the more variables we require to explain it." (Russell L Ackoff, "Management Science", 1967)

"To model the dynamic behavior of a system, four hierarchies of structure should be recognized: closed boundary around the system; feedback loops as the basic structural elements within the boundary; level variables representing accumulations within the feedback loops; rate variables representing activity within the feedback loops." (Jay W Forrester, "Urban Dynamics", 1969)

"However, and conversely, our models fall far short of representing the world fully. That is why we make mistakes and why we are regularly surprised. In our heads, we can keep track of only a few variables at one time. We often draw illogical conclusions from accurate assumptions, or logical conclusions from inaccurate assumptions. Most of us, for instance, are surprised by the amount of growth an exponential process can generate. Few of us can intuit how to damp oscillations in a complex system." (Donella H Meadows, "Limits to Growth", 1972)

"It is not always appreciated that the problem of theory building is a constant interaction between constructing laws and finding an appropriate set of descriptive state variables such that laws can be constructed." (Richard C Lewontin, "The Genetic Basis of Evolutionary Change", 1974)

"A mature science, with respect to the matter of errors in variables, is not one that measures its variables without error, for this is impossible. It is, rather, a science which properly manages its errors, controlling their magnitudes and correctly calculating their implications for substantive conclusions." (Otis D Duncan, "Introduction to Structural Equation Models", 1975)

"A system may be specified in either of two ways. In the first, which we shall call a state description, sets of abstract inputs, outputs and states are given, together with the action of the inputs on the states and the assignments of outputs to states. In the second, which we shall call a coordinate description, certain input, output and state variables are given, together with a system of dynamical equations describing the relations among the variables as functions of time. Modern mathematical system theory is formulated in terms of state descriptions, whereas the classical formulation is typically a coordinate description, for example a system of differential equations." (E S Bainbridge, "The Fundamental Duality of System Theory", 1975)

"Managers construct, rearrange, single out, and demolish many objective features of their surroundings. When people act they unrandomize variables, insert vestiges of orderliness, and literally create their own constraints." (Karl E Weick, "Social Psychology of Organizing", 1979)

"The number of information-carrying (variable) dimensions depicted should not exceed the number of dimensions in the data.(Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"The formal structure of a decision problem in any area can be put into four parts: (1) the choice of an objective function denning the relative desirability of different outcomes; (2) specification of the policy alternatives which are available to the agent, or decisionmaker, (3) specification of the model, that is, empirical relations that link the objective function, or the variables that enter into it, with the policy alternatives and possibly other variables; and (4) computational methods for choosing among the policy alternatives that one which performs best as measured by the objective function." (Kenneth Arrow, "The Economics of Information", 1984)

"A mechanistic model has the following advantages: 1. It contributes to our scientific understanding of the phenomenon under study. 2. It usually provides a better basis for extrapolation (at least to conditions worthy of further experimental investigation if not through the entire range of all input variables). 3. It tends to be parsimonious (i.e, frugal) in the use of parameters and to provide better estimates of the response." (George E P Box, "Empirical Model-Building and Response Surfaces", 1987)

"A system of variables is 'interrelated' if an action that affects or meant to affect one part of the system will also affect other parts of it. Interrelatedness guarantees that an action aimed at one variable will have side effects and long-term repercussions. A large number of variables will make it easy to overlook them." (Dietrich Dorner, "The Logic of Failure: Recognizing and Avoiding Error in Complex Situations", 1989)

"The real leverage in most management situations lies in understanding dynamic complexity, not detail complexity. […] Unfortunately, most 'systems analyses' focus on detail complexity not dynamic complexity. Simulations with thousands of variables and complex arrays of details can actually distract us from seeing patterns and major interrelationships. In fact, sadly, for most people 'systems thinking' means 'fighting complexity with complexity', devising increasingly 'complex' (we should really say 'detailed') solutions to increasingly 'complex' problems. In fact, this is the antithesis of real systems thinking." (Peter M Senge, "The Fifth Discipline: The Art and Practice of the Learning Organization", 1990)

"Industrial managers faced with a problem in production control invariably expect a solution to be devised that is simple and unidimensional. They seek the variable in the situation whose control will achieve control of the whole system: tons of throughput, for example. Business managers seek to do the same thing in controlling a company; they hope they have found the measure of the entire system when they say 'everything can be reduced to monetary terms'." (Stanford Beer, "Decision and Control", 1994)

"Complex adaptive systems have the property that if you run them - by just letting the mathematical variable of 'time' go forward - they'll naturally progress from chaotic, disorganized, undifferentiated, independent states to organized, highly differentiated, and highly interdependent states. Organized structures emerge spontaneously. [...]A weak system gives rise only to simpler forms of self-organization; a strong one gives rise to more complex forms, like life. (J Doyne Farmer, "The Third Culture: Beyond the Scientific Revolution", 1995)

"In addition to dimensionality requirements, chaos can occur only in nonlinear situations. In multidimensional settings, this means that at least one term in one equation must be nonlinear while also involving several of the variables. With all linear models, solutions can be expressed as combinations of regular and linear periodic processes, but nonlinearities in a model allow for instabilities in such periodic solutions within certain value ranges for some of the parameters." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"The greatest plus of data modeling is that it produces a simple and understandable picture of the relationship between the input variables and responses [...] different models, all of them equally good, may give different pictures of the relation between the predictor and response variables [...] One reason for this multiplicity is that goodness-of-fit tests and other methods for checking fit give a yes–no answer. With the lack of power of these tests with data having more than a small number of dimensions, there will be a large number of models whose fit is acceptable. There is no way, among the yes–no methods for gauging fit, of determining which is the better model." (Leo Breiman, "Statistical Modeling: The two cultures" Statistical Science 16(3), 2001)

"Trimming potentially theoretically meaningful variables is not advisable unless one is quite certain that the coefficient for the variable is near zero, that the variable is inconsequential, and that trimming will not introduce misspecification error." (James Jaccard, "Interaction Effects in Logistic Regression", 2001)

"A smaller model with fewer covariates has two advantages: it might give better predictions than a big model and it is more parsimonious (simpler). Generally, as you add more variables to a regression, the bias of the predictions decreases and the variance increases. Too few covariates yields high bias; this called underfitting. Too many covariates yields high variance; this called overfitting. Good predictions result from achieving a good balance between bias and variance. […] finding a good model involves trading of fit and complexity." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"Nonetheless, the basic principles regarding correlations between variables are not that difficult to understand. We must look for patterns that reveal potential relationships and for evidence that variables are actually related. But when we do spot those relationships, we should not jump to conclusions about causality. Instead, we need to weigh the strength of the relationship and the plausibility of our theory, and we must always try to discount the possibility of spuriousness." (Joel Best, "More Damned Lies and Statistics: How numbers confuse public issues", 2004)

"Correlation analysis can help us find the size of the formal relation between two properties. An equidirectional variation is present if we observe high values of one variable together with high values of the other variable (or low ones combined with low ones). In this case there is a positive correlation. If high values are combined with low values and low values with high values, the variation is counterdirectional, and the correlation is negative." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"Humans have difficulty perceiving variables accurately […]. However, in general, they tend to have inaccurate perceptions of system states, including past, current, and future states. This is due, in part, to limited ‘mental models’ of the phenomena of interest in terms of both how things work and how to influence things. Consequently, people have difficulty determining the full implications of what is known, as well as considering future contingencies for potential systems states and the long-term value of addressing these contingencies. " (William B. Rouse, "People and Organizations: Explorations of Human-Centered Design", 2007)

"To fulfill the requirements of the theory underlying uncertainties, variables with random uncertainties must be independent of each other and identically distributed. In the limiting case of an infinite number of such variables, these are called normally distributed. However, one usually speaks of normally distributed variables even if their number is finite." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"Swarm intelligence can be effective when applied to highly complicated problems with many nonlinear factors, although it is often less effective than the genetic algorithm approach discussed later in this chapter. Swarm intelligence is related to swarm optimization […]. As with swarm intelligence, there is some evidence that at least some of the time swarm optimization can produce solutions that are more robust than genetic algorithms. Robustness here is defined as a solution’s resistance to performance degradation when the underlying variables are changed." (Michael J North & Charles M Macal, "Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation", 2007)

"Graphical displays are often constructed to place principal focus on the individual observations in a dataset, and this is particularly helpful in identifying both the typical positions of data points and unusual or influential cases. However, in many investigations, principal interest lies in identifying the nature of underlying trends and relationships between variables, and so it is often helpful to enhance graphical displays in ways which give deeper insight into these features. This can be very beneficial both for small datasets, where variation can obscure underlying patterns, and large datasets, where the volume of data is so large that effective representation inevitably involves suitable summaries." (Adrian W Bowman, "Smoothing Techniques for Visualisation" [in "Handbook of Data Visualization"], 2008)

"All forms of complex causation, and especially nonlinear transformations, admittedly stack the deck against prediction. Linear describes an outcome produced by one or more variables where the effect is additive. Any other interaction is nonlinear. This would include outcomes that involve step functions or phase transitions. The hard sciences routinely describe nonlinear phenomena. Making predictions about them becomes increasingly problematic when multiple variables are involved that have complex interactions. Some simple nonlinear systems can quickly become unpredictable when small variations in their inputs are introduced." (Richard N Lebow, "Forbidden Fruit: Counterfactuals and International Relations", 2010)

"Given the important role that correlation plays in structural equation modeling, we need to understand the factors that affect establishing relationships among multivariable data points. The key factors are the level of measurement, restriction of range in data values (variability, skewness, kurtosis), missing data, nonlinearity, outliers, correction for attenuation, and issues related to sampling variation, confidence intervals, effect size, significance, sample size, and power." (Randall E Schumacker & Richard G Lomax, "A Beginner’s Guide to Structural Equation Modeling" 3rd Ed., 2010)

"Outliers or influential data points can be defined as data values that are extreme or atypical on either the independent (X variables) or dependent (Y variables) variables or both. Outliers can occur as a result of observation errors, data entry errors, instrument errors based on layout or instructions, or actual extreme values from self-report data. Because outliers affect the mean, the standard deviation, and correlation coefficient values, they must be explained, deleted, or accommodated by using robust statistics." (Randall E Schumacker & Richard G Lomax, "A Beginner’s Guide to Structural Equation Modeling" 3rd Ed., 2010)

"System dynamics is an approach to understanding the behaviour of over time. It deals with internal feedback loops and time delays that affect the behaviour of the entire system. It also helps the decision maker untangle the complexity of the connections between various policy variables by providing a new language and set of tools to describe. Then it does this by modeling the cause and effect relationships among these variables." (Raed M Al-Qirem & Saad G Yaseen, "Modelling a Small Firm in Jordan Using System Dynamics", 2010)

"There are several key issues in the field of statistics that impact our analyses once data have been imported into a software program. These data issues are commonly referred to as the measurement scale of variables, restriction in the range of data, missing data values, outliers, linearity, and nonnormality." (Randall E Schumacker & Richard G Lomax, "A Beginner’s Guide to Structural Equation Modeling" 3rd Ed., 2010)

"There are three possible reasons for [the] absence of predictive power. First, it is possible that the models are misspecified. Second, it is possible that the model’s explanatory factors are measured at too high a level of aggregation [...] Third, [...] the search for statistically significant relationships may not be the strategy best suited for evaluating our model’s ability to explain real world events [...] the lack of predictive power is the result of too much emphasis having been placed on finding statistically significant variables, which may be overdetermined. Statistical significance is generally a flawed way to prune variables in regression models [...] Statistically significant variables may actually degrade the predictive accuracy of a model [...] [By using] models that are constructed on the basis of pruning undertaken with the shears of statistical significance, it is quite possible that we are winnowing our models away from predictive accuracy." (Michael D Ward et al, "The perils of policy by p-value: predicting civil conflicts" Journal of Peace Research 47, 2010)

"[…] a conceptual model is a diagram connecting variables and constructs based on theory and logic that displays the hypotheses to be tested." (Mary W Celsi et al, "Essentials of Business Research Methods", 2011)

"Complexity is a relative term. It depends on the number and the nature of interactions among the variables involved. Open loop systems with linear, independent variables are considered simpler than interdependent variables forming nonlinear closed loops with a delayed response." (Jamshid Gharajedaghi, "Systems Thinking: Managing Chaos and Complexity A Platform for Designing Business Architecture" 3rd Ed., 2011)

"Simplicity in a system tends to increase that system's efficiency. Because less can go wrong with fewer parts, less will. Complexity in a system tends to increase that system's inefficiency; the greater the number of variables, the greater the probability of those variables clashing, and in turn, the greater the potential for conflict and disarray. Because more can go wrong, more will. That is why centralized systems are inclined to break down quickly and become enmeshed in greater unintended consequences." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"When statisticians, trained in math and probability theory, try to assess likely outcomes, they demand a plethora of data points. Even then, they recognize that unless it’s a very simple and controlled action such as flipping a coin, unforeseen variables can exert significant influence." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"A basic problem with MRA is that it typically assumes that the independent variables can be regarded as building blocks, with each variable taken by itself being logically independent of all the others. This is usually not the case, at least for behavioral data. […] Just as correlation doesn’t prove causation, absence of correlation fails to prove absence of causation. False-negative findings can occur using MRA just as false-positive findings do—because of the hidden web of causation that we’ve failed to identify." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

"Accuracy and coherence are related concepts pertaining to data quality. Accuracy refers to the comprehensiveness or extent of missing data, performance of error edits, and other quality assurance strategies. Coherence is the degree to which data - item value and meaning are consistent over time and are comparable to similar variables from other routinely used data sources." (Aileen Rothbard, "Quality Issues in the Use of Administrative Data Records", 2015)

"One technique employing correlational analysis is multiple regression analysis (MRA), in which a number of independent variables are correlated simultaneously (or sometimes sequentially, but we won’t talk about that variant of MRA) with some dependent variable. The predictor variable of interest is examined along with other independent variables that are referred to as control variables. The goal is to show that variable A influences variable B 'net of' the effects of all the other variables. That is to say, the relationship holds even when the effects of the control variables on the dependent variable are taken into account." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

"The fundamental problem with MRA, as with all correlational methods, is self-selection. The investigator doesn’t choose the value for the independent variable for each subject (or case). This means that any number of variables correlated with the independent variable of interest have been dragged along with it. In most cases, we will fail to identify all these variables. In the case of behavioral research, it’s normally certain that we can’t be confident that we’ve identified all the plausibly relevant variables." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

"The theory behind multiple regression analysis is that if you control for everything that is related to the independent variable and the dependent variable by pulling their correlations out of the mix, you can get at the true causal relation between the predictor variable and the outcome variable. That’s the theory. In practice, many things prevent this ideal case from being the norm." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

"The correlational technique known as multiple regression is used frequently in medical and social science research. This technique essentially correlates many independent (or predictor) variables simultaneously with a given dependent variable (outcome or output). It asks, 'Net of the effects of all the other variables, what is the effect of variable A on the dependent variable?' Despite its popularity, the technique is inherently weak and often yields misleading results. The problem is due to self-selection. If we don’t assign cases to a particular treatment, the cases may differ in any number of ways that could be causing them to differ along some dimension related to the dependent variable. We can know that the answer given by a multiple regression analysis is wrong because randomized control experiments, frequently referred to as the gold standard of research techniques, may give answers that are quite different from those obtained by multiple regression analysis." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

"The theory behind multiple regression analysis is that if you control for everything that is related to the independent variable and the dependent variable by pulling their correlations out of the mix, you can get at the true causal relation between the predictor variable and the outcome variable. That’s the theory. In practice, many things prevent this ideal case from being the norm." (Richard E Nisbett, "Mindware: Tools for Smart Thinking", 2015)

"Validity of a theory is also known as construct validity. Most theories in science present broad conceptual explanations of relationship between variables and make many different predictions about the relationships between particular variables in certain situations. Construct validity is established by verifying the accuracy of each possible prediction that might be made from the theory. Because the number of predictions is usually infinite, construct validity can never be fully established. However, the more independent predictions for the theory verified as accurate, the stronger the construct validity of the theory." (K  N Krishnaswamy et al, "Management Research Methodology: Integration of Principles, Methods and Techniques", 2016)

"Decision trees are considered a good predictive model to start with, and have many advantages. Interpretability, variable selection, variable interaction, and the flexibility to choose the level of complexity for a decision tree all come into play." (Ralph Winters, "Practical Predictive Analytics", 2017)

"Multivariate analysis refers to incorporation of multiple exploratory variables to understand the behavior of a response variable. This seems to be the most feasible and realistic approach considering the fact that entities within this world are usually interconnected. Thus the variability in response variable might be affected by the variability in the interconnected exploratory variables." (Danish Haroon, "Python Machine Learning Case Studies", 2017)

"The degree to which one variable can be predicted from another can be calculated as the correlation between them. The square of the correlation (R^2) is the proportion of the variance of one that can be 'explained' by knowledge of the other." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"To be any good, a sample has to be representative. A sample is representative if every person or thing in the group you’re studying has an equally likely chance of being chosen. If not, your sample is biased. […] The job of the statistician is to formulate an inventory of all those things that matter in order to obtain a representative sample. Researchers have to avoid the tendency to capture variables that are easy to identify or collect data on - sometimes the things that matter are not obvious or are difficult to measure." (Daniel J Levitin, "Weaponized Lies", 2017)

"Variables which follow symmetric, bell-shaped distributions tend to be nice as features in models. They show substantial variation, so they can be used to discriminate between things, but not over such a wide range that outliers are overwhelming." (Steven S Skiena, "The Data Science Design Manual", 2017)

"Bayesian networks inhabit a world where all questions are reducible to probabilities, or (in the terminology of this chapter) degrees of association between variables; they could not ascend to the second or third rungs of the Ladder of Causation. Fortunately, they required only two slight twists to climb to the top." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"We humans are reasonably good at defining rules that check one, two, or even three attributes (also commonly referred to as features or variables), but when we go higher than three attributes, we can start to struggle to handle the interactions between them. By contrast, data science is often applied in contexts where we want to look for patterns among tens, hundreds, thousands, and, in extreme cases, millions of attributes." (John D Kelleher & Brendan Tierney, "Data Science", 2018)

"Decision trees show the breakdown of the data by one variable then another in a very intuitive way, though they are generally just diagrams that don’t actually encode data visually." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"One very common problem in data visualization is that encoding numerical variables to area is incredibly popular, but readers can’t translate it back very well." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Random forests are essentially an ensemble of trees. They use many short trees, fitted to multiple samples of the data, and the predictions are averaged for each observation. This helps to get around a problem that trees, and many other machine learning techniques, are not guaranteed to find optimal models, in the way that linear regression is. They do a very challenging job of fitting non-linear predictions over many variables, even sometimes when there are more variables than there are observations. To do that, they have to employ 'greedy algorithms', which find a reasonably good model but not necessarily the very best model possible." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Exponentially growing systems are prevalent in nature, spanning all scales from biochemical reaction networks in single cells to food webs of ecosystems. How exponential growth emerges in nonlinear systems is mathematically unclear. […] The emergence of exponential growth from a multivariable nonlinear network is not mathematically intuitive. This indicates that the network structure and the flux functions of the modeled system must be subjected to constraints to result in long-term exponential dynamics." (Wei-Hsiang Lin et al, "Origin of exponential growth in nonlinear reaction networks", PNAS 117 (45), 2020)

"Mathiness refers to formulas and expressions that may look and feel like math-even as they disregard the logical coherence and formal rigor of actual mathematics. […] These equations make mathematical claims that cannot be supported by positing formal relationships - variables interacting multiplicatively or additively, for example - between ill-defined and impossible-to-measure quantities. In other words, mathiness, like truthiness and like bullshit, involves a disregard for logic or factual accuracy." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

"This problem with adding additional variables is referred to as the curse of dimensionality. If you add enough variables into your black box, you will eventually find a combination of variables that performs well - but it may do so by chance. As you increase the number of variables you use to make your predictions, you need exponentially more data to distinguish true predictive capacity from luck." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

More quotes on "Variables" at the-web-of-knowledge.blogspot.com

04 December 2018

🔭Data Science: Hypothesis Testing (Just the Quotes)

"A discoverer is a tester of scientific ideas; he must not only be able to imagine likely hypotheses, and to select suitable ones for investigation, but, as hypotheses may be true or untrue, he must also be competent to invent appropriate experiments for testing them, and to devise the requisite apparatus and arrangements." (George Gore, "The Art of Scientific Discovery", 1878)

"Statistics is the fundamental and most important part of inductive logic. It is both an art and a science, and it deals with the collection, the tabulation, the analysis and interpretation of quantitative and qualitative measurements. It is concerned with the classifying and determining of actual attributes as well as the making of estimates and the testing of various hypotheses by which probable, or expected, values are obtained. It is one of the means of carrying on scientific research in order to ascertain the laws of behavior of things - be they animate or inanimate. Statistics is the technique of the Scientific Method." (Bruce D Greenschields & Frank M Weida, "Statistics with Applications to Highway Traffic Analyses", 1952)

"The peculiarity of [...] statistical hypotheses is that they are not conclusively refutable by any experience." (Richard B Braithwaite, "Scientific Explanation: A Study of the Function of Theory, Probability and Law in Science", 1953)

"Tests of the null hypothesis that there is no difference between certain treatments are often made in the analysis of agricultural or industrial experiments in which alternative methods or processes are compared. Such tests are [...] totally irrelevant. What are needed are estimates of magnitudes of effects, with standard errors." (Francis J Anscombe, "Discussion on Dr. David’s and Dr. Johnson’s Paper", Journal of the Royal Statistical Society B 18, 1956)

"[...] the tests of null hypotheses of zero differences, of no relationships, are frequently weak, perhaps trivial statements of the researcher’s aims [...] in many cases, instead of the tests of significance it would be more to the point to measure the magnitudes of the relationships, attaching proper statements of their sampling variation. The magnitudes of relationships cannot be measured in terms of levels of significance." (Leslie Kish, "Some statistical problems in research design", American Sociological Review 24, 1959)

"In view of our long-term strategy of improving our theories, our statistical tactics can be greatly improved by shifting emphasis away from over-all hypothesis testing in the direction of statistical estimation. This always holds true when we are concerned with the actual size of one or more differences rather than simply in the existence of differences." (David A Grant, "Testing the null hypothesis and the strategy and tactics of investigating theoretical models", Psychological Review 69, 1962)

"[...] we need to get on with the business of generating [...] hypotheses and proceed to do investigations and make inferences which bear on them, instead of [...] testing the statistical null hypothesis in any number of contexts in which we have every reason to suppose that it is false in the first place." (David Bakan, "The test of significance in psychological research", Psychological Bulletin 66, 1966)

"All testing, all confirmation and disconfirmation of a hypothesis takes place already within a system. And this system is not a more or less arbitrary and doubtful point of departure for all our arguments; no it belongs to the essence of what we call an argument. The system is not so much the point of departure, as the element in which our arguments have their life." (Ludwig Wittgenstein, "On Certainty", 1969)

"Science consists simply of the formulation and testing of hypotheses based on observational evidence; experiments are important where applicable, but their function is merely to simplify observation by imposing controlled conditions." (Henry L Batten, "Evolution of the Earth", 1971)

"[...] the statistical power of many psychological studies is ridiculously low. This is a self-defeating practice: it makes for frustrated scientists and inefficient research. The investigator who tests a valid hypothesis but fails to obtain significant results cannot help but regard nature as untrustworthy or even hostile." (Amos Tversky & Daniel Kahneman, "Belief in the law of small numbers", Psychological Bulletin 76(2), 1971) 

"Decision-making problems (hypothesis testing) involve situations where it is desired to make a choice among various alternative decisions (hypotheses). Such problems can be viewed as generalized state estimation problems where the definition of state has simply been expanded." (Fred C Scweppe, "Uncertain dynamic systems", 1973)

"Hypothesis testing can introduce the need for multiple models for the multiple hypotheses and,' if appropriate, a priori probabilities. The one modeling aspect of hypothesis testing that has no estimation counterpart is the problem of specifying the hypotheses to be considered. Often this is a critical step which influences both performance arid the difficulty of implementation." (Fred C Scweppe, "Uncertain dynamic systems", 1973)

"Pattern recognition can be viewed as a special case of hypothesis testing. In pattern recognition, an observation z is to be used to decide what pattern caused it. Each possible pattern can be viewed as one hypothesis. The main problem in pattern recognition is the development of models for the z corresponding to each pattern (hypothesis)." (Fred C Scweppe, "Uncertain dynamic systems", 1973)

"The term hypothesis testing arises because the choice as to which process is observed is based on hypothesized models. Thus hypothesis testing could also be called model testing. Hypothesis testing is sometimes called decision theory. The detection theory of communication theory is a special case." (Fred C Scweppe, "Uncertain dynamic systems", 1973)

"Small wonder that students have trouble [with statistical hypothesis testing]. They may be trying to think." (W Edwards Deming, "On probability as a basis for action", American Statistician 29, 1975)

"Tests appear to many users to be a simple way to discharge the obligation to provide some statistical treatment of the data." (H V Roberts, "For what use are tests of hypotheses and tests of significance",  Communications in Statistics [Series A], 1976)

"In practice, of course, tests of significance are not taken seriously." (Louis Guttman, "The illogic of statistical inference for cumulative science", Applied Stochastic Models and Data Analysis, 1985)

"Most readers of The American Statistician will recognize the limited value of hypothesis testing in the science of statistics. I am not sure that they all realize the extent to which it has become the primary tool in the religion of Statistics." (David Salsburg, The Religion of Statistics as Practiced in Medical Journals, "The American Statistician" 39, 1985)

"Since a point hypothesis is not to be expected in practice to be exactly true, but only approximate, a proper test of significance should almost always show significance for large enough samples. So the whole game of testing point hypotheses, power analysis notwithstanding, is but a mathematical game without empirical importance." (Louis Guttman, "The illogic of statistical inference for cumulative science", Applied Stochastic Models and Data Analysis, 1985

"We shall marshal arguments against [significance] testing, leading to the conclusion that it be abandoned by all substantive science and not just by educational research and other social sciences which have begun to raise voices against the virtual tyranny of this branch of inference in the academic world." (Louis Guttman, "The illogic of statistical inference for cumulative science", Applied Stochastic Models and Data Analysis, 1985)

"Analysis of variance [...] stems from a hypothesis-testing formulation that is difficult to take seriously and would be of limited value for making final conclusions." (Herman Chernoff, Comment,  The American Statistician 40(1), 1986)

"We are better off abandoning the use of hypothesis tests entirely and concentrating on developing continuous measures of toxicity which can be used for estimation." (David Salsburg, "Statistics for Toxicologists", 1986)

"Beware of the problem of testing too many hypotheses; the more you torture the data, the more likely they are to confess, but confessions obtained under duress may not be admissible in the court of scientific opinion." (Stephen M Stigler, "Neutral Models in Biology", 1987)

"A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way you can take it in formal hypothesis testing), is always false in the real world. [...] If it is false, even to a tiny degree, it must be the case that a large enough sample will produce a significant result and lead to its rejection. So if the null hypothesis is always false, what’s the big deal about rejecting it?" (Jacob Cohen, "Things I Have Learned (So Far)", American Psychologist, 1990)

"I believe [...] that hypothesis testing has been greatly overemphasized in psychology and in the other disciplines that use it. It has diverted our attention from crucial issues. Mesmerized by a single all-purpose, mechanized, ‘objective’ ritual in which we convert numbers into other numbers and get a yes-no answer, we have come to neglect close scrutiny of where the numbers come from." (Jacob Cohen, "Things I have learned (so far)", American Psychologist 45, 1990)

"Despite the stranglehold that hypothesis testing has on experimental psychology, I find it difficult to imagine a less insightful means of transitting from data to conclusions." (Geoffrey R Loftus, "On the tyranny of hypothesis testing in the social sciences", Contemporary Psychology 36, 1991)

"How has the virtually barren technique of hypothesis testing come to assume such importance in the process by which we arrive at our conclusions from our data?" (Geoffrey R Loftus, "On the tyranny of hypothesis testing in the social sciences", Contemporary Psychology 36, 1991)

"This remarkable state of affairs [overuse of significance testing] is analogous to engineers’ teaching (and believing) that light consists only of waves while ignoring its particle characteristics—and losing in the process, of course, any motivation to pursue the most interesting puzzles and paradoxes in the field." (Geoffrey R Loftus, "On the tyranny of hypothesis testing in the social sciences", Contemporary Psychology 36, 1991)

"Whereas hypothesis testing emphasizes a very narrow question (‘Do the population means fail to conform to a specific pattern?’), the use of confidence intervals emphasizes a much broader question (‘What are the population means?’). Knowing what the means are, of course, implies knowing whether they fail to conform to a specific pattern, although the reverse is not true. In this sense, use of confidence intervals subsumes the process of hypothesis testing." (Geoffrey R Loftus, "On the tyranny of hypothesis testing in the social sciences", Contemporary Psychology 36, 1991)

"After four decades of severe criticism, the ritual of null hypothesis significance testing—mechanical dichotomous decisions around a sacred .05 criterion—still persist. This article reviews the problems with this practice [...]” [...] “What’s wrong with [null hypothesis significance testing]? Well, among many other things, it does not tell us what we want to know, and we so much want to know what we want to know that, out of desperation, we nevertheless believe that it does!" (Jacob Cohen, "The earth is round (p<.05)", American Psychologist 49, 1994)

"I argued that hypothesis testing is fundamentally inappropriate for ecological risk assessment, that its use has undesirable consequences for environmental protection, and that preferable alternatives exist for statistical analysis of data in ecological risk assessment. The conclusion of this paper is that ecological risk assessors should estimate risks rather than test hypothesis" (Glenn W Suter, "Abuse of hypothesis testing statistics in ecological risk assessment", Human and Ecological Risk Assessment 2, 1996)

"I contend that the general acceptance of statistical hypothesis testing is one of the most unfortunate aspects of 20th century applied science. Tests for the identity of population distributions, for equality of treatment means, for presence of interactions, for the nullity of a correlation coefficient, and so on, have been responsible for much bad science, much lazy science, and much silly science. A good scientist can manage with, and will not be misled by, parameter estimates and their associated standard errors or confidence limits." (Marks Nester, "A Myopic View and History of Hypothesis Testing", 1996)

"Statistical hypothesis testing is commonly used inappropriately to analyze data, determine causality, and make decisions about significance in ecological risk assessment,[...] It discourages good toxicity testing and field studies, it provides less protection to ecosystems or their components that are difficult to sample or replicate, and it provides less protection when more treatments or responses are used. It provides a poor basis for decision-making because it does not generate a conclusion of no effect, it does not indicate the nature or magnitude of effects, it does address effects at untested exposure levels, and it confounds effects and uncertainty[...]. Risk assessors should focus on analyzing the relationship between exposure and effects[...]."  (Glenn W Suter, "Abuse of hypothesis testing statistics in ecological risk assessment", Human and Ecological Risk Assessment 2, 1996)

"We should push for de-emphasizing some topics, such as statistical significance tests - an unfortunate carry-over from the traditional elementary statistics course. We would suggest a greater focus on confidence intervals - these achieve the aim of formal hypothesis testing, often provide additional useful information, and are not as easily misinterpreted." (Gerry Hahn et al, "The Impact of Six Sigma Improvement: A Glimpse Into the Future of Statistics", The American Statistician, 1999)

"There is a tendency to use hypothesis testing methods even when they are not appropriate. Often, estimation and confidence intervals are better tools. Use hypothesis testing only when you want to test a well-defined hypothesis." (Larry A Wasserman, "All of Statistics: A concise course in statistical inference", 2004)

"A type of error used in hypothesis testing that arises when incorrectly rejecting the null hypothesis, although it is actually true. Thus, based on the test statistic, the final conclusion rejects the Null hypothesis, but in truth it should be accepted. Type I error equates to the alpha (α) or significance level, whereby the generally accepted default is 5%." (Lynne Hambleton, "Treasure Chest of Six Sigma Growth Methods, Tools, and Best Practices", 2007)

"The way we explore data today, we often aren't constrained by rigid hypothesis testing or statistical rigor that can slow down the process to a crawl. But we need to be careful with this rapid pace of exploration, too. Modern business intelligence and analytics tools allow us to do so much with data so quickly that it can be easy to fall into a pitfall by creating a chart that misleads us in the early stages of the process." (Ben Jones, "Avoiding Data Pitfalls: How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations", 2020) 

🔭Data Science: Bayesian Statistics (Just the Quotes)

"Another reason for the applied statistician to care about Bayesian inference is that consumers of statistical answers, at least interval estimates, commonly interpret them as probability statements about the possible values of parameters. Consequently, the answers statisticians provide to consumers should be capable of being interpreted as approximate Bayesian statements." (Donald B Rubin, "Bayesianly justifiable and relevant frequency calculations for the applied statistician", Annals of Statistics 12(4), 1984)

"The practicing Bayesian is well advised to become friends with as many numerical analysts as possible." (James Berger, "Statistical Decision Theory and Bayesian Analysis", 1985)

"Subjective probability, also known as Bayesian statistics, pushes Bayes' theorem further by applying it to statements of the type described as 'unscientific' in the frequency definition. The probability of a theory (e.g. that it will rain tomorrow or that parity is not violated) is considered to be a subjective 'degree of belief - it can perhaps be measured by seeing what odds the person concerned will offer as a bet. Subsequent experimental evidence then modifies the initial degree of belief, making it stronger or weaker according to whether the results agree or disagree with the predictions of the theory in question." (Roger J Barlow, "Statistics: A guide to the use of statistical methods in the physical sciences", 1989)

"In the design of experiments, one has to use some informal prior knowledge. How does one construct blocks in a block design problem for instance? It is stupid to think that use is not made of a prior. But knowing that this prior is utterly casual, it seems ludicrous to go through a lot of integration, etc., to obtain 'exact' posterior probabilities resulting from this prior. So, I believe the situation with respect to Bayesian inference and with respect to inference, in general, has not made progress. Well, Bayesian statistics has led to a great deal of theoretical research. But I don't see any real utilizations in applications, you know. Now no one, as far as I know, has examined the question of whether the inferences that are obtained are, in fact, realized in the predictions that they are used to make." (Oscar Kempthorne, "A conversation with Oscar Kempthorne", Statistical Science, 1995)

"Bayesian computations give you a straightforward answer you can understand and use. It says there is an X% probability that your hypothesis is true-not that there is some convoluted chance that if you assume the null hypothesis is true, you’ll get a similar or more extreme result if you repeated your experiment thousands of times. How does one interpret THAT!" (Steven Goodman, "Bayes offers a new way to make sense of numbers", Science 19, 1999)

"Bayesian methods are complicated enough, that giving researchers user-friendly software could be like handing a loaded gun to a toddler; if the data is crap, you won’t get anything out of it regardless of your political bent." (Brad Carlin, "Bayes offers a new way to make sense of numbers", Science 19, 1999)

"I sometimes think that the only real difference between Bayesian and non-Bayesian hierarchical modelling is whether random effects are labeled with Greek or Roman letters." (Peter Diggle, "Comment on Bayesian analysis of agricultural field experiments", Journal of Royal Statistical Society B vol. 61, 1999)

"I believe that there are many classes of problems where Bayesian analyses are reasonable, mainly classes with which I have little acquaintance." (John Tukey, "The life and professional contributions of John W. Tukey, The Annals of Statistics", Vol 30, 2001)

"Bayesian statistics give us an objective way of combining the observed evidence with our prior knowledge (or subjective belief) to obtain a revised belief and hence a revised prediction of the outcome of the coin’s next toss. [...] This is perhaps the most important role of Bayes’s rule in statistics: we can estimate the conditional probability directly in one direction, for which our judgment is more reliable, and use mathematics to derive the conditional probability in the other direction, for which our judgment is rather hazy. The equation also plays this role in Bayesian networks; we tell the computer the forward  probabilities, and the computer tells us the inverse probabilities when needed." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

"We thus echo the classical Bayesian literature in concluding that ‘noninformative prior information’ is a contradiction in terms. The flat prior carries information just like any other; it represents the assumption that the effect is likely to be large. This is often not true. Indeed, the signal-to-noise ratio s is often very low and then it is necessary to shrink the unbiased estimate. Failure to do so by inappropriately using the flat prior causes overestimation of effects and subsequent failure to replicate them." (Erik van Zwet & Andrew Gelman, "A proposal for informative default priors scaled by the standard error of estimates", The American Statistician 76, 2022)

🔭Data Science: Null Hypothesis (Just the Quotes)

"The first step in beginning the scientific study of a problem is to collect the data, which are or ought to be 'facts'." (John A Thomson, "Introduction to Science", 1911)

"In relation to any experiment we may speak of this hypothesis as the null hypothesis, and it should be noted that the null hypothesis is never proved or established, but is possibly disproved, in the course of experimentation. Every experiment may be said to exist only in order to give the facts a chance of disproving the null hypothesis." (Ronald Fisher, "The Design of Experiments", 1935)

"The essential feature is that we express ignorance of whether the new parameter is needed by taking half the prior probability for it as concentrated in the value indicated by the null hypothesis and distributing the other half over the range possible." (Harold Jeffreys, "Theory of Probablitity", 1939)

"What the use of P [the significance level] implies, therefore, is that a hypothesis that may be true may be rejected because it has not predicted observable results that have not occurred." (Harold Jeffreys, "Theory of Probability", 1939)

"As usual we may make the errors of I) rejecting the null hypothesis when it is true, II) accepting the null hypothesis when it is false. But there is a third kind of error which is of interest because the present test of significance is tied up closely with the idea of making a correct decision about which distribution function has slipped furthest to the right. We may make the error of III) correctly rejecting the null hypothesis for the wrong reason." (Frederick Mosteller, "A k-Sample Slippage Test for an Extreme Population", The Annals of Mathematical Statistics 19, 1948)

"Errors of the third kind happen in conventional tests of differences of means, but they are usually not considered, although their existence is probably recognized. It seems to the author that there may be several reasons for this among which are 1) a preoccupation on the part of mathematical statisticians with the formal questions of acceptance and rejection of null hypotheses without adequate consideration of the implications of the error of the third kind for the practical experimenter, 2) the rarity with which an error of the third kind arises in the usual tests of significance." (Frederick Mosteller, "A k-Sample Slippage Test for an Extreme Population", The Annals of Mathematical Statistics 19, 1948)

"It is very easy to devise different tests which, on the average, have similar properties, [...] hey behave satisfactorily when the null hypothesis is true and have approximately the same power of detecting departures from that hypothesis. Two such tests may, however, give very different results when applied to a given set of data. The situation leads to a good deal of contention amongst statisticians and much discredit of the science of statistics. The appalling position can easily arise in which one can get any answer one wants if only one goes around to a large enough number of statisticians." (Frances Yates, "Discussion on the Paper by Dr. Box and Dr. Andersen", Journal of the Royal Statistical Society B Vol. 17, 1955)

"Null hypotheses of no difference are usually known to be false before the data are collected [...] when they are, their rejection or acceptance simply reflects the size of the sample and the power of the test, and is not a contribution to science." (I Richard Savage, "Nonparametric statistics", Journal of the American Statistical Association 52, 1957)

"Closely related to the null hypothesis is the notion that only enough subjects need be used in psychological experiments to obtain ‘significant’ results. This often encourages experimenters to be content with very imprecise estimates of effects." (Jum Nunnally, "The place of statistics in psychology", Educational and Psychological Measurement 20, 1960)

"If rejection of the null hypothesis were the real intention in psychological experiments, there usually would be no need to gather data." (Jum Nunnally, "The place of statistics in psychology", Educational and Psychological Measurement 20, 1960)

"One feature [...] which requires much more justification than is usually given, is the setting up of unplausible null hypotheses. For example, a statistician may set out a test to see whether two drugs have exactly the same effect, or whether a regression line is exactly straight. These hypotheses can scarcely be taken literally." (Cedric A B Smith, "Book review of Norman T. J. Bailey: Statistical Methods in Biology", Applied Statistics 9, 1960)

"[...] the null-hypothesis models [...] share a crippling flaw: in the real world the null hypothesis is almost never true, and it is usually nonsensical to perform an experiment with the sole aim of rejecting the null hypothesis." (Jum Nunnally, "The place of statistics in psychology", Educational and Psychological Measurement 20, 1960)

