"Swarm Intelligence can be defined more precisely as: Any attempt to design algorithms or distributed problem-solving methods inspired by the collective behavior of the social insect colonies or other animal societies. The main properties of such systems are flexibility, robustness, decentralization and self-organization." (Ajith Abraham et al, "Swarm Intelligence in Data Mining", 2006)
"Swarm intelligence can be effective when applied to highly complicated problems with many nonlinear factors, although it is often less effective than the genetic algorithm approach discussed later in this chapter. Swarm intelligence is related to swarm optimization […]. As with swarm intelligence, there is some evidence that at least some of the time swarm optimization can produce solutions that are more robust than genetic algorithms. Robustness here is defined as a solution’s resistance to performance degradation when the underlying variables are changed." (Michael J North & Charles M Macal, "Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation", 2007)
[swarm intelligence] "Refers to a class of algorithms inspired by the collective behaviour of insect swarms, ant colonies, the flocking behaviour of some bird species, or the herding behaviour of some mammals, such that the behaviour of the whole can be considered as exhibiting a rudimentary form of 'intelligence'." (John Fulcher, "Intelligent Information Systems", 2009)
"The property of a system whereby the collective behaviors of unsophisticated agents interacting locally with their environment cause coherent functional global patterns to emerge." (M L Gavrilova, "Adaptive Algorithms for Intelligent Geometric Computing", 2009)
[swarm intelligence] "Is a discipline that deals with natural and artificial systems composed of many individuals that coordinate using decentralized control and self-organization. In particular, SI focuses on the collective behaviors that result from the local interactions of the individuals with each other and with their environment." (Elina Pacini et al, "Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments in Distributed Environments", 2013).
"Swarm intelligence (SI) is a branch of computational intelligence that discusses the collective behavior emerging within self-organizing societies of agents. SI was inspired by the observation of the collective behavior in societies in nature such as the movement of birds and fish. The collective behavior of such ecosystems, and their artificial counterpart of SI, is not encoded within the set of rules that determines the movement of each isolated agent, but it emerges through the interaction of multiple agents." (Maximos A Kaliakatsos-Papakostas et al, "Intelligent Music Composition", 2013)
"Collective intelligence of societies of biological (social animals) or artificial (robots, computer agents) individuals. In artificial intelligence, it gave rise to a computational paradigm based on decentralisation, self-organisation, local interactions, and collective emergent behaviours." (D T Pham & M Castellani, "The Bees Algorithm as a Biologically Inspired Optimisation Method", 2015)
"It is the field of artificial intelligence in which the population is in the form of agents which search in a parallel fashion with multiple initialization points. The swarm intelligence-based algorithms mimic the physical and natural processes for mathematical modeling of the optimization algorithm. They have the properties of information interchange and non-centralized control structure." (Sajad A Rather & P Shanthi Bala, "Analysis of Gravitation-Based Optimization Algorithms for Clustering and Classification", 2020)
"It [swarm intelligence] is the discipline dealing with natural and artificial systems consisting of many individuals who coordinate through decentralized monitoring and self-organization." (Mehmet A Cifci, "Optimizing WSNs for CPS Using Machine Learning Techniques", 2021)
Resources:
More quotes on "Swarm Intelligence" at the-web-of-knowledge.blogspot.com.