08 December 2010

💎SQL Reloaded: Pulling the Strings of SQL Server IX (Special Characters)

    Under special characters denomination are categorized typically the characters that don’t belong to the alphabet of a given language, typically English (a-z, A-Z), or the numeric digits (0-9). Characters like umlauts (e.g. ä, ë, ö, ü, ÿ), accents (e.g. é, í, ó, ú) and other type of characters used in specific languages like German, French, Turkish, Hungarian, Romanian, Dutch or Swedish, together with punctuation signs or graphical characters are falling under the designation of special characters. It’s true that SQL Server, like many other databases, supports Unicode, a standard designed to encode such characters, though not all database designs are taking Unicodes into account. Preponderantly the old database and other software solutions use the non-unicode string data types (char, varchar, text) fact that makes the special characters to be displayed inadequately, sometimes undecipherable. In order to avoid this behavior could be decided to port the data types to unicode or use only the standard characters of English language, both solutions with their positive and negative aspects. In such cases, especially during migration project or ETL tasks, eventually as part of a Data Quality initiative, it’s preferred to identify and replace the special characters in a manual, automatic or semi-automatic fashion. In addition, there are also cases in which, from various reasons, some attributes are not allowed or should not include special characters, and also this aspect could be included in a Data Quality initiative.

    During assessment of Data Quality, in an organized or less organized manner, a first step resides in understanding the quality of the data. In the current case this resumes primarily in identifying how many records contain special characters, how could be the data cleaned, and the “cost” for this activity. Actually, before going this far, must be defined the character sets included in special characters, the definition could vary from case to case. For example in some cases could be considered also the space or the important punctuation signs as valid characters, while in others they may not be allowed. There could be identified thus multiple scenarios, though I found out that the range of characters a-z, A-Z, 0-9 and the space are considered as valid character in most of the cases. For this purpose could be built a simple function that iterates through all the characters of a string and identifies if there is any character not belonging to the before mentioned range of valid characters. In order to address this, a few years back I built a function similar with the below one:

-- checks if a string has special characters 
CREATE FUNCTION dbo.HasSpecialCharacters( 
@string nvarchar(1000)) 
RETURNS int 
AS  
    BEGIN 
         DECLARE @retval int 
         DECLARE @index int 
         DECLARE @char nchar(1)  

         SET @retval = 0 
         SET @index = 1  

         WHILE (@index <= IsNull(len(@string), 0) AND @retval=0) 
        BEGIN  
           SET @char = Substring(@string, @index, @index+1) 
           IF NOT (ASCII(@char) BETWEEN 48 AND 57 -- numeric value 
             OR ASCII(@char) BETWEEN 65 AND 90 -- capital letters 
            OR ASCII(@char) BETWEEN 97 AND 122 -- small letters 
            OR ASCII(@char) = 32) --space 
           BEGIN 
                SET @retval = @index 
           END 
           ELSE 
               SET @index = @index + 1  
     END  

    RETURN (@retval) 
END 

    Function’s logic is based on the observation that the ASCII of numeric values could be found in the integer interval between 48 and 57, the capital letters between 65 and 90, while the small letters between 97 and 122. By adding the ASCII for space and eventually several other characters, the check on whether an character is valid resuming thus to only 4 constraints. Here’s the function at work:  

-- testing HasSpecialCharacters function 
SELECT dbo.HasSpecialCharacters('kj324h5kjkj3245k2j3hkj342jj4') Example1 
, dbo.HasSpecialCharacters('Qualität') Example2 
, dbo.HasSpecialCharacters('Änderung') Example3 
, dbo.HasSpecialCharacters('') Example4 
, dbo.HasSpecialCharacters(NULL) Example5 
, dbo.HasSpecialCharacters('Ä') Example6 
, dbo.HasSpecialCharacters('ä') Example7 
, dbo.HasSpecialCharacters('a') Example8 
 
special characters 1

    As can be seen, the function returns the position where a special character is found, fact that enables users to identify the character that causes the problem. A similar function could be built also in order to count the number of special characters found in a string, the change residing in performing a counter rather then returning the position at the first occurrence of a special character.

    The function might not be perfect though it solves the problem. There are also other alternatives, for example of storing the special characters in a table and performing a simple join against the target table. Another solution could be based on the use RegEx functionality, either by using OLE automation or directly CLR functionality. There could be done variations on the above solution too by limiting to check on whether the characters of a string are falling in the range projected by the ASCII function. That’s what the following function does:  

-- checks if a string has special characters falling in an interval  
CREATE FUNCTION dbo.HasCharNotInASCIIRange( 
@string nvarchar(1000) 
, @start int 
, @end int) 
RETURNS int 
AS  
BEGIN      
    DECLARE @retval int 
    DECLARE @index int 
    DECLARE @char nchar(1) 
 
    SET @retval = 0 
    SET @index = 1 
    WHILE (@index <= IsNull(len(@string), 0) AND @retval=0) 
    BEGIN  
         SET @char = Substring(@string, @index, @index+1) 
         IF NOT (ASCII(@char) BETWEEN @start AND @end)  
        BEGIN 
              SET @retval = @index 
        END 
        ELSE 
             SET @index = @index + 1  
     END 
     RETURN (@retval) 
END 

      
   With this function are necessary 4 calls in order to identify if a string contains special characters, though we loose the flexibility of identifying the first character that is invalid. We could still identify the first occurrence by taking the minimum value returned by the 4 calls, however, unlike Oracle (see Least function), SQL Server doesn’t have such a function, so we’ll have eventually to built it. Anyway, here’s the above function at work:  

-- testing HasCharNotInASCIIRange function 
SELECT dbo.HasCharNotInASCIIRange('k12345', 48, 57) Example1 
, dbo.HasCharNotInASCIIRange('12k345', 48, 57) Example2 
, dbo.HasCharNotInASCIIRange('12345', 48, 57) Example3 
, dbo.HasCharNotInASCIIRange(' 12345', 48, 57) Example4 
, dbo.HasCharNotInASCIIRange('12345 ', 48, 57) Example5 
, dbo.HasCharNotInASCIIRange('', 48, 57) Example6 
, dbo.HasCharNotInASCIIRange(NULL, 48, 57) Example7 
, dbo.HasCharNotInASCIIRange('', 48, 57) Example8 
, dbo.HasCharNotInASCIIRange('a', 48, 57) Example9 
, dbo.HasCharNotInASCIIRange('Ä', 48, 57) Example10 
, dbo.HasCharNotInASCIIRange('ä', 32, 32) Example11 

special characters 2

07 December 2010

💎SQL Reloaded: Pulling the Strings of SQL Server I 7- Introduction

    The (character) string or simply the character data type, how is named by the MSDN documentation, is one of the primary data types available in a database and probably the most complex given the fact that it can encompass any combination of numeric, literal, date or any other primary data type. In fact it could include any type of chunk of text that could be written in any language as SQL Server supports Unicode and thus most of the (written) languages. In this post I’m not intending to make a complete anthology of strings, and neither to retake the whole volume of information available in MSDN or other important books. My intent is to look at strings from a slightly different perspective, considering the various functions involving strings and how they could be used in order to provide various functionality, in fact the cornerstone of everyday developer.

   A few things to remember:

1. there were mainly two types of non-unicode strings: the char (or character) of fixed length, respectively the varchar of variable length (varying character)

2. if initially both types of strings were having a maximum length of 8000 of characters, with SQL Server it’s possible to have a varchar with maximum storage size, declared as varchar(max).

3. if in the past there were some strict recommendations in what concerns the use of char or varchar, nowadays the varchar tends to be used almost everywhere, even for the strings of length 1.

4. talking about length, it denotes the number of chracters a string stores.

5. the trailing spaces, the spaces found at the right extremity of a string are typically ignored, while the leading spaces, the spaces found at the left extremity, are not ignored.

6. starting with SQL Server 2000, for the two character data types were introduced the corresponding unicode data types prefixed with n (national): nchar, respectively nvarchar.

7. given the fact that a unicode character needs more space to store the same non-unicode string, actually the number of bits doubles, the maximum length for an unicode string is only 4000.

8. there is also a non-unicode text, respectively ntext unicode data type, designed to store maximum length, though as it seems they could become soon deprecated, so might be a good idea to avoid it.

9. not-initialized variables, including strings, have the value NULL, referred also the NULL string, therefore it’s always a good idea to initialize your variables.

10. by empty string string is designated the string containing no character “’’”, and has the length 0.

11. there are several specific functions available for the creation, manipulation and conversion of strings from and to other data types.

12. not all of the aggregated functions work with string values (specifically the ones requesting a number value like SUM, AVG, STDV).

13. the operations performed on strings of different data types are generally not impacted by this aspect, though there are some exceptions.

14. there are several (basic) operations with strings, typically concatenation, extraction of subpart of a string, insertion, replacement or deletion of characters, rearrangement of string’s characters, trimming, splitting it in substrings (decomposition), etc.

15. there are several numeric values based on strings: length, position of a given text in a text, number of not empty characters, encoding of a character, on whether the text represents a valid numeric or date values, etc.

05 December 2010

🔦Process Management: Business Process Management (Definitions)

"The general term for the services and tools that support explicit process management (such as process analysis, definition, execution, monitoring, and administration), including support for human and application-level interaction." (Tilak Mitra et al, "SOA Governance", 2008)

"Software that models an enterprise's human and machine tasks and the interactions between them as processes and can monitor these tasks in real time in order to trigger a unit of work or set off an alert when specified time limits are exceeded or a response is not received within a specified time." (Janice M Roehl-Anderson, "IT Best Practices for Financial Managers", 2010)

"Software products that support the design, execution, and monitoring of repetitive, day-to-day business processes. Can create data used in diagnostic or interactive control systems." (Leslie G Eldenburg & Susan K Wolcott, "Cost Management 2nd Ed", 2011)

"A popular management technique that includes methods and tools to support the design, analysis, implementation, management, and optimization of operational business processes." (Linda Volonino & Efraim Turban, "Information Technology for Management 8th Ed", 2011)

"Management approach focused on aligning all aspects of an organization with the wants and needs of clients. Business process management attempts to improve processes continuously and may be therefore described as a “process optimization process.” Business process management activities can be grouped into five categories: design, modeling, execution, monitoring, and optimization." (IQBBA, "Standard glossary of terms used in Software Engineering", 2011)

"A managerial discipline that is focused on execution. It is the art and science of how organizations do things and how they can do them better. BPM attempts to optimize process performance to achieve strategic business objectives consistently while adapting, when necessary, to change or to new opportunity." (Carl F Lehmann, "Strategy and Business Process Management", 2012)

"Managing the work steps and business activities of an organization's workers in an automated way." (Robert F Smallwood, "Information Governance: Concepts, Strategies, and Best Practices", 2014)

"A discipline focused on continuous improvement and transformation of end-to-end cross-functional business processes." (Forrester)

"Business process management (BPM) is a discipline that uses various methods to discover, model, analyze, measure, improve and optimize business processes. A business process coordinates the behavior of people, systems, information and things to produce business outcomes in support of a business strategy. Processes can be structured and repeatable, or unstructured and variable." (Gartner)

"Business process management (BPM) is the discipline of improving a business process from end to end by analyzing it, modelling how it works in different scenarios, executing improvements, monitoring the improved process and continually optimizing it." (Techtarget)

"Business process management (BPM) involves the use of appropriate tools and techniques to design, analyse, and manage operational business processes and, where possible, to improve those processes. The term business process refers to repetitive activities performed in the context of an organization’s normal, everyday operations." (Institute for Competitive Intelligence)

💎SQL Reloaded: A Look into Reverse

Some time back I was mentioning Stuff as one of the functions rarely used in SQL Server. Here’s another one: Reverse. I remember I used such a function in other programming languages and maybe 1-2 times in SQL Server, and I can’t say I seen it in action in other posts. As it name states and the MSDN documentation confirms, Reverse returns the reverse of a string value. The function takes as parameter any string value or value that could be implicitly conversed to a string, otherwise you’ll have to do an explicit conversion. As can be seen from the below first example the reverse of the “string” string is “gnirts”, and, as per the second example, the reverse of the revers of a string is the initial string itself. The third and fourth example use in exchange a numeric value.
 
-- reversing a string using Reverse function 
SELECT Reverse('string') Example1 
, Reverse(Reverse('string')) Example2 
, Reverse(1234567890) Example3 
, Reverse(Reverse(1234567890)) Example4 
Example1 Example2 Example3 Example4
gnirts string 987654321 1234567890

It seems there is not much to be said about Reverse function, and in the few situations that you need it, it’s great to have it, otherwise you would have to built it yourself. Let’s try to imagine there is no Reverse function in SQL Server, how would we provide such functionality by using existing functionality? In general such an exercise might look like lost time, though it could be useful in order to present several basic techniques. In this case the Reverse functionality could be provided by using a simple loop that iterates through string’s characters changing their order. The below piece of code should return the same output as above:

-- reversing a string using looping 
DECLARE @String varchar(50) 
DECLARE @Retval varchar(50) 
DECLARE @Index int 
SET @String = 'string' 
SET @Index = 1 
SET @Retval = '' 
WHILE @Index <= Len(@String) 
BEGIN  
   SET @Retval = Substring(@String, @Index, 1) + @Retval   
   SET @Index = @Index + 1  
END 
SELECT @Retval 

Some type of problems whose solution involve the sequential processing of values within loops could be solved also using recursive techniques (recursion) that involve the sequential processing of values in which the output of a given intermediary step is based on the previous step. Recursion imply a slightly different view of the same problem, it could prove itself to be maybe less efficient in some cases and quite a useful technique in the others. SQL Server provides two types of recursion, one at function level involving functions, stored procedures are triggers, respectively at query level implemented in common table expressions. Recursive functions, functions that call themselves, have been for quite a while in SQL Server though few of the database books I read really talk about them. Probably I will detail the topic in another post, though for the moment I will show only the technique at work. In this case the recursive approach is quite simple:

-- reversing a string using a recursive function 
CREATE FUNCTION dbo.ReverseString( 
@string varchar(50)) 
RETURNS varchar(50) 
AS 
BEGIN           
     RETURN (CASE WHEN Len(@string)>1 THEN dbo.ReverseString( Right(@string, len(@string)-1)) + Left(@string, 1) ELSE @string END) 
END 
 
-- testing 
SELECT dbo.ReverseString('string') Example1 
, dbo.ReverseString(dbo.ReverseString('string')) Example2 

Common table expressions (CTE), since their introduction with SQL Server 2005, became quite an important technique in processing hierarchical structures like BOMs, which involve the traversal of the whole tree. A sequence is actually a tree having the width of 1 node, so it seems like a CTE’s job:
  
-- reversing a string using common table expression 
DECLARE @String varchar(50) 
SET @String = 'string' 
;WITH CTE(String, [Index]) 
AS (     SELECT Cast('' as varchar(50)) String 
    , 1 [Index] 
    UNION ALL 
    SELECT Cast(Substring(@String, [Index], 1) + String as varchar(50)) String 
    , [Index] + 1 [Index] 
    FROM CTE 
    WHERE [Index]<=Len(@String) 
) 
SELECT @String Reversed 
FROM CTE 
WHERE [Index]-1=Len(@String) 

Unlike the previous two solutions, the CTE approach involves more work, work that maybe isn’t required just for the sake of using the technique. When multiple alternative approaches exist, I prefer using the (simplest) solution that offers the highest degree of flexibility. In this case is the loop, though in others it could be a recursive function or a CTE.

30 November 2010

🧭Business Intelligence: Enterprise Reporting (Part IX: How Many Reporting Systems Do You Need?)

Business Intelligence
Business Intelligence Series

I hope nobody’s questioning the fact that an organization needs at least a reporting system in order to take advantage of the huge amount of data it has collected over time, in order to have an overview on what’s happening in the organization, take better decision supported by data, etc. In one way or another many organizations arrive to have in place two or more reporting systems and all the consequences deriving from it. From experience, I would expect that many professionals have put themselves at least once the above question, often they having to live with their decisions and they are not always happy about them. 

On one side we have the demand, the needs of the various departments and groups existing in an organization, while on the other side of the balance we have the various types of data and the technologies existing on the market (could be regarded as the supply), and the various constraints an organization might have: resources (financial, human, processing power, time), politics and philosophies, geography, complexity, etc. If they don’t seem so many you have to consider that the respective constraints could be further split into a long chain of causality, the books on Project Management, Architecture, Methodologies and other related topics treating them in detail, so no need to go there.

From practical reasons, I’d like to reformulate the above question as follows:
1. Is it enough only one reporting system or do we need more than one?
2. What’s the optimum number of reporting systems existing in an organization?
 
A blunt answer for the first question would be that an organization might need as many reporting systems as it’s needed in order to satisfy the existing reporting needs, in other words the demand. Straightforward answer but not really acceptable for a Manager, in particular, and an IT Professional, in general. Another blunt answer, this time for the second question, would be that an organization needs only “one and good” reporting system, though that’s contradicting the various constraints existing in IT world. So, what should it be? 

Typically there are two views, the bottom up view, in this case starting with the data and building up to the reporting demands, and top down view, starting from the reporting requirements to data. In this play-set the technologies, in general, the reporting systems, in particular, are playing the role of middle point, the two views applying in respect to data vs. reporting technologies, reporting technologies vs. reporting requirements, increasing the complexity of the view. Sometimes is enough to focus only on the reporting requirements, why we consider then also the data in this scenario?! Remember, reporting it’s all about harnessing the value of your data, not only in finding the right reporting solution.

Often, in order to understand the requirements of an organization and understanding the value of data it’s easier to look at the various types of data it stores – the bottom up approach. Typically we could make distinction between master vs. transactional data, raw vs. aggregated data, structured vs. semi-structured vs. non-structured data, cleaned vs. not cleaned data, historical vs. live data, mined, distributed or heterogenous data, to mention just a few of the important ways of categorizing the data.

The respective types of data are important because they require special types of techniques or tools to process, report and harness them. The master and transactional data are at the heart of business applications, the “fluid” that flows and nourishes them, with an incredible potential when harnessed at its real value. Such unaltered data are typically structured at macro level, though they could contain also semi-structured or non-structured chunks of data, could have different levels of quality, could be distributed or heterogenous, etc. The range of data repositories range from text or document systems to specialized databases, any mixture being in theory possible.

So we have a huge volume of data collected over time, how could we harness them in order to reveal their real value? Excepting the operational use, the usefulness of raw data, data found in their unaltered form, stops usually at the point where their complexity falls beyond people’s limits of understanding them. Thus we arrived to aggregate, recombine or extract chunks from the data, bringing the data to a more comprehensible form. We even arrived to extract more information out of the data using specific techniques known as data mining methods, algorithms that allow us to identify associations, cluster or interpolate the data, the complexity of such algorithms evolving in considerable in the past two decades.
 
There are few software applications which provide the whole range of types of data processing, most of them resuming in recombining and presenting the data. Also data presentation offers a considerable range of formats (e.g. tabular, text, XML, Excel, charts and other diagrams) with complex navigational functionality (slice-and-dice, drill-down, drill-through, click-through), different ways of making the data available for consumption (direct-access, cached, web services), different security levels, etc.

When it comes to managers and users they want the data at the level of detail and form that allows the easiest/lowest proximate understanding level, and, “yesterday”, to use a word that reflects the urgency of requirements. This could be done in theory by coming with a whole set of reports covering all possible requirements, though that’s not so efficient as investment and not always possible with a button click, as probably all we’d like to. 

For the ones familiarized to Manufacturing, it’s actually a disguised push vs. pull scenario, pushing the reports to the user without expecting their demands vs. waiting for the user to forward the reporting requirements, from which to derive eventually new reports or make changes to existing ones. In Manufacturing it’s all about finding the right balance between push and demand, and even if the respective field has been found some (best) practices that leads to the middle way, in IT we still have to dig for it. The road seems to lead nowhere… but it helps getting a rough understanding of what a report involves, at least in what concerns the important non-programming stuff.

In the top down approach, as the data are remaining relatively constant, it’s easier to focus on the set of requirements and the reporting tool(s) used. It makes sense to choose the reporting tool that covers at least the most important requirements while for the other you have the choice to use workarounds or address them using two or more reporting solutions, attempting again to cover the most important requirements, and so on. The problem with having more than one reporting solution is that often data, logic and reports arrive to be replicated, the whole reporting infrastructure becoming more difficult to manage. On the other side as long you are having a clear (partitioned) delimitation between the reporting frameworks, logic and data are replicated at minimum, having two or more reporting solutions seems to be an acceptable trade. Examples of such delimitations are for example the OLTP vs. OLAP solutions, to which adds the data mining reporting solution(s).

There are also attempts to extend an existing reporting framework above the initial functionality, though often people arrived to reinvent the wheel or create little monsters they arrive to live with. Also this is an acceptable approach, as long the reporting framework allows that. Some attempts might succeed to provide what they were designed for, others not. There are also some good news from this perspective, the appearance of mash-ups and semantic technologies could in the future allow the integration of reporting systems, making possible things that nowadays are quite challenging. The future is open of unlimited possibilities, but better stick to the present! For that stay tuned for a second post!

Previous Post <<||>> Next Post

12 October 2010

🔏MS Office: Why I (dis)like MS Access

   In the previous post, “The Limitations of MS Access Database”, I highlighted a few of the limitations of MS Access  as database, ignoring the other two or three important aspects – Access as development, reporting, respectively data analysis platform. In this post I’ll retake the topic from a general and personal perspective, considering some of the features that I like and makes from Access a useful and powerful tool, attempting also to mention some of its usage limitations I run into over the time. With the risk of repeating myself, I can’t say I’m an expert in MS Access even if I provided several solutions based on it, its use in the various contexts being not always so inspired, that being one of the reasons why in the first post “Is MS Access or MS Excel the Answer to Your Problem?” I insisted on this aspect.

Ad-Hoc Database

   MS Access is a file server-based relational database, being one of the most used databases, though it can’t be compared with more mature RDBMS like Oracle, MySQL, SQL Server, Sybase, PostgreSQL, Teradata, Informix or DB2, richer in features, especially in what concerns their administration, transactional and concurrent processing, scalability, stability, availability, performance, reliability, portability, replication, integration, security, manageability, extensibility, the degree to which they fit in the overall architecture of an enterprise, of relevance being topics like Business Intelligence, Data Warehousing, SOA, Cloud Computing, etc. These are some of the reasons for which I categorized Access as a Personal or Ad-Hoc database, being, at least from my point of view, more appropriate for small-size or personal solutions. In essence Access has the characteristics of a relational database though the lack in the mentioned features makes it less desirable. Nobody denies Access’ usefulness, the point is that when compared with full-featured RDBMS Access has no chance, fact reflected also in the following market share diagrams:

MarketShare  gartner-database-deployment[1]
DBMS Market 2006 (JoinVision e-Services via[2]) DBMS Market 2008 (Gartner via MySQL) [1]

     Even if the diagrams are a few years old, I think they are still representative in what concerns the state of art in the world of databases, the first diagram providing an historical perspective, while the second the “actual” and “future” reflected tendencies. It’s not the first time I’m seeing MS Access and SQL Server represented together even if they belong to different technology stacks, Access’ strength and weakness being deeply rooted in its affiliation to MS Office set of tools. It would be interesting to know which was the ratio then between the number of Access and SQL Servers, and what’s the ratio now, SQL Server Express replacing Access’ role of personal or small-scale database.

    The statistics are less representative when it comes to people, their interests and immediate needs. The bottom line is that Access is an easy to use database with pretty low learning curve, you don’t need to know the fancy stuff about databases, you could experiment and learn it as an add-on to your job, making the consumption of data much easier, at least in theory. Are you having your data stored across several Excel files? You can import or copy paste them in Access and there you have an ad-hoc database, then create several queries on top of them with the Query Designer or Query Designer, and this without any knowledge of SQL. The saved queries could be reused much as the views, they could be parameterized, the parameters could be bounded much like the user-defined functions, and made available for further consumption. I can’t say I met any other similar software tool that simplifies so much the design and consumption of databases. The simplicity of Access query designing comes with its tribute, especially when you want to achieve more from your database, the minimum of features making difficult to design complex queries, Access requiring a different mindset in problem solving. In addition, those used with the rich features of RDBMS won’t feel too comfortable in using the Query Designer or Editor, the ANSI syntax it’s inflexible while the troubleshooting quite painful.

    I used Access as database only when I had no other alternative, preferring to store the data in a RDBMS like SQL Server or Oracle. In exchange I used Access as presentation layer, allowing users for example to access and analyze the data. In many occasions I played with Access databases in small projects or enhancing existing applications, spending many hours in tweaking Access queries or on porting such queries to other RDBMS. I had the occasion to work with several tools that were using Access as backend, one of them IQ Insight, used to assess the quality of data, was an interesting tool to work with though it was paying tribute to the stability and speed of its database, in a next implementation project deciding to take it out of the landscape, the performance of VB + SQL Server solution that replaced it, increased the performance from a matter of hours to minutes. I know that many people out there love Access as database, though once you acknowledged the performance power and flexibility of other databases, you don’t feel like returning in the past.

Data Analysis Tool

    When having multiple Excel or other data sources, you don’t need to store your data in Access itself, it’s enough to link your text, Excel or any other ODBC data source, built a query on top of them, and there you have on the fly your data at your disposal, something that Data Warehousing and Business Intelligence tools hardly manage to do when considering all the people’s needs. By importing the data in your Access database, you could even correct some of the inherent issues existing in data, use some mappings in order to translate the data, use several queries in order to aggregate the data at the needed level of detail or get new insights. From a mapping table or a query to creating a whole data analysis framework is just a small step, and this without too much involvement of the IT guys. Even more, the framework could be used by your colleagues too, they could use it directly or indirectly by re-linking the results of your analysis with a minimum of effort, they could even improve the character of your analysis or find other purposes for the data. Thus results a complex network of interconnected Access databases, and that’s a matter of time until it’s getting out of control, for example by not knowing how a change in one of the queries could impact the other known and unknown users of your data, on whether you are using the actual data, on whether the data have been tempered, and so on. There should be no wonder when people are arriving to report different numbers, when the numbers don’t tie together, though also more modern reporting frameworks are dealing with these types of issues, isn’t it? In addition, you arrive to have multiple instances of the same data or have data distributed and isolated in a uncontrolled fashion, not the best strategy for an enterprise though…

   I used Access as data access end point for data available in various data sources, allowing users to analyze and recombine the data by themselves, but this mainly in order to overcome the limitations of available standard reporting tools. This combined with the fact that has been attempted to move most of the logic created by users in a standardized form, limiting the risks of running into Access fallacies. Sure, there could be done more in order to avoid such pitfalls, for example having adequate reporting and data analysis tools, having in place a Data Management Policy which addresses common data problems, training users, etc.

Reporting

    The possibility to present the data in a reporting-like fashion is one of the greatest advantages of Access, the tabular structure being easy to integrate with charting, paging, results breaking, formulas, filtering/parameterization, rich formatting, subreports and other types of report structures (e.g. footer, header), in other words the ingredients of a typical report. The combination between ad-hoc data analysis and reporting,  it quite an advantage, depending on users’ skills in making most out of it. Reports’ functionality could be extended using Reports’ DOM and VBA, only the fact that a report could be entirely created and modified at runtime is quite of a deal.

   I used Access reports only in the applications which were built entirely on MS Access, whenever was possible preferring to move the reports on more standardized platforms. Sometimes I find it more useful to export the data directly to Excel or to a more portable format like PDF, thing also possible with Access reports, though eliminating thus the intermediary platform. Now it depends on users’ preferences and organizations’ infrastructure.

Rapid Prototyping

    Access could be used as frontend for various types of applications, and you don’t need to put too much effort in your application. Is enough to drop a form and link it to a table, then link the screens together and here you have an already functioning application, fact that makes from Access a tool ideal for rapid prototyping.

   I used Access in several projects for building proof of concept prototypes, allowing customers to gather requirements, evaluate the concept and the available functionality. There were also cases in which the prototypes were comparable as performance with the applications that replaced them, from some points of view even better, though that’s a matter of architecture, skills and sometimes infrastructure.

Extensibility: VBA

    A person could create in Access a data analysis framework, a report or a prototype without writing a single line of code, richer functionality being available by using VBA, which is nothing more than old-fashioned VB based on Access’ DOM. VBA extensibility refers here to the possibility of going beyond the wizarding and drag-and-drop functionality provided by Access, for example by adding complex validation into forms, linking forms, altering or creating content at runtime, etc. Not everybody needs to do go so far, however those who used formulas or have some programming experience would find VBA easy to learn. Those wanting to change the default behavior of Access or provide missing functionality then they will have to go deeper in VBA’s secrets, in using built-in or third party developed libraries. For example in order to change the “sequential” access of data provided by Access a programmer will have to use ADO or DAO, the built-in transactional functionality provided in the two libraries could be used to cover the lack of transactional processing not built-in in Access. With some exceptions, in theory you could do with VBA anything you do with old fashioned VB, though with VB.Net the gap to VBA increased considerably ( see Converting Code from VBA to Visual Basic .NET for differences). There are also some limitations, for example the adding of controls in Access forms at runtime, and I remember I found a few other with time, some of them deriving from bugs existing in the tool itself. 

Extensibility: .DLLs

   I was saying that it’s possible to use third party developed libraries in Access, this functionality relying on COM+ and its predecessors DCOM, COM or ActiveX, technologies that allow the communication between components not only on the local computer but also in distributed networks or internet as in the case of ActiveX. In this way it’s possible to encapsulate functionality in libraries saved as .dlls, distribute them with your applications or reuse them in other applications. Writing COM classes is a job for programming languages like C++, VB, VB.Net, C#, etc. The old-fashioned VB was great in creating and debugging COM components in just a question of minutes, in theory any piece of code could be encapsulated in such a component. Having the possibility to extend the functionality of MS Access with such libraries open the door to an unlimited number of architectural scenarios.

Extensibility: Add-ins

   Add-ins are forming a special type of components rooted in OLE, later based on COM, that use the MS Office DOM architecture, their primary utility relying in the fact that they make it possible to provide new features for MS Office itself. An example of such “bonus” features are Save as PDF add-in for Access 2007 or Open Database Connectivity add-in for Excel. I used Add-ins only to extend Excel’s UI-based functionality, therefore I can’t talk too much about their use in Access. For more see Building COM Add-ins for Office Applications material available in MSDN.

Database Templates

   I observed that in MS Access 2007 are available several templates (e.g. Assets, Contacts, Sales pipeline, etc.) that could be extended or used in learning how an application is designed. Doing a little research I found out that is possible to create templates for whole databases, reports or forms. I haven’t use templates until now in Access, but it could prove to be an interesting feature when common architectural or functional characteristics are found.

References:

[1] MySQL. (2010). Market Share. [Online] Available from: http://www.mysql.com/why-mysql/marketshare/ (Accessed: 10 October 2010)

[2] Creative System Design. (2010) Databases. [Online] Available from: http://online.creativesystemdesigns.com/projects/databases.asp (Accessed: 10 October 2010)

05 October 2010

🔏MS Office: The Limitations of MS Access Database

In the previous post I was highlighting some general considerations on the use of MS Access and Excel as frameworks for building applications. I left many things out from the lack of time and space, therefore, as the title reveals, in this post I will focus simply on the limitations of MS Access considered as Database. I considered then that Access is a fairly good as database, recommending it for 10-20 concurrent users, fact that could equate, after case, maybe with a total of users that range between 1-100. Of course, this doesn’t mean that MS Access can’t do more, actually it supports 255 concurrent users and with a good design that limit could be reached.

Another important limitation regards the size of an Access database, set to 2GB, it used to be more than sufficient a few years back, though nowadays, it’s sometimes the equivalent of a month/year of transactions. I never tried to count how many records could store a MS Access, though if I remember correctly, a relatively small to average table of 1000000 (10^6) records occupies about 100MB, using this logic 2GB could equate with about 20000000 (2*10^7) records, the equivalent of a small to average database size. Anyway, the numbers are relative, the actual size depends also on the number of objects the database stores, the size of attributes stored, on the fact that even if Access is supposed to have a limitation of 2GB, I met cases in which a database of 1GB was crashing a lot, needing to be repaired or backed up regularly. 

Sometimes it could be repaired, other times not, unfortunately the “recovery” built within a MS Access can’t be compared with the recovery available in a RDBMS. That’s ok in the end, even mature databases crash from time to time, though the logs and transaction isolation models allow them to provide high recoverability and reliability, to which adds up scalability, availability, security and manageability. If all these are not essential for your database solution, the MS Access is ok, though you’ll have to invest effort in each of these area when you have to raise your standards.

One of the most painful issues when dealing with concurrent data access is the transaction processing that needs to guarantee the consistency and recoverability of operations. As Access is not handling the transactions, the programmer has to do that using ADO or DAO transactions. As many applications still don’t need pessimistic concurrency, with some effort and a good row versioning also this issue could be solved. Also the security-related issues could be solved programmatically by designing a role-based permission framework, though it occasionally it could be breached when the user is aware of the few Access hacks and has direct access to the database. 

Manageability resumes usually in controlling resources utilization, monitoring the progress of the actions running on the database. If Access is doing a relatively good job in what concerns the manageability of its objects, it has no reliable way to control their utilization, when a query is running for too long, the easiest way to solve this is to coldly kill the process belonging to Access. Not sure if it makes sense to philosophy about Access’ scalability and availability, at least can’t be comparable from this point of view with RDBMS for which failover clustering, mirroring, log shipping, online backup and in general online maintenance have an important impact on the two.

Excepting the above theoretical limitations, when MS Access is part of your solution, it’s always a good idea to know its maximal capacity specifications, this applying to all type of databases or technologies.  Most probably you won’t want that in the middle of your project or even later you realize that you reach one of such limitations. I tried to put together a comparison between the maximal capacity specifications for 2000, 2007 and 2010 versions of MS Access and, for reference, the same specification for SQL Server (2000, 2005, 2008 R2). The respective information come mainly from Microsoft websites, with a few additions from [5] and [6].


MS Access
SQL Server
Attribute
2000 [1]
2007/2010 [2]
2000 [7]
2005 [4]
2008 R2 [3]
 SQL statements size
64kb
64kb
64kb
64kb
64kb
# characters in Memo field
65535
65535
-
2^30-1
2^31-1
# characters in Text field
255
255
8000
8000
8000
# characters in object name
64
64
128
128
128
# characters in record
4000
4000
8000
8000
8000
# concurrent users
255

255


32767
# databases per instance
1
1
32767
32767
32767
# fields in index
10
10
16
16
16
# fields in recordset
255
255
4096
4096
4096
# fields in table
255
255
1024
1024
1024/30000
# files per database
1
1
32767
32767
32767
# forced relationships per table
32
32
253
253
253
# indexes per table
32
32
250 (1 clustered)
250 (1 clustered)
250 (1 clustered)
# instances


16
50
50
# joins in a query
16
16
32
32
32
# levels nested queries
50
50
32
32
32
# nested subqueries


32
32
32
# objects
32768
32768
2147483647
<>
</>
2147483647
2147483647
# open tables
2048
2048
2147483647
2147483647
2147483647
# roles per database
n/a
n/a
16379
16379
16379
# tables in a query
32
32
256
256
256
# users per database
n/a
n/a
16379
16379
16379
database size
<2GB
<2GB
1048516 TB
542272TB
542272TB
file size (data)
2GB
2GB
32TB
16TB
16TB
file size (log)
n/a
n/a
32TB
2TB
2TB


For my surprise the maximal capacity specifications of Access are comparable with the ones of SQL Server for many of the above attributes. Sure, there is a huge difference in what concerns the number of databases, the database/file size and the number of supported objects, quite relevant in the architecture of applications. Several other differences, for example the number of indexes supported per table or relationships per table, are less important for the majority of solutions. Another fact that is not remarked in the above table is the fact that the number of records in a table are typically limited by storage. Please note that many important features not available in Access were left out, therefore, for a better overview is advisable to check directly the referenced sources.

There are two one more personal observations for this post. Even if MS Access is great for non-SQL developers giving its nice Designer, for SQL developers it lacks a rich editor, the initial formatting being lost, this doubled by the poor support for later versions of the ANSI standard make from Access a tool to avoid.

References:
[1] Microsoft. 2010. Microsoft Access database specifications. [Online] Available form:
http://office.microsoft.com/en-us/access-help/access-specifications-HP005186808.aspx (Accessed: 04.10.2010)
[2] Microsoft. 2010. Access 2010 specifications [Online] Available form: http://office.microsoft.com/en-us/access-help/access-2010-specifications-HA010341462.aspx (Accessed: 04.10.2010)
[3] MSDN. (2010). Maximum Capacity Specifications for SQL Server: SQL Server 2008 R2. [Online] Available form: http://msdn.microsoft.com/en-us/library/ms143432.aspx (Accessed: 04.10.2010)
[4] MSDN. (2010). Maximum Capacity Specifications for SQL Server: SQL Server 2005. [Online] Available form: http://msdn.microsoft.com/en-us/library/ms143432(SQL.90).aspx (Accessed: 04.10.2010)
[5] SQL Server Helper. (2005). SQL Server 2005: Maximum Capacity Specifications. [Online] Available form: http://www.sql-server-helper.com/sql-server-2005/maximum-capacity-specifications.aspx (Accessed: 04.10.2010)
[6] MSDN. (2008).SQL 2005 and SQL 2008 database volume capacity. [Online] Available form: http://social.msdn.microsoft.com/forums/en-US/sqlgetstarted/thread/4225734e-e480-4b21-8cd4-4228ca2abf55/ (Accessed: 04.10.2010)
[7] MSDN. (2010). Maximum Capacity Specifications for SQL Server: SQL Server 2000. [Online] Available form: http://technet.microsoft.com/en-us/library/aa274604(SQL.80).aspx (Accessed: 04.10.2010)
[8] MSDN. (2010). Comparison of Microsoft Access SQL and ANSI SQL. [Online] Available form: http://msdn.microsoft.com/en-us/library/bb208890.aspx (Accessed: 04.10.2010)
Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.