30 November 2011

📉Graphical Representation: Audience (Just the Quotes)

"If the audience can see all the charts at once, they may get a different story from the one you want them to get. Show the charts one at a time. If you have only one chart, keep it covered until you are ready to use it. Take full advantage of the element of surprise. If you use charts which open like a book, use only one page for the message." (Edward J Hegarty, "How to Use a Set of Display Charts", The American Statistician Vol. 2 (5), 1948)

"In making up the charts, keep them simple. One idea to a page and not too much detail is a good rule. Try to get variety in the subject matter - now a chart, next a diagram, then a tabulation. Such variety helps hold audience attention." (Edward J Hegarty, "How to Use a Set of Display Charts", The American Statistician Vol. 2 (5), 1948)

"Try telling the story in words different from those on the charts. […] If the chart shows a picture, describe the picture. Tell what it shows and why it is shown. If it is a diagram, explain it. Don't leave the audience to figure it out. No matter how simple the story shown, tell it in your own words: but remember that explaining a chart doesn't mean reading it out loud." (Edward J Hegarty, "How to Use a Set of Display Charts", The American Statistician Vol. 2 (5), 1948)

"Recognize effective results. Does the type of chart selected give a comprehensive picture of the situation? Does the size of chart and visual aid used satisfy all audience requirements? Do materials meet all reproduction problems? Is the layout well balanced and style of lettering uniform? Does the chart as a whole accurately present the facts? Is the projected idea an effective visual tool?" (Mary E Spear, "Charting Statistics", 1952)

"Understandability implies that the graph will mean something to the audience. If the presentation has little meaning to the audience, it has little value. Understandability is the difference between data and information. Data are facts. Information is facts that mean something and make a difference to whoever receives them. Graphic presentation enhances understanding in a number of ways. Many people find that the visual comparison and contrast of information permit relationships to be grasped more easily. Relationships that had been obscure become clear and provide new insights." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"The conditions under which many data graphics are produced - the lack of substantive and quantitative skills of the illustrators, dislike of quantitative evidence, and contempt for the intelligence of the audience-guarantee graphic mediocrity. These conditions engender graphics that (1) lie; (2) employ only the simplest designs, often unstandardized time-series based on a small handful of data points; and (3) miss the real news actually in the data." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Lurking behind chartjunk is contempt both for information and for the audience. Chartjunk promoters imagine that numbers and details are boring, dull, and tedious, requiring ornament to enliven. Cosmetic decoration, which frequently distorts the data, will never salvage an underlying lack of content. If the numbers are boring, then you've got the wrong numbers." (Edward R Tufte, "Envisioning Information", 1990)

"Audience boredom is usually a content failure, not a decoration failure." (Edward R Tufte, "The cognitive style of PowerPoint", 2003)

"If you want to hide data, try putting it into a larger group and then use the average of the group for the chart. The basis of the deceit is the endearingly innocent assumption on the part of your readers that you have been scrupulous in using a representative average: one from which individual values do not deviate all that much. In scientific or statistical circles, where audiences tend to take less on trust, the 'quality' of the average" (in terms of the scatter of the underlying individual figures) is described by the standard deviation, although this figure is itself an average." (Nicholas Strange, "Smoke and Mirrors: How to bend facts and figures to your advantage", 2007)

"Information consumption can lead to higher knowledge on the part of the audience, if its members are able to perceive the patterns or meaning of data. It is not a passive process; our brains are not hard drives that store stuff uncritically .When people see, read, or listen, they assimilate content by relating it to their memories and experiences." (Alberto Cairo, "The Functional Art", 2011)

"The more adequately a model fits whatever it stands for without being needlessly complex, and the easier it is for its intended audience to interpret it correctly, the better it will be." (Alberto Cairo, "The Functional Art", 2011)

"An infographic (short for information graphic) is a type of picture that blends data with design, helping individuals and organizations concisely communicate messages to their audience." (Mark Smiciklas, "The Power of Infographics: Using Pictures to Communicate and Connect with Your Audiences", 2012)

"Competition for your audiences attention is fierce. The fact that infographics are unique allows organizations an opportunity to make the content they are publishing stand out and get noticed." (Mark Smiciklas, "The Power of Inforgraphics", 2012)

"Most important, the range of data literacy and familiarity with your data’s context is much wider when you design graphics for a general audience." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Any presentation of data, whether a simple calculated metric or a complex predictive model, is going to have a set of assumptions and choices that the producer has made to get to the output. The more that these can be made explicit, the more the audience of the data will be open to accepting the message offered by the presenter." (Zach Gemignani et al, "Data Fluency", 2014)

"In fact, the analogy to storytelling is limited when applied to communicating with data. Data visualization has fundamental characteristics missing from traditional storytelling. For example, interactive data visualizations let audiences explore information to find insights that resonate with them. Visualizations take shape based to a large extent on the underlying data. And as this data changes, the emphasis and message of the visualization is likely to change." (Zach Gemignani et al, "Data Fluency", 2014)

Beyond annoying our audience by trying to sound smart, we run the risk of making our audience feel dumb. In either case, this is not a good user experience for our audience." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"First, to whom are you communicating? It is important to have a good understanding of who your audience is and how they perceive you. This can help you to identify common ground that will help you ensure they hear your message. Second, What do you want your audience to know or do?" (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"If you simply present data, it’s easy for your audience to say, Oh, that’s interesting, and move on to the next thing. But if you ask for action, your audience has to make a decision whether to comply or not. This elicits a more productive reaction from your audience, which can lead to a more productive conversation - one that might never have been started if you hadn’t recommended the action in the first place." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"Tailoring the message to the audience should not be synonymous with accepting its prejudices, routines, and the usual ways of doing things. Many of what we believe to be good data visualization principles are opposite to what is practiced within organizations. When presenting a chart type the audience is unfamiliar with, or when breaking a rule, the author must argue for its advantages. Annotating the chart, showing how to read it, drawing aˆention to key points, and making direct comparisons with alternative representations will help the audience feel safer in their reading and possible adoption of the new chart." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"Data analysis is more than crunching numbers; it is about finding insights, identifying the unknown unknowns, and presenting the data in a simple yet deep enough way so that your audience can understand your insights and make decisions." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Ideally, the charts are designed in a way that gives your audience clarity and lets them understand the key insights very quickly. Color choices, highlighting, annotations, and other ways of drawing attention to your findings help in the process. By leaving white or blank space around your charts, you are able to keep the focus of your audience on the key message rather than distracting or confusing them." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Data storytelling is transformative. Many people don’t realize that when they share insights, they’re not just imparting information to other people. The natural consequence of sharing an insight is change. Stop doing that, and do more of this. Focus less on them, and concentrate more on these people. Spend less there, and invest more here. A poignant insight will drive an enlightened audience to think or act differently. So, as a data storyteller, you’re not only guiding the audience through the data, you’re also acting as a change agent. Rather than just pointing out possible enhancements, you’re helping your audience fully understand the urgency of the changes and giving them the confidence to move forward." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"The first rule of communication is to shut up and listen, so that you can get to know about the audience for your communication, whether it might be politicians, professionals or the general public. We have to understand their inevitable limitations and any misunderstandings, and fight the temptation to be too sophisticated and clever, or put in too much detail." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"There are eight audience considerations that can influence how you approach your data story: (1) Key goals and priorities. [...] (2) Beliefs and preferences. [...] (3) Specific expectations. [...] (4) Opportune timing. [...] (5) Topic familiarity. [...] (6) Data literacy. [...] (7) Seniority level. [...] (8) Audience mix." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"There is often no one 'best' visualization, because it depends on context, what your audience already knows, how numerate or scientifically trained they are, what formats and conventions are regarded as standard in the particular field you’re working in, the medium you can use, and so on. It’s also partly scientific and partly artistic, so you get to express your own design style in it, which is what makes it so fascinating." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"As presenters of data visualizations, often we just want our audience to understand something about their environment – a trend, a pattern, a breakdown, a way in which things have been progressing. If we ask ourselves what we want our audience to do with that information, we might have a hard time coming up with a clear answer sometimes. We might just want them to know something." (Ben Jones, "Avoiding Data Pitfalls: How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations", 2020) 

"As data visualization creators, we must understand our audience and know when a different graph can engage readers - and help them expand their own graphic literacy." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

"Data visualization‘s key responsibilities and challenges include the obligation to earn your audience’s attention - do not take it for granted." (Bill Inmon et al, "Building the Data Lakehouse", 2021)

"What is the secret to getting people to use charts and dashboards? Personalization. Inserting the audience into the visualization, and making it especially meaningful and relevant to the user, never fails." (Steve Wexler, "The Big Picture: How to use data visualization to make better decisions - faster", 2021)

"Design choices include more deliberate thought put into resizing, cropping, simplifying, and enhancing information within the limited real estate. These thumbnails need to be visually interpretable, yet inviting and engaging to the audience." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"A perfectly relevant visualization that breaks a few presentation rules is far more valuable - it’s better - than a perfectly executed, beautiful chart that contains the wrong data, communicates the wrong message, or fails to engage its audience." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Data becomes more useful once it’s transformed into a data visualization or used in a data story. Data storytelling is the ability to effectively communicate insights from a dataset using narratives and visualizations. It can be used to put data insights into context and inspire action from your audience. Color can be very helpful when you are trying to make information stand out within your data visualizations." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Good design isn’t just choosing colors and fonts or coming up with an aesthetic for charts. That’s styling - part of design, but by no means the most important part. Rather, people with design talent develop and execute systems for effective visual communication. They understand how to create and edit visuals to focus an audience and distill ideas." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"One tip to keep an audience focused on your story without overwhelming them is to reduce the saturation of the colors [...] When you lower the brightness and intensity, you are reducing the cognitive load that your audience has to bear. [...] Regardless of what combinations you decide on, you need to avoid pure colors that are bright and saturated." (Kate Strachnyi, "ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color", 2023)

"Sketching bridges idea and visualization. Good sketches are quick, simple, and messy. Don’t think too much about real values or scales or any refining details. In fact, don’t think too much. Just keep in mind those keywords, the possible forms they suggest, and that overarching idea you keep coming back to, the one you wrote down in answer to 'What am I trying to say (or learn)?' And draw. Create shapes, develop a sense of what you want your audience to see. Try anything." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

29 November 2011

📉Graphical Representation: Rules (Just the Quotes)

"Graphic representation by means of charts depends upon the super-position of special lines or curves upon base lines drawn or ruled in a standard manner. For the economic construction of these charts as well as their correct use it is necessary that the standard rulings be correctly designed." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"It is not possible to lay down any hard and fast rules for determining what chart is the best for any given problem. Ordinarily that one is the best which will produce the quickest and clearest results. but unfortunately it is not always possible to construct the clearest one in the least time. Experience is the best guide. Generally speaking, a rectilinear chart is best adapted for equations of the first degree, logarithmic for those other than the first degree and not containing over two variables, and alignment charts where there are three or more variables. However, nearly every person becomes more or less familiar with one type of chart and prefers to adhere to the use of that type because he does not care to take the time and trouble to find out how to use the others. It is best to know what the possibilities of all types are and to be governed accordingly when selecting one or the other for presenting or working out certain data." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"The principles of charting and curve plotting are not at all complex, and it is surprising that many business men dodge the simplest charts as though they involved higher mathematics or contained some sort of black magic. [...] The trouble at present is that there are no standards by which graphic presentations can be prepared in accordance with definite rules so that their interpretation by the reader may be both rapid and accurate. It is certain that there will evolve for methods of graphic presentation a few useful and definite rules which will correspond with the rules of grammar for the spoken and written language." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

"The eye can accurately appraise only very few features of a diagram, and consequently a complicated or confusing diagram will lead the reader astray. The fundamental rule for all charting is to use a plan which is simple and which takes account, in its arrangement of the facts to be presented, of the above-mentioned capacities of the eye."  (William L Crum et al, "Introduction to Economic Statistics", 1938)

"In making up the charts, keep them simple. One idea to a page and not too much detail is a good rule. Try to get variety in the subject matter - now a chart, next a diagram, then a tabulation. Such variety helps hold audience attention." (Edward J Hegarty, "How to Use a Set of Display Charts", The American Statistician Vol. 2 (5), 1948)

"The grid lines should be lighter than the curves, with the base line somewhat heavier than the others. All vertical lines should be of equal weight, unless the time scale is subdivided in quarters or other time periods, indicated by heavier rules. Very wide base lines, sometimes employed for pictorial effect, distort the graphic impression by making the base line the most prominent feature of the chart." (Rufus R Lutz, "Graphic Presentation Simplified", 1949)

"The number of grid lines should be kept to a minimum. This means that there should be just enough coordinate lines in the field so that the eye can readily interpret the values at any point on the curve. No definite rule can be specified as to the optimum number of lines in a grid. This must be left to the discretion of the chart-maker and can come only from experience. The size of the chart, the type and range of the data. the number of curves, the length and detail of the period covered, as well as other factors, will help to determine the number of grid lines." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"As a general rule, plotted points and graph lines should be given more 'weight' than the axes. In this way the 'meat' will be easily distinguishable from the 'bones'. Furthermore, an illustration composed of lines of unequal weights is always more attractive than one in which all the lines are of uniform thickness. It may not always be possible to emphasise the data in this way however. In a scattergram, for example, the more plotted points there are, the smaller they may need to be and this will give them a lighter appearance. Similarly, the more curves there are on a graph, the thinner the lines may need to be. In both cases, the axes may look better if they are drawn with a somewhat bolder line so that they are easily distinguishable from the data." (Linda Reynolds & Doig Simmonds, "Presentation of Data in Science" 4th Ed, 1984)

"The rule is that a graph of a change in a variable with time should always have a vertical scale that starts with zero. Otherwise, it is inherently misleading." (Douglas A Downing & Jeffrey Clark, "Forgotten Statistics: A Self-Teaching Refresher Course", 1996) 

"[...] when data is presented in certain ways, the patterns can be readily perceived. If we can understand how perception works, our knowledge can be translated into rules for displaying information. Following perception‐based rules, we can present our data in such a way that the important and informative patterns stand out. If we disobey the rules, our data will be incomprehensible or misleading." (Colin Ware, "Information Visualization: Perception for Design" 2nd Ed., 2004)

"Plotting data is a useful first stage to any analysis and will show extreme observations together with any discernible patterns. In addition the relative sizes of categories are easier to see in a diagram (bar chart or pie chart) than in a table. Graphs are useful as they can be assimilated quickly, and are particularly helpful when presenting information to an audience. Tables can be useful for displaying information about many variables at once, while graphs can be useful for showing multiple observations on groups or individuals. Although there are no hard and fast rules about when to use a graph and when to use a table, in the context of a report or a paper it is often best to use tables so that the reader can scrutinise the numbers directly." (Jenny Freeman et al, "How to Display Data", 2008)

"[...] if you want to show change through time, use a time-series chart; if you need to compare, use a bar chart; or to display correlation, use a scatter-plot - because some of these rules make good common sense." (Alberto Cairo, "The Functional Art", 2011)

"For every rule in data visualization, there is a scenario where that rule should be broken. This means that choosing the best chart or the best design is always a trade-off between several conflicting goals. Our imperfect perception means that data visualization has a larger subjective dimension than a data table. Sometimes we only need this subjective, impressionist dimension and other times we need to translate it into hard figures. Striving for accuracy is important, but it’s more important to provide those insights that only a visual display can reveal." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"There can be several reasons why someone breaks the rules, whether from ignorance, malice, or the sincere desire to find a more effective way to explore the data or communicate the results. Whatever the reason, breaking the rules frustrates the audience’s expectations and will incur a cost. Sometimes you might consider this an investment, while often it is nothing more than waste." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"A perfectly relevant visualization that breaks a few presentation rules is far more valuable - it’s better - than a perfectly executed, beautiful chart that contains the wrong data, communicates the wrong message, or fails to engage its audience." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"But rules are open to interpretation and sometimes arbitrary or even counterproductive when it comes to producing good visualizations. They’re for responding to context, not setting it. Instead of worrying about whether a chart is "right" or "wrong", focus on whether it’s good." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

28 November 2011

📉Graphical Representation: Perception (Just the Quotes)

"We can gain further insight into what makes good plots by thinking about the process of visual perception. The eye can assimilate large amounts of visual information, perceive unanticipated structure, and recognize complex patterns; however, certain kinds of patterns are more readily perceived than others. If we thoroughly understood the interaction between the brain, eye, and picture, we could organize displays to take advantage of the things that the eye and brain do best, so that the potentially most important patterns are associated with the most easily perceived visual aspects in the display." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"When a graph is constructed, quantitative and categorical information is encoded, chiefly through position, size, symbols, and color. When a person looks at a graph, the information is visually decoded by the person's visual system. A graphical method is successful only if the decoding process is effective. No matter how clever and how technologically impressive the encoding, it is a failure if the decoding process is a failure. Informed decisions about how to encode data can be achieved only through an understanding of the visual decoding process, which is called graphical perception." (William S Cleveland, "The Elements of Graphing Data", 1985)

"Pie charts have severe perceptual problems. Experiments in graphical perception have shown that compared with dot charts, they convey information far less reliably. But if you want to display some data, and perceiving the information is not so important, then a pie chart is fine." (Richard Becker & William S Cleveland," S-Plus Trellis Graphics User's Manual", 1996)

"[...] when data is presented in certain ways, the patterns can be readily perceived. If we can understand how perception works, our knowledge can be translated into rules for displaying information. Following perception‐based rules, we can present our data in such a way that the important and informative patterns stand out. If we disobey the rules, our data will be incomprehensible or misleading." (Colin Ware, "Information Visualization: Perception for Design" 2nd Ed., 2004)

"Most dashboards fail to communicate efficiently and effectively, not because of inadequate technology (at least not primarily), but because of poorly designed implementations. No matter how great the technology, a dashboard's success as a medium of communication is a product of design, a result of a display that speaks clearly and immediately. Dashboards can tap into the tremendous power of visual perception to communicate, but only if those who implement them understand visual perception and apply that understanding through design principles and practices that are aligned with the way people see and think." (Stephen Few, "Information Dashboard Design", 2006)

"Perception requires imagination because the data people encounter in their lives are never complete and always equivocal. [...] We also use our imagination and take shortcuts to fill gaps in patterns of nonvisual data. As with visual input, we draw conclusions and make judgments based on uncertain and incomplete information, and we conclude, when we are done analyzing the patterns, that out picture is clear and accurate. But is it?" (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"[…] perceptual accuracy decreases with distance, so columns that are to be compared should be side by side. Current linked micromap software requires the user." (Daniel B Carr & Linda W Pickle, "Visualizing Data Patterns with Micromaps", 2010)

"Sparklines aren't necessarily a variation on the line chart, rather, a clever use of them. [...] They take advantage of our visual perception capabilities to discriminate changes even at such a low resolution in terms of size. They facilitate opportunities to construct particularly dense visual displays of data in small space and so are particularly applicable for use on dashboards." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"For every rule in data visualization, there is a scenario where that rule should be broken. This means that choosing the best chart or the best design is always a trade-off between several conflicting goals. Our imperfect perception means that data visualization has a larger subjective dimension than a data table. Sometimes we only need this subjective, impressionist dimension and other times we need to translate it into hard figures. Striving for accuracy is important, but it’s more important to provide those insights that only a visual display can reveal." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"Color is difficult to use effectively. A small number of well-chosen colors can be highly distinguishable, particularly for categorical data, but it can be difficult for users to distinguish between more than a handful of colors in a visualization. Nonetheless, color is an invaluable tool in the visualization toolbox because it is a channel that can carry a great deal of meaning and be overlaid on other dimensions. […] There are a variety of perceptual effects, such as simultaneous contrast and color deficiencies, that make precise numerical judgments about a color scale difficult, if not impossible." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"Beyond basic charts, practitioners must also learn to compose visualizations together elegantly. The perceptual stage focuses on making the literal charts more precise as well as working to de-emphasize the entire piece. Design choices start to consider distractions, reducing visual clutter and centering on the message. Minimalism is espoused as a core value with an emphasis on shifting toward precision as accuracy. This is the most common next step for practitioners. Minimalism is also a key stage in maturation. It is experimentation at one extreme that helps practitioners distill down to core, shared practices." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Communicating data through functionally aesthetic charts is not only about perception and precision but also understanding." (Vidya Setlur & Bridget Cogley, "Functional Aesthetics for data visualization", 2022)

"Our visual perception is context-dependent; we are not good at seeing things in isolation." (Alan Smith, "How Charts Work: Understand and explain data with confidence", 2022)

"People feel data. They don’t just process statistics and come to rational conclusions. They form emotions about the data visualization. We are not informed by charts; we’re affected by them." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Unlike text, visual communication is governed less by an agreed-upon convention between 'writer' and 'reader' than by how our visual systems react to stimuli, often before we’re aware of it. And just as composers use music theory to create music that produces certain predictable effects on an audience, chart makers can use visual perception theory to make more-effective visualizations with similarly predictable effects." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"We see first what stands out. Our eyes go right to change and difference - peaks, valleys, intersections, dominant colors, outliers. Many successful charts - often the ones that please us the most and are shared and talked about - exploit this inclination by showing a single salient point so clearly that we feel we understand the chart’s meaning without even trying." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Your eyes and your brain always notice more dynamic visual information first and fastest. The implicit lesson is to make the idea you want people to see stand out. Conversely, make sure you’re not helping people see something that either doesn’t help convey your idea or actively fights against it." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

📉Graphical Representation: Signal (Just the Quotes)

"If statistical graphics, although born just yesterday, extends its reach every day, it is because it replaces long tables of numbers and it allows one not only to embrace at glance the series of phenomena, but also to signal the correspondences or anomalies, to find the causes, to identify the laws." (Émile Cheysson, cca. 1877)

"When large numbers of curves and charts are used by a corporation, it will be found advantageous to have certain standard abbreviations and symbols on the face of the chart so that information may be given in condensed form as a signal to anyone reading the charts." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"First, color has identity value. In other words, it serves to distinguish one thing from another. In many cases it does this much better and much quicker than black and white coding by different types of shading or lines. […] Second, color has suggestion value. […] Red is usually taken to mean a danger signal or an unfavorable condition. But since it is one of the most visible of colors it is excellent for adding emphasis, regardless of connotation. […] Green has no such unfavorable implication, and is usually appropriate for suggesting a green light" condition. […] Similarly, every color carries its own connotations; and although they seldom make a vital difference one way or the other, it seems logical to try to make them work for you rather than against you." (Kenneth W Haemer, "Color in Chart Presentation", The American Statistician Vol. 4" (2) , 1950)

"While all data contain noise, some data contain signals. Before you can detect a signal, you must filter out the noise." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Noise is a signal we don't like. Noise has two parts. The first has to do with the head and the second with the heart. The first part is the scientific or objective part: Noise is a signal. [...] The second part of noise is the subjective part: It deals with values. It deals with how we draw the fuzzy line between good signals and bad signals. Noise signals are the bad signals. They are the unwanted signals that mask or corrupt our preferred signals. They not only interfere but they tend to interfere at random." (Bart Kosko, "Noise", 2006)

"One person’s signal is another person’s noise and vice versa. We call this relative role reversal the noise-signal duality." (Bart Kosko, "Noise", 2006)

"A signal is a useful message that resides in data. Data that isn’t useful is noise. […] When data is expressed visually, noise can exist not only as data that doesn’t inform but also as meaningless non-data elements of the display (e.g. irrelevant attributes, such as a third dimension of depth in bars, color variation that has no significance, and artificial light and shadow effects)." (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"Data contain descriptions. Some are true, some are not. Some are useful, most are not. Skillful use of data requires that we learn to pick out the pieces that are true and useful. [...] To find signals in data, we must learn to reduce the noise - not just the noise that resides in the data, but also the noise that resides in us. It is nearly impossible for noisy minds to perceive anything but noise in data." (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"Form simplification means simplifying relationships among the components of the whole, emphasizing the whole and reducing the relevance of individual components by standardizing and generalizing relationships. This results in an increased weight of useful information (signal) against useless information (noise)." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"Before you can even consider creating a data story, you must have a meaningful insight to share. One of the essential attributes of a data story is a central or main insight. Without a main point, your data story will lack purpose, direction, and cohesion. A central insight is the unifying theme" (telos appeal) that ties your various findings together and guides your audience to a focal point or climax for your data story. However, when you have an increasing amount of data at your disposal, insights can be elusive. The noise from irrelevant and peripheral data can interfere with your ability to pinpoint the important signals hidden within its core." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"In addition to managing how the data is visualized to reduce noise, you can also decrease the visual interference by minimizing the extraneous cognitive load. In these cases, the nonrelevant information and design elements surrounding the data can cause extraneous noise. Poor design or display decisions by the data storyteller can inadvertently interfere with the communication of the intended signal. This form of noise can occur at both a macro and micro level." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

"An outlier is a data point that is far away from other observations in your data. It may be due to random variability in the data, measurement error, or an actual anomaly. Outliers are both an opportunity and a warning. They potentially give you something very interesting to talk about, or they may signal that something is wrong in the data." (Jonathan Schwabish, "Better Data Visualizations: A guide for scholars, researchers, and wonks", 2021)

27 November 2011

📉Graphical Representation: Execution (Just the Quotes)

"In the course of executing that design, it occurred to me that tables are by no means a good form for conveying such information. [...] Making an appeal to the eye when proportion and magnitude are concerned is the best and readiest method of conveying a distinct idea." (William Playfair, "The Statistical Brewery", 1801)

"Simplicity, accuracy, appropriate size, proper proportion, correct emphasis, and skilled execution - these are the factors that produce the effective chart. To achieve simplicity your chart must be designed with a definite audience in mind, show only essential information. Technical terms should be absent as far as possible. And in case of doubt it is wiser to oversimplify than to make matters unduly complex. Be careful to avoid distortion or misrepresentation. Accuracy in graphics is more a matter of portraying a clear reliable picture than reiterating exact values. Selecting the right scales and employing authoritative titles and legends are as important as precision plotting. The right size of a chart depends on its probable use, its importance, and the amount of detail involved." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"The execution of any task involving information visualization will be motivated by the user's intention and influenced by many factors. One of these is the user's internal model. Another is the visible externalization of some data. A decision as to how - as well as whether - to proceed will depend upon an interpretation of these sources of information." (Robert Spence, "Information Visualization", 2001)

"Most dashboards fail to communicate efficiently and effectively, not because of inadequate technology (at least not primarily), but because of poorly designed implementations. No matter how great the technology, a dashboard's success as a medium of communication is a product of design, a result of a display that speaks clearly and immediately. Dashboards can tap into the tremendous power of visual perception to communicate, but only if those who implement them understand visual perception and apply that understanding through design principles and practices that are aligned with the way people see and think." (Stephen Few, "Information Dashboard Design", 2006)

"Good graphic design is not a panacea for bad copy, poor layout or misleading statistics. If any one of these facets are feebly executed it reflects poorly on the work overall, and this includes bad graphs and charts." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"A perfectly relevant visualization that breaks a few presentation rules is far more valuable - it’s better - than a perfectly executed, beautiful chart that contains the wrong data, communicates the wrong message, or fails to engage its audience." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Good design isn’t just choosing colors and fonts or coming up with an aesthetic for charts. That’s styling - part of design, but by no means the most important part. Rather, people with design talent develop and execute systems for effective visual communication. They understand how to create and edit visuals to focus an audience and distill ideas." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Graphic design is not just about making things look good. It is a powerful combination of form and function that uses visual elements to communicate a message. Form refers to the physical appearance of a design, such as its shape, color, and typography. Function refers to the purpose of a design, such as what it is trying to communicate or achieve. A good graphic design is both visually appealing and functional. It uses the right combination of form and function to communicate its message effectively. Graphic design is also a strategic and thoughtful craft. It requires careful planning and execution to create a design that is both effective and aesthetically pleasing." (Faith Aderemi, "The Essential Graphic Design Handbook", 2024)

26 November 2011

📉Graphical Representation: Complexity (Just the Quotes)

"The principles of charting and curve plotting are not at all complex, and it is surprising that many business men dodge the simplest charts as though they involved higher mathematics or contained some sort of black magic. [...] The trouble at present is that there are no standards by which graphic presentations can be prepared in accordance with definite rules so that their interpretation by the reader may be both rapid and accurate. It is certain that there will evolve for methods of graphic presentation a few useful and definite rules which will correspond with the rules of grammar for the spoken and written language." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919) 

"Simplicity, accuracy, appropriate size, proper proportion, correct emphasis, and skilled execution - these are the factors that produce the effective chart. To achieve simplicity your chart must be designed with a definite audience in mind, show only essential information. Technical terms should be absent as far as possible. And in case of doubt it is wiser to oversimplify than to make matters unduly complex. Be careful to avoid distortion or misrepresentation. Accuracy in graphics is more a matter of portraying a clear reliable picture than reiterating exact values. Selecting the right scales and employing authoritative titles and legends are as important as precision plotting. The right size of a chart depends on its probable use, its importance, and the amount of detail involved." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"While circle charts are not likely to present especially new or creative ideas, they do help the user to visualize relationships. The relationships depicted by circle charts do not tend to be very complex, in contrast to those of some line graphs. Normally, the circle chart is used to portray a common type of relationship (namely. part-to-total) in an attractive manner and to expedite the message transfer from designer to user." (Cecil H Meyers, "Handbook of Basic Graphs: A modern approach", 1970)

"The bar or column chart is the easiest type of graphic to prepare and use in reports. It employs a simple form: four straight lines that are joined to construct a rectangle or oblong box. When the box is shown horizontally it is called a bar; when it is shown vertically it is called a column. [...] The bar chart is an effective way to show comparisons between or among two or more items. It has the added advantage of being easily understood by readers who have little or no background in statistics and who are not accustomed to reading complex tables or charts." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"The more complex the shape of any object. the more difficult it is to perceive it. The nature of thought based on the visual apprehension of objective forms suggests, therefore, the necessity to keep all graphics as simple as possible. Otherwise, their meaning will be lost or ambiguous, and the ability to convey the intended information and to persuade will be inhibited." (Robert Lefferts, "Elements of Graphics: How to prepare charts and graphs for effective reports", 1981)

"Excellence in statistical graphics consists of complex ideas communicated
with clarity, precision, and efficiency. Graphical displays should
- show the data
- induce the viewer to think about the substance rather than about the
methodology, graphic design, the technology of graphic production,
or something else
- avoid distorting what the data have to say
- present many numbers in a small space
- make large data sets coherent
- encourage the eye to compare different pieces of data
- reveal the data at several levels of detail, from a broad overview to the
- serve a reasonable clear purpose: description, exploration, tabulation,
- be closely integrated." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"We can gain further insight into what makes good plots by thinking about the process of visual perception. The eye can assimilate large amounts of visual information, perceive unanticipated structure, and recognize complex patterns; however, certain kinds of patterns are more readily perceived than others. If we thoroughly understood the interaction between the brain, eye, and picture, we could organize displays to take advantage of the things that the eye and brain do best, so that the potentially most important patterns are associated with the most easily perceived visual aspects in the display." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"Confusion and clutter are failures of design, not attributes of information. And so the point is to find design strategies that reveal detail and complexity - rather than to fault the data for an excess of complication. Or, worse, to fault viewers for a lack of understanding. Among the most powerful devices for reducing noise and enriching the content of displays is the technique of layering and separation, visually stratifying various aspects of the data." (Edward R Tufte, "Envisioning Information", 1990)

"A good chart delineates and organizes information. It communicates complex ideas, procedures, and lists of facts by simplifying, grouping, and setting and marking priorities. By spatial organization, it should lead the eye through information smoothly and efficiently." (Mary H Briscoe, "Preparing Scientific Illustrations: A guide to better posters, presentations, and publications" 2nd ed., 1995)

"A common mistake is that all visualization must be simple, but this skips a step. You should actually design graphics that lend clarity, and that clarity can make a chart 'simple' to read. However, sometimes a dataset is complex, so the visualization must be complex. The visualization might still work if it provides useful insights that you wouldn’t get from a spreadsheet. […] Sometimes a table is better. Sometimes it’s better to show numbers instead of abstract them with shapes. Sometimes you have a lot of data, and it makes more sense to visualize a simple aggregate than it does to show every data point." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"So what is the difference between a chart or graph and a visualization? […] a chart or graph is a clean and simple atomic piece; bar charts contain a short story about the data being presented. A visualization, on the other hand, seems to contain much more ʻchart junkʼ, with many sometimes complex graphics or several layers of charts and graphs. A visualization seems to be the super-set for all sorts of data-driven design." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"The universal intelligibility of a pictogram is inversely proportional to its complexity and potential for interpretive ambiguity." (Joel Katz, "Designing Information: Human factors and common sense in information design", 2012)

"What is good visualization? It is a representation of data that helps you see what you otherwise would have been blind to if you looked only at the naked source. It enables you to see trends, patterns, and outliers that tell you about yourself and what surrounds you. The best visualization evokes that moment of bliss when seeing something for the first time, knowing that what you see has been right in front of you, just slightly hidden. Sometimes it is a simple bar graph, and other times the visualization is complex because the data requires it." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Most of us have difficulty figuring probabilities and statistics in our heads and detecting subtle patterns in complex tables of numbers. We prefer vivid pictures, images, and stories. When making decisions, we tend to overweight such images and stories, compared to statistical information. We also tend to misunderstand or misinterpret graphics." (Daniel J Levitin, "Weaponized Lies", 2017)

"Bad complexity neither elucidates important salient points nor shows coherent broader trends. It will obfuscate, frustrate, tax the mind, and ultimately convey trendlessness and confusion to the viewer. Good complexity, in contrast, emerges from visualizations that use more data than humans can reasonably process to form a few salient points." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Confirmation is a kind of focused exploration, whereas true exploration is more open-ended. The bigger and more complex the data, and the less you know going in, the more exploratory the work. If confirmation is hiking a new trail, exploration is blazing one." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Visualization is an abstraction, a way to reduce complexity […] complexity and color catch the eye; they’re captivating. They can also make it harder to extract meaning from a chart." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"When deeply complex charts work, we find them effective and beautiful, just as we find a symphony beautiful, which is another marvelously complex arrangement of millions of data points that we experience as a coherent whole." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

📉Graphical Representation: Cluster (Just the Quotes)

"To the untrained eye, randomness appears as regularity or tendency to cluster." (William Feller, "An Introduction to Probability Theory and its Applications", 1950) 

"Sometimes clusters of variables tend to vary together in the normal course of events, thereby rendering it difficult to discover the magnitude of the independent effects of the different variables in the cluster. And yet it may be most desirable, from a practical as well as scientific point of view, to disentangle correlated describing variables in order to discover more effective policies to improve conditions. Many economic indicators tend to move together in response to underlying economic and political events." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"The logarithmic transformation serves several purposes: (1) The resulting regression coefficients sometimes have a more useful theoretical interpretation compared to a regression based on unlogged variables. (2) Badly skewed distributions - in which many of the observations are clustered together combined with a few outlying values on the scale of measurement - are transformed by taking the logarithm of the measurements so that the clustered values are spread out and the large values pulled in more toward the middle of the distribution. (3) Some of the assumptions underlying the regression model and the associated significance tests are better met when the logarithm of the measured variables is taken." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"The scatterplot is a useful exploratory method for providing a first look at bivariate data to see how they are distributed throughout the plane, for example, to see clusters of points, outliers, and so forth." (William S Cleveland, "Visualizing Data", 1993)

"Multivariate techniques often summarize or classify many variables to only a few groups or factors (e.g., cluster analysis or multi-dimensional scaling). Parallel coordinate plots can help to investigate the influence of a single variable or a group of variables on the result of a multivariate procedure. Plotting the input variables in a parallel coordinate plot and selecting the features of interest of the multivariate procedure will show the influence of different input variables." (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009)

"Parallel coordinate plots are often overrated concerning their ability to depict multivariate features. Scatterplots are clearly superior in investigating the relationship between two continuous variables and multivariate outliers do not necessarily stick out in a parallel coordinate plot. Nonetheless, parallel coordinate plots can help to find and understand features such as groups/clusters, outliers and multivariate structures in their multivariate context. The key feature is the ability to select and highlight individual cases or groups in the data, and compare them to other groups or the rest of the data." (Martin Theus & Simon Urbanek, "Interactive Graphics for Data Analysis: Principles and Examples", 2009) 

"Be careful not to confuse clustering and stratification. Even though both of these sampling strategies involve dividing the population into subgroups, both the way in which the subgroups are sampled and the optimal strategy for creating the subgroups are different. In stratified sampling, we sample from every stratum, whereas in cluster sampling, we include only selected whole clusters in the sample. Because of this difference, to increase the chance of obtaining a sample that is representative of the population, we want to create homogeneous groups for strata and heterogeneous (reflecting the variability in the population) groups for clusters." (Roxy Peck et al, "Introduction to Statistics and Data Analysis" 4th Ed., 2012)

"Linking is a powerful dynamic interactive graphics technique that can help us better understand high-dimensional data. This technique works in the following way: When several plots are linked, selecting an observation's point in a plot will do more than highlight the observation in the plot we are interacting with - it will also highlight points in other plots with which it is linked, giving us a more complete idea of its value across all the variables. Selecting is done interactively with a pointing device. The point selected, and corresponding points in the other linked plots, are highlighted simultaneously. Thus, we can select a cluster of points in one plot and see if it corresponds to a cluster in any other plot, enabling us to investigate the high-dimensional shape and density of the cluster of points, and permitting us to investigate the structure of the disease space." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)

"Dimensionality reduction is a way of reducing a large number of different measures into a smaller set of metrics. The intent is that the reduced metrics are a simpler description of the complex space that retains most of the meaning. […] Clustering techniques are similarly useful for reducing a large number of items into a smaller set of groups. A clustering technique finds groups of items that are logically near each other and gathers them together." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"[...] scatterplots had advantages over earlier graphic forms: the ability to see clusters, patterns, trends, and relations in a cloud of points. Perhaps most importantly, it allowed the addition of visual annotations (point symbols, lines, curves, enclosing contours, etc.) to make those relationships more coherent and tell more nuanced stories." (Michael Friendly & Howard Wainer, "A History of Data Visualization and Graphic Communication", 2021)

25 November 2011

📉Graphical Representation: Executives (Just the Quotes)

"An exact knowledge of conditions, and consequent timely application of praise or of constructive criticism, is one of the chief forces of the executive in securing satisfactory results. Undeserved criticism is unjust and destroys-initiative, while unmerited praise tends to render the executive ridiculous in the eyes of his subordinates; both are detrimental to discipline and weaken the power of the executive." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"The problem of the executive, then - once his organization is perfected - is to secure live data covering the exact conditions of the business at all times. These data should be arranged so as to give him all the facts, subordinated according to their relative bearing upon net earnings, and do so with the least demand upon his time. Furthermore, these facts must be so exhibited that the general laws underlying the business may be easily and accurately deduced and standards of accomplishment set which will be a continual incentive to greater accomplishment." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"Wherever unusual peaks or valleys occur on a curve it is a good plan to mark these points with a small figure inside a circle. This figure should refer to a note on the back of the chart explaining the reason for the unusual condition. It is not always sufficient to show that a certain item is unusually high or low; the executive will want to know why it is that way." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919

"An economic justification for computer graphics is that the organization spends an enormous amount of money on data processing, often providing managers with too many reports, too many data, and an overload of information. The report output has to be condensed into a more usable form. The computer graph essentially is the data represented in a structured pictorial form. The role of the graph is to provide meaningful reports. To the extent that it does. it can be justified." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"Without meaningful data there can be no meaningful analysis. The interpretation of any data set must be based upon the context of those data. Unfortunately, much of the data reported to executives today are aggregated and summed over so many different operating units and processes that they cannot be said to have any context except a historical one - they were all collected during the same time period. While this may be rational with monetary figures, it can be devastating to other types of data." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Organizations face challenges of all kinds after activating their new systems. To be sure, these challenges are typically not as significant as those associated with going live. Still, executives and end users should never assume that system activation means that everyone is home free. Systems are hardly self-sufficient, and issues always appear." (Phil Simon, "Why New Systems Fail: An Insider’s Guide to Successful IT Projects", 2010)

Most discussions of decision making assume that only senior executives make decisions or that only senior executives' decisions matter. This is a dangerous mistake. Decisions are made at every level of the organization, beginning with individual professional contributors and frontline supervisors. These apparently low-level decisions are extremely important in a knowledge-based organization." (Zach Gemignani et al, "Data Fluency", 2014)

Along with the important information that executives need to be data literate, there is one other key role they play: executives drive data literacy learning and initiatives at the organization." (Jordan Morrow, "Be Data Literate: The data literacy skills everyone needs to succeed", 2021)

📉Graphical Representation: Good Design (Just the Quotes)

"Good design looks right. It is simple (clear and uncomplicated). Good design is also elegant, and does not look contrived. A map should be aesthetically pleasing, thought provoking, and communicative."  (Arthur H Robinson, "Elements of Cartography", 1953)

"Without adequate planning. it is seldom possible to achieve either proper emphasis of each component element within the chart or a presentation that is pleasing in its entirely. Too often charts are developed around a single detail without sufficient regard for the work as a whole. Good chart design requires consideration of these four major factors: (1) size, (2) proportion, (3) position and margins, and (4) composition." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Because ease of use is the purpose, this ratio of function to conceptual complexity is the ultimate test of system design. Neither function alone nor simplicity alone defines a good design. [...] Function, and not simplicity, has always been the measure of excellence for its designers." (Fred P Brooks, "The Mythical Man-Month: Essays", 1975)

"Good design protects you from the need for too many highly accurate components in the system. But such design principles are still, to this date, ill-understood and need to be researched extensively. Not that good designers do not understand this intuitively, merely it is not easily incorporated into the design methods you were taught in school. Good minds are still needed in spite of all the computing tools we have developed." (Richard Hamming, "The Art of Doing Science and Engineering: Learning to Learn", 1997)

"Good design, however, can dispose of clutter and show all the data points and their names. [...] Clutter calls for a design solution, not a content reduction." (Edward R Tufte, "Beautiful Evidence", 2006)

"Good design is an important part of any visualization, while decoration (or chart-junk) is best omitted. Statisticians should also be careful about comparing themselves to artists and designers; our goals are so different that we will fare poorly in comparison." (Hadley Wickham, "Graphical Criticism: Some Historical Notes", Journal of Computational and Graphical Statistics Vol. 22(1), 2013) 

"In the field of design, experts speak of objects having 'affordances'. These are aspects inherent to the design that make it obvious how the product is to be used. For example, a knob affords turning, a button affords pushing, and a cord affords pulling. These characteristics suggest how the object is to be interacted with or operated. When sufficient affordances are present, good design fades into the background and you don’t even notice it." (Cole N Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals", 2015)

"For every rule in data visualization, there is a scenario where that rule should be broken. This means that choosing the best chart or the best design is always a trade-off between several conflicting goals. Our imperfect perception means that data visualization has a larger subjective dimension than a data table. Sometimes we only need this subjective, impressionist dimension and other times we need to translate it into hard figures. Striving for accuracy is important, but it’s more important to provide those insights that only a visual display can reveal." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"A chart that knows its context well will naturally end up looking better because it’s showing what it needs to show and nothing else. Good context begets good design. Good charts are only the means to a more profound end: presenting your ideas effectively. Good charts are not the product you’re after. They’re the way to deliver your product - insight." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Good design isn’t just choosing colors and fonts or coming up with an aesthetic for charts. That’s styling - part of design, but by no means the most important part. Rather, people with design talent develop and execute systems for effective visual communication. They understand how to create and edit visuals to focus an audience and distill ideas." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Good design serves a more important function than simply pleasing you: It helps you access ideas. It improves your comprehension and makes the ideas more persuasive. Good design makes lesser charts good and good charts transcendent." (Scott Berinato, "Good Charts : the HBR guide to making smarter, more persuasive data visualizations", 2023)

"Graphic design is not just about making things look good. It is a powerful combination of form and function that uses visual elements to communicate a message. Form refers to the physical appearance of a design, such as its shape, color, and typography. Function refers to the purpose of a design, such as what it is trying to communicate or achieve. A good graphic design is both visually appealing and functional. It uses the right combination of form and function to communicate its message effectively. Graphic design is also a strategic and thoughtful craft. It requires careful planning and execution to create a design that is both effective and aesthetically pleasing." (Faith Aderemi, "The Essential Graphic Design Handbook", 2024)

24 November 2011

📉Graphical Representation: Graphs (Just the Quotes)

"Graphs are all inclusive. No fact is too slight or too great to plot to a scale suited to the eye. Graphs may record the path of an ion or the orbit of the sun, the rise of a civilization, or the acceleration of a bullet, the climate of a century or the varying pressure of a heart beat, the growth of a business, or the nerve reactions of a child." (Henry D Hubbard [foreword to Willard C Brinton, "Graphic Presentation", 1939)])

"Graphs carry the message home. A universal language, graphs convey information directly to the mind. Without complexity there is imaged to the eye a magnitude to be remembered. Words have wings, but graphs interpret. Graphs are pure quantity, stripped of verbal sham, reduced to dimension, vivid, unescapable." (Henry D Hubbard [foreword to Willard C Brinton, "Graphic Presentation", 1939]) 

"The graphic language is modern. We are learning its alphabet. That it will develop a lexicon and a literature marvelous for its vividness and the variety of application is inevitable. Graphs are dynamic, dramatic. They may epitomize an epoch, each dot a fact, each slope an event, each curve a history. Wherever there are data to record, inferences to draw, or facts to tell, graphs furnish the unrivalled means whose power we are just beginning to realize and to apply."  (Henry D Hubbard [foreword to Willard C Brinton, "Graphic Presentation", 1939)])

"If one technique of data analysis were to be exalted above all others for its ability to be revealing to the mind in connection with each of many different models, there is little doubt which one would be chosen. The simple graph has brought more information to the data analyst’s mind than any other device. It specializes in providing indications of unexpected phenomena." (John W Tukey, "The Future of Data Analysis", Annals of Mathematical Statistics Vol. 33 (1), 1962)

"There is no more reason to expect one graph to ‘tell all’ than to expect one number to do the same." (John W Tukey, "Exploratory Data Analysis", 1977)

"[...] exploratory data analysis is an attitude, a state of flexibility, a willingness to look for those things that we believe are not there, as well as for those we believe might be there. Except for its emphasis on graphs, its tools are secondary to its purpose." (John W Tukey, [comment] 1979)

"We would wish ‘numerate’ to imply the possession of two attributes. The first of these is an ‘at-homeness’ with numbers and an ability to make use of mathematical skills which enable an individual to cope with the practical mathematical demands of his everyday life. The second is ability to have some appreciation and understanding of information which is presented in mathematical terms, for instance in graphs, charts or tables or by reference to percentage increase or decrease." (Cockcroft Committee, "Mathematics Counts: A Report into the Teaching of Mathematics in Schools", 1982)

"We would wish ‘numerate’ to imply the possession of two attributes. The first of these is an ‘at-homeness’ with numbers and an ability to make use of mathematical skills which enable an individual to cope with the practical mathematical demands of his everyday life. The second is ability to have some appreciation and understanding of information which is presented in mathematical terms, for instance in graphs, charts or tables or by reference to percentage increase or decrease." (Cockcroft Committee, "Mathematics Counts: A Report into the Teaching of Mathematics in Schools", 1982)

"Iteration and experimentation are important for all of data analysis, including graphical data display. In many cases when we make a graph it is immediately clear that some aspect is inadequate and we regraph the data. In many other cases we make a graph, and all is well, but we get an idea for studying the data in a different way with a different graph; one successful graph often suggests another." (William S Cleveland, "The Elements of Graphing Data", 1985)

"There are some who argue that a graph is a success only if the important information in the data can be seen within a few seconds. While there is a place for rapidly-understood graphs, it is too limiting to make speed a requirement in science and technology, where the use of graphs ranges from, detailed, in-depth data analysis to quick presentation." (William S Cleveland, "The Elements of Graphing Data", 1985)

"A first analysis of experimental results should, I believe, invariably be conducted using flexible data analytical techniques – looking at graphs and simple statistics – that so far as possible allow the data to ‘speak for themselves’. The unexpected phenomena that such a approach often uncovers can be of the greatest importance in shaping and sometimes redirecting the course of an ongoing investigation." (George Box, "Signal to Noise Ratios, Performance Criteria, and Transformations", Technometrics 30, 1988) 

"We are not saying that the primary purpose of a graph is to convey numbers with as many decimal places as possible. We agree with Ehrenberg (1975) that if this were the only goal, tables would be better. The power of a graph is its ability to enable one to take in the quantitative information, organize it, and see patterns and structure not readily revealed by other means of studying the data." (William Cleveland & Robert McGill, "Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Models", Journal of the American Statistical Association 79, 1984)

"It’s not easy to select more than a few clearly distinct colors. Also, 'distinct' is context-dependent, because: What will be the spatial relationships of the different colors in your output? You can successfully have fairly similar colors adjacent to each other, since the contrast is more obvious when they’re adjacent. However, if you want to use colors to track identity and difference across scattered points or patches, then you need bigger separations between colors, since you want to be able to see easily that patch 'A' here is of the same kind as patch 'A' there and different from patch 'B' somewhere else, when mingled with patches of other kinds. And size matters. Big patches of similar color (as on a map) can look quite distinct, while the same colors used to plot filled circular blobs on a graph might be barely distinguishable, and totally indistinguishable if used to plot colored '.'s or '+'s. [...] It’s all very psycho-visual and success usually requires experimentation!" (Ted Harding, R-help mailing list, 2004)

23 November 2011

📉Graphical Representation: Assumptions (Just the Quotes)

"Logging size transforms the original skewed distribution into a more symmetrical one by pulling in the long right tail of the distribution toward the mean. The short left tail is, in addition, stretched. The shift toward symmetrical distribution produced by the log transform is not, of course, merely for convenience. Symmetrical distributions, especially those that resemble the normal distribution, fulfill statistical assumptions that form the basis of statistical significance testing in the regression model." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"The quantile plot is a good general display since it is fairly easy to construct and does a good job of portraying many aspects of a distribution. Three convenient features of the plot are the following: First, in constructing it, we do not make any arbitrary choices of parameter values or cell boundaries [...] and no models for the data are fitted or assumed. Second, like a table, it is not a summary but a display of all the data. Third, on the quantile plot every point is plotted at a distinct location, even if there are duplicates in the data. The number of points that can be portrayed without overlap is limited only by the resolution of the plotting device. For a high resolution device several hundred points distinguished." (John M Chambers et al, "Graphical Methods for Data Analysis", 1983)

"One graph is more effective than another if its quantitative information can be decoded more quickly or more easily by most observers. […] This definition of effectiveness assumes that the reason we draw graphs is to communicate information - but there are actually many other reasons to draw graphs." (Naomi B Robbins, "Creating More effective Graphs", 2005)

"Exploratory Data Analysis is more than just a collection of data-analysis techniques; it provides a philosophy of how to dissect a data set. It stresses the power of visualisation and aspects such as what to look for, how to look for it and how to interpret the information it contains. Most EDA techniques are graphical in nature, because the main aim of EDA is to explore data in an open-minded way. Using graphics, rather than calculations, keeps open possibilities of spotting interesting patterns or anomalies that would not be apparent with a calculation (where assumptions and decisions about the nature of the data tend to be made in advance)." (Alan Graham, "Developing Thinking in Statistics", 2006)

"Where correlation exists, it is tempting to assume that one of the factors has caused the changes in the other (that is, that there is a cause-and-effect relationship between them). Although this may be true, often it is not. When an unwarranted or incorrect assumption is made about cause and effect, this is referred to as spurious correlation […]" (Alan Graham, "Developing Thinking in Statistics", 2006)

"Too often there is a disconnect between the people who run a study and those who do the data analysis. This is as predictable as it is unfortunate. If data are gathered with particular hypotheses in mind, too often they (the data) are passed on to someone who is tasked with testing those hypotheses and who has only marginal knowledge of the subject matter. Graphical displays, if prepared at all, are just summaries or tests of the assumptions underlying the tests being done. Broader displays, that have the potential of showing us things that we had not expected, are either not done at all, or their message is not able to be fully appreciated by the data analyst." (Howard Wainer, Comment, Journal of Computational and Graphical Statistics Vol. 20(1), 2011)

"Data visualization is a means to an end, not an end in itself. It's merely a bridge connecting the messenger to the receiver and its limitations are framed by our own inherent irrationalities, prejudices, assumptions, and irrational tastes. All these factors can undermine the consistency and reliability of any predicted reaction to a given visualization, but that is something we can't realistically influence." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"Data visualization is a means to an end, not an end in itself. It's merely a bridge connecting the messenger to the receiver and its limitations are framed by our own inherent irrationalities, prejudices, assumptions, and irrational tastes. All these factors can undermine the consistency and reliability of any predicted reaction to a given visualization, but that is something we can't realistically influence." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"With time series though, there is absolutely no substitute for plotting. The pertinent pattern might end up being a sharp spike followed by a gentle taper down. Or, maybe there are weird plateaus. There could be noisy spikes that have to be filtered out. A good way to look at it is this: means and standard deviations are based on the naïve assumption that data follows pretty bell curves, but there is no corresponding 'default' assumption for time series data (at least, not one that works well with any frequency), so you always have to look at the data to get a sense of what’s normal. [...] Along the lines of figuring out what patterns to expect, when you are exploring time series data, it is immensely useful to be able to zoom in and out." (Field Cady, "The Data Science Handbook", 2017)

"Some scientists (e.g., econometricians) like to work with mathematical equations; others (e.g., hard-core statisticians) prefer a list of assumptions that ostensibly summarizes the structure of the diagram. Regardless of language, the model should depict, however qualitatively, the process that generates the data - in other words, the cause-effect forces that operate in the environment and shape the data generated." (Judea Pearl & Dana Mackenzie, "The Book of Why: The new science of cause and effect", 2018)

📉Graphical Representation: Dimensions (Just the Quotes)

"Graphic comparisons, wherever possible, should be made in one dimension only." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"In general, the comparison of two circles of different size should be strictly avoided. Many excellent works on statistics approve the comparison of circles of different size, and state that the circles should always be drawn to represent the facts on an area basis rather than on a diameter basis. The rule, however, is not always followed and the reader has no way of telling whether the circles compared have been drawn on a diameter basis or on an area basis, unless the actual figures for the data are given so that the dimensions may be verified." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)

"Readers of statistical diagrams should not be required to compare magnitudes in more than one dimension. Visual comparisons of areas are particularly inaccurate and should not be necessary in reading any statistical graphical diagram." (William C Marshall, "Graphical methods for schools, colleges, statisticians, engineers and executives", 1921)

"The bar chart is one of the most useful, simple, adaptable, and popular techniques in graphic presentation. The simple bar chart, with its many variations, is particularly appropriate for comparing the magnitude, or size, of coordinate items or of parts of a total. The basis of comparison in the bar chart is linear or one-dimensional. The length of each bar or of its components is proportional to the quantity or amount of each category' represented. " (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)

"The common bar chart is particularly appropriate for comparing magnitude or size of coordinate items or parts of a total. It is one of the most useful, simple, and adaptable techniques in graphic presentation. The basis of comparison in the bar chart is linear or one-dimensional. The length of each bar or of its components is proportional to the quantity or amount of each category represented." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"An especially effective device for enhancing the explanatory power of time-series displays is to add spatial dimensions to the design of the graphic, so that the data are moving over space (in two or three dimensions) as well as over time. […] Occasionally graphics are belligerently multivariate, advertising the technique rather than the data." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Graphical integrity is more likely to result if these six principles are followed:
The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the numerical quantities represented.
Clear, detailed, and thorough labeling should be used to defeat graphical distortion and ambiguity. Write out explanations of the data on the graphic itself. Label important events in the data.
Show data variations, not design variations. 
In time-series displays of money, deflated and standardized units of monetary measurements are nearly always better than nominal units.
The number of information-carrying (variable) dimensions depicted should not exceed the number of dimensions in the data.
Graphics must not quote data out of context." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"The time-series plot is the most frequently used form of graphic design. With one dimension marching along to the regular rhythm of seconds, minutes, hours, days, weeks, months, years, centuries, or millennia, the natural ordering of the time scale gives this design a strength and efficiency of interpretation found in no other graphic arrangement." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"The ducks of information design are false escapes from flatland, adding pretend dimensions to impoverished data sets, merely fooling around with information." (Edward R Tufte, "Envisioning Information", 1990)

"We envision information in order to reason about, communicate, document, and preserve that knowledge - activities nearly always carried out on two-dimensional paper and computer screen. Escaping this flatland and enriching the density of data displays are the essential tasks of information design." (Edward R Tufte, "Envisioning Information", 1990)

"Binning has two basic limitations. First, binning sacrifices resolution. Sometimes plots of the raw data will reveal interesting fine structure that is hidden by binning. However, advantages from binning often outweigh the disadvantage from lost resolution. [...] Second, binning does not extend well to high dimensions. With reasonable univariate resolution, say 50 regions each covering 2% of the range of the variable, the number of cells for a mere 10 variables is exceedingly large. For uniformly distributed data, it would take a huge sample size to fill a respectable fraction of the cells. The message is not so much that binning is bad but that high dimensional space is big. The complement to the curse of dimensionality is the blessing of large samples. Even in two and three dimensions having lots of data can bc very helpful when the observations are noisy and the structure non-trivial." (Daniel B Carr, "Looking at Large Data Sets Using Binned Data Plots", [in "Computing and Graphics in Statistics"] 1991)

"Fitting is essential to visualizing hypervariate data. The structure of data in many dimensions can be exceedingly complex. The visualization of a fit to hypervariate data, by reducing the amount of noise, can often lead to more insight. The fit is a hypervariate surface, a function of three or more variables. As with bivariate and trivariate data, our fitting tools are loess and parametric fitting by least-squares. And each tool can employ bisquare iterations to produce robust estimates when outliers or other forms of leptokurtosis are present." (William S Cleveland, "Visualizing Data", 1993)

"The visual representation of a scale - an axis with ticks - looks like a ladder. Scales are the types of functions we use to map varsets to dimensions. At first glance, it would seem that constructing a scale is simply a matter of selecting a range for our numbers and intervals to mark ticks. There is more involved, however. Scales measure the contents of a frame. They determine how we perceive the size, shape, and location of graphics. Choosing a scale (even a default decimal interval scale) requires us to think about what we are measuring and the meaning of our measurements. Ultimately, that choice determines how we interpret a graphic." (Leland Wilkinson, "The Grammar of Graphics" 2nd Ed., 2005)

"It is tempting to make charts more engaging by introducing fancy graphics or three dimensions so they leap off the page, but doing so obscures the real data and misleads people, intentionally or not." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"One way a chart can lie is through overemphasis of the size and scale of items, particularly when the dimension of depth isnʼt considered." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"Using colour, itʼs possible to increase the density of information even further. A single colour can be used to represent two variables simultaneously. The difficulty, however, is that there is a limited amount of information that can be packed into colour without confusion." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"Bear in mind is that the use of color doesn’t always help. Use it sparingly and with a specific purpose in mind. Remember that the reader’s brain is looking for patterns, and will expect both recurrence itself and the absence of expected recurrence to carry meaning. If you’re using color to differentiate categorical data, then you need to let the reader know what the categories are. If the dimension of data you’re encoding isn’t significant enough to your message to be labeled or explained in some way - or if there is no dimension to the data underlying your use of difference colors - then you should limit your use so as not to confuse the reader." (Noah Iliinsky & Julie Steel, "Designing Data Visualizations", 2011)

"[...] the human brain is not good at calculating surface sizes. It is much better at comparing a single dimension such as length or height. [...] the brain is also a hopelessly lazy machine." (Alberto Cairo, "The Functional Art", 2011)

"Explanatory data visualization is about conveying information to a reader in a way that is based around a specific and focused narrative. It requires a designer-driven, editorial approach to synthesize the requirements of your target audience with the key insights and most important analytical dimensions you are wishing to convey." (Andy Kirk, "Data Visualization: A successful design process", 2012)

"A signal is a useful message that resides in data. Data that isn’t useful is noise. […] When data is expressed visually, noise can exist not only as data that doesn’t inform but also as meaningless non-data elements of the display (e.g. irrelevant attributes, such as a third dimension of depth in bars, color variation that has no significance, and artificial light and shadow effects)." (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"When we use the number of dimensions as the classification criterion of visual displays, we get four distinct groups: charts, networks, and maps, along with figurative visualizations as a special group." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)

"A time series is a sequence of values, usually taken in equally spaced intervals. […] Essentially, anything with a time dimension, measured in regular intervals, can be used for time series analysis." (Andy Kriebel & Eva Murray, "#MakeoverMonday: Improving How We Visualize and Analyze Data, One Chart at a Time", 2018)

"Color is difficult to use effectively. A small number of well-chosen colors can be highly distinguishable, particularly for categorical data, but it can be difficult for users to distinguish between more than a handful of colors in a visualization. Nonetheless, color is an invaluable tool in the visualization toolbox because it is a channel that can carry a great deal of meaning and be overlaid on other dimensions. […] There are a variety of perceptual effects, such as simultaneous contrast and color deficiencies, that make precise numerical judgments about a color scale difficult, if not impossible." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

"Maps also have the disadvantage that they consume the most powerful encoding channels in the visualization toolbox - position and size - on an aspect that is held constant. This leaves less effective encoding channels like color for showing the dimension of interest." (Danyel Fisher & Miriah Meyer, "Making Data Visual", 2018)

📉Graphical Representation: Extrapolation (Just the Quotes)

"In working through graphics one has, however, to be exceedingly cautious in certain particulars, for instance, when a set of figures, dynamical or financial, are available they are, so long as they are tabulated, instinctively taken merely at their face value. When plotted, however, there is a temptation to extrapolation which is well nigh irresistible to the untrained mind. Sometimes the process can be safely employed, but it requires a rather comprehensive knowledge of the facts that lie back of the data to tell when to go ahead and when to stop." (Allan C Haskell, "How to Make and Use Graphic Charts", 1919)

"A piece of self-deception - often dear to the heart of apprentice scientists - is the drawing of a 'smooth curve' (how attractive it sounds!) through a set of points which have about as much trend as the currants in plum duff. Once this is done, the mind, looking for order amidst chaos, follows the Jack-o'-lantern line with scant attention to the protesting shouts of the actual points. Nor, let it be whispered, is it unknown for people who should know better to rub off the offending points and publish the trend line which their foolish imagination has introduced on the flimsiest of evidence. Allied to this sin is that of overconfident extrapolation, i.e. extending the graph by guesswork beyond the range of factual information. Whenever extrapolation is attempted it should be carefully distinguished from the rest of the graph, e.g. by showing the extrapolation as a dotted line in contrast to the full line of the rest of the graph. [...] Extrapolation always calls for justification, sooner or later. Until this justification is forthcoming, it remains a provisional estimate, based on guesswork." (Michael J Moroney, "Facts from Figures", 1951)

"Extrapolations are useful, particularly in the form of soothsaying called forecasting trends. But in looking at the figures or the charts made from them, it is necessary to remember one thing constantly: The trend to now may be a fact, but the future trend represents no more than an educated guess. Implicit in it is 'everything else being equal' and 'present trends continuing'. And somehow everything else refuses to remain equal." (Darell Huff, "How to Lie with Statistics", 1954)

"Almost all efforts at data analysis seek, at some point, to generalize the results and extend the reach of the conclusions beyond a particular set of data. The inferential leap may be from past experiences to future ones, from a sample of a population to the whole population, or from a narrow range of a variable to a wider range. The real difficulty is in deciding when the extrapolation beyond the range of the variables is warranted and when it is merely naive. As usual, it is largely a matter of substantive judgment - or, as it is sometimes more delicately put, a matter of 'a priori nonstatistical considerations'." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"Each part of a graphic generates visual expectations about its other parts and, in the economy of graphical perception, these expectations often determine what the eye sees. Deception results from the incorrect extrapolation of visual expectations generated at one place on the graphic to other places." (Edward R Tufte, "The Visual Display of Quantitative Information", 1983)

"Time-series forecasting is essentially a form of extrapolation in that it involves fitting a model to a set of data and then using that model outside the range of data to which it has been fitted. Extrapolation is rightly regarded with disfavour in other statistical areas, such as regression analysis. However, when forecasting the future of a time series, extrapolation is unavoidable." (Chris Chatfield, "Time-Series Forecasting" 2nd Ed, 2000)

"The first myth is that prediction is always based on time-series extrapolation into the future (also known as forecasting). This is not the case: predictive analytics can be applied to generate any type of unknown data, including past and present. In addition, prediction can be applied to non-temporal (time-based) use cases such as disease progression modeling, human relationship modeling, and sentiment analysis for medication adherence, etc. The second myth is that predictive analytics is a guarantor of what will happen in the future. This also is not the case: predictive analytics, due to the nature of the insights they create, are probabilistic and not deterministic. As a result, predictive analytics will not be able to ensure certainty of outcomes." (Prashant Natarajan et al, "Demystifying Big Data and Machine Learning for Healthcare", 2017)

"If you study one group and assume that your results apply to other groups, this is extrapolation. If you think you are studying one group, but do not manage to obtain a representative sample of that group, this is a different problem. It is a problem so important in statistics that it has a special name: selection bias. Selection bias arises when the individuals that you sample for your study differ systematically from the population of individuals eligible for your study." (Carl T Bergstrom & Jevin D West, "Calling Bullshit: The Art of Skepticism in a Data-Driven World", 2020)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.