"The null-hypothesis significance test treats ‘acceptance’ or ‘rejection’ of a hypothesis as though these were decisions one makes. But a hypothesis is not something, like a piece of pie offered for dessert, which can be accepted or rejected by a voluntary physical action. Acceptance or rejection of a hypothesis is a cognitive process, a degree of believing or disbelieving which, if rational, is not a matter of choice but determined solely by how likely it is, given the evidence, that the hypothesis is true." (William W Rozeboom, "The fallacy of the null–hypothesis significance test", Psychological Bulletin 57, 1960)

"The null hypothesis of no difference has been judged to be no longer a sound or fruitful basis for statistical investigation. […] Significance tests do not provide the information that scientists need, and, furthermore, they are not the most effective method for analyzing and summarizing data." (Cherry A Clark, "Hypothesis Testing in Relation to Statistical Methodology", Review of Educational Research Vol. 33, 1963) 

"Operational research is the application of methods of the research scientist to various rather complex practical operations. [...] A paucity of numerical data with which to work is a usual characteristic of the operations to which operational research is applied." (John T Davies, "The Scientific Approach", 1965)

"[...] a priori reasons for believing that the null hypothesis is generally false anyway. One of the common experiences of research workers is the very high frequency with which significant results are obtained with large samples." (David Bakan, "The test of significance in psychological research", Psychological Bulletin 66, 1966)

"[...] we need to get on with the business of generating [...] hypotheses and proceed to do investigations and make inferences which bear on them, instead of [...] testing the statistical null hypothesis in any number of contexts in which we have every reason to suppose that it is false in the first place." (David Bakan, "The test of significance in psychological research", Psychological Bulletin 66, 1966)

"[…] most of us still remain content to build our theoretical castles on the quicksand of merely rejecting the null hypothesis." (Marvin D Dunnette, "Fads, Fashions, and Folderol in Psychology", American Psychologist Vol. 21, 1966)

"What used to be called judgment is now called prejudice, and what used to be called prejudice is now called a null hypothesis." (Anthony W F Edwards. "Likelihood", 1972)

"Failing to reject a null hypothesis is distinctly different from proving a null hypothesis; the difference in these interpretations is not merely a semantic point. Rather, the two interpretations can lead to quite different biological conclusions." (David F Parkhurst, "Interpreting Failure to Reject a Null Hypothesis", Bulletin of the Ecological Society of America Vol. 66, 1985)

"A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way you can take it in formal hypothesis testing), is always false in the real world. [...] If it is false, even to a tiny degree, it must be the case that a large enough sample will produce a significant result and lead to its rejection. So if the null hypothesis is always false, what’s the big deal about rejecting it?" (Jacob Cohen, "Things I Have Learned (So Far)", American Psychologist, 1990)

"The worst, i.e., most dangerous, feature of 'accepting the null hypothesis' is the giving up of explicit uncertainty. [...] Mathematics can sometimes be put in such black-and-white terms, but our knowledge or belief about the external world never can." (John Tukey, "The Philosophy of Multiple Comparisons", Statistical Science Vol. 6 (1), 1991)

"Rejection of a true null hypothesis at the 0.05 level will occur only one in 20 times. The overwhelming majority of these false rejections will be based on test statistics close to the borderline value. If the null hypothesis is false, the inter-ocular traumatic test ['hit between the eyes'] will often suffice to reject it; calculation will serve only to verify clear intuition." (Ward Edwards et al, "Bayesian Statistical Inference for Psychological Research", 1992)

"If the null hypothesis is not rejected, [Sir Ronald] Fisher's position was that nothing could be concluded. But researchers find it hard to go to all the trouble of conducting a study only to conclude that nothing can be concluded." (Frank L Schmidt, "Statistical Significance Testing and Cumulative Knowledge", "Psychology: Implications for Training of Researchers, Psychological Methods" Vol. 1 (2), 1996)

"When significance tests are used and a null hypothesis is not rejected, a major problem often arises - namely, the result may be interpreted, without a logical basis, as providing evidence for the null hypothesis." (David F Parkhurst, "Statistical Significance Tests: Equivalence and Reverse Tests Should Reduce Misinterpretation", BioScience Vol. 51 (12), 2001)

"For the study of the topology of the interactions of a complex system it is of central importance to have proper random null models of networks, i.e., models of how a graph arises from a random process. Such models are needed for comparison with real world data. When analyzing the structure of real world networks, the null hypothesis shall always be that the link structure is due to chance alone. This null hypothesis may only be rejected if the link structure found differs significantly from an expectation value obtained from a random model. Any deviation from the random null model must be explained by non-random processes." (Jörg Reichardt, "Structure in Complex Networks", 2009)

"There is a growing realization that reported 'statistically significant' claims in statistical publications are routinely mistaken. Researchers typically express the confidence in their data in terms of p-value: the probability that a perceived result is actually the result of random variation. The value of p (for 'probability') is a way of measuring the extent to which a data set provides evidence against a so-called null hypothesis. By convention, a p- value below 0.05 is considered a meaningful refutation of the null hypothesis; however, such conclusions are less solid than they appear." (Andrew Gelman & Eric Loken, "The Statistical Crisis in Science", American Scientist Vol. 102(6), 2014)

"Null hypothesis is something we attempt to find evidence against in the hypothesis tests. Null hypothesis is usually an initial claim that researchers make on the basis of previous knowledge or experience. Alternative hypothesis has a population parameter value different from that of null hypothesis. Alternative hypothesis is something you hope to come out to be true. Statistical tests are performed to decide which of these holds true in a hypothesis test. If the experiment goes in favor of the null hypothesis then we say the experiment has failed in rejecting the null hypothesis." (Danish Haroon, "Python Machine Learning Case Studies", 2017)

"[...] a hypothesis test tells us whether the observed data are consistent with the null hypothesis, and a confidence interval tells us which hypotheses are consistent with the data." (William C Blackwelder)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.