17 January 2010

🗄️Data Management: Data Quality Dimensions (Part IV: Accuracy)

Data Management
Data Management Series

Accuracy refers to the extent data is correct, matching the reality with an acceptable level of approximation. Correctness, the value of being correct, same as reality are vague terms, in many cases they are a question of philosophy, perception, having a high degree of interpretability. However, in what concerns data they are typically the result of measurement, therefore a measurement of accuracy relates to the degree the data deviate from physical laws, logics or defined rules, though also this context is a swampy field because, utilizing a well-known syntagm, everything is relative. 

From a scientific point of view, we try to model the reality with mathematical models which offer various level of approximation, the more we learn about our world, the more flaws we discover in the existing models, it’s a continuous quest for finding better models that approximate the reality. Things don’t have to be so complicated, for basic measurements there are many tools out there that offer acceptable results for most of the requirements, on the other side, as requirements change, better approximations might be required with time.

Another concept related with the ones of accuracy and measurement systems is the one of precision, and it refers to degree repeated measurements under unchanged conditions lead to the same results, further concepts associated with it being the ones of repeatability and reproducibility. Even if the accuracy and precision concepts are often confounded a measurement system can be accurate but not precise or precise but not accurate (see the target analogy), a valid measurement system targeting thus both aspects. Accuracy and precision can be considered dimensions of correctedness.

Coming back to accuracy and its use in determining data quality, typically accuracy it’s strong related to the measurement tools used, for this being needed to do again the measurements for all or a sample of the dataset and identify whether the requested level of accuracy is met, approach that could involve quite an effort. The accuracy depends also on whether the systems used to store the data are designed to store the data at the requested level of accuracy, fact reflected by the characteristics of data types used (e.g. precision, length).

Given the fact that a system stores related data (e.g. weight, height, width, length) that could satisfy physical, business of common-sense rules could be used rules to check whether the data satisfy them with the desired level of approximation. For example, being known the height, width, length and the composition of a material (e.g. metal bar) could be determined the approximated weight and compared with entered weight, if the difference is not inside of a certain interval then most probably one of the values were incorrect entered. There are even simpler rules that might apply, for example the physical dimensions must be positive real values, or in a generalized formulation - involve maximal or minimal limits that lead to identification of outliers, etc. In fact, most of the time determining data accuracy resumes only at defining possible value intervals, though there will be also cases in which for this purpose are built complex models and specific techniques.

There is another important aspect related to accuracy, time dependency of data – whether the data changes or not with time. Data currency or actuality refers to the extent data are actual. Given the above definition for accuracy, currency could be considered as a special type of accuracy because when the data are not actual then they don’t reflect reality. If currency is considered as a standalone data quality dimension, then accuracy refers only to the data that are not time dependent.


Written: Jan-2010, Last Reviewed: Mar-2024

🧭Business Intelligence: Enterprise Reporting (Part II: Levels of Detail)

Business Intelligence

Working with data mainly from frontend (User Interface), in general Users have limited knowledge on how the data are physically stored in the various systems existing in an organization. When a new report is needed they point out the attributes they know from the screens they are working with, falling in developers’ duties to figure out whether the “soup of attributes” makes really sense and find a workable solution. Once the developer has identified the attributes and the tables they are stored in, he/she can go on and create the query/queries on which the report will be based upon. For this task is important to know how the various tables relate to each other, in other words knowing the attributes which can be used to link the tables or which is the relational path to link the table, and relations’ cardinality, which reflects how the number of records of a table or data set changes when is joined with another table or data set.

Between two tables and extensively two data sets the relations could have any of the four types of cardinality – many-to-many (represented as m:n), one-to-one (1:1), one-to-many (1:n) and the reverse many-to-one (n:1). It could be given a definition for each of the cardinality types, though it’s easier to remember that in the x-to-y compounds, between two tables or data sets A and B, x has the value ‘one’ when the number of references from table B to any record from A is maximum 1 (there could be records not referenced at all), and ‘many’ when at least a record could be referenced more than once; the same logic applies for y but inversing the tables’ perspective.

The level of detail (LOD) of a report (aka data granularity) is directly correlated with the changes in cardinality - by adding a data set to an existing data set, if the cardinality of one-to-many and many-to-many is implied then the level of detail changes too. In other words if a record in a given data set is referenced more than once in the new added table then the LOD changes. A simple example of change of LOD occurs in parent-child/master-details relations. For example if the Invoice Lines are added to a data set based on Invoice Header then the LOD changes from Invoice Headers to Invoice Lines. If the Payments are added to the resulted data set then the LOD changes from Invoice Lines to Payments only if there are multiple Payments for an Invoice (one-to-many or many-to-many cardinalities), otherwise LOD remains the same.

Summarizing, the level of detail of a report is the lowest level at which a cardinality change occurs at entity level. It can be discussed about lower or higher LOD in relation to a given level of detail, for example Invoice Payments have a lower LOD than Invoice Lines, while Invoice Header a higher LOD.

Why is it necessary to introduce the LOD especially when considering a relatively complex notion as cardinality?! It worth defining it mainly because the term is used when defining/mitigating reporting requirements, its use being intuitive rather than well-defined and understood. When creating reports it’s important to find the adequate LOD for a report and know what methods can be used in order to pull data that would normally change reports’ LOD without actually changing reports’ LOD.

The limitations imposed by the need to report at a certain LOD higher than the one implied by the row data can be overcome with the help of aggregate functions used with GROUP BY constructs. Such constructs make it possible to bring into a report data found at lower LOD than the reporting LOD by grouping the data based on a set of attributes. The aggregate functions provide functionality to calculate for a set of values the maximum, minimum, sum, count of records, standard deviation, and other statistical values, all of them working on numeric data types, while maximum/minimum and count of records work also with dates or alphanumeric data types.

For example using aggregate functions the Invoice amounts can be aggregated and shown at Invoice Header level, however, in contrast, it’s not possible to do the same with quantities, because typically each Invoice Line refers to a specific Product, and as apples can’t be counted with peaches, this means that in order to see the quantities, the level of detail has to be changed from Invoice Header to Invoice Line. The same technique could be applied to similar parent-child (master-details) relations covering one-to-many or one-to-one cardinality, and also many-to-many relations that involve higher reporting complexity.

Direct many-to-many relations are seldom, involving mainly data sets, the attributes used in relation appearing more than once in each dataset (at least once). Taking an example from ERP world, there could be multiple Receipts and Invoices for the same Purchase Order, thus if there is no direct match between Receipts and Invoices to identify uniquely which Invoice belong to each Receipt, a report involving all the three entities could be barely usable, records being duplicated (e.g. 2 Invoices vs. 3 Receipts result in 6 records in a such scenario). For such reports to be usable the LOD needs to be change at a higher level at least on one side, thus reconsidering the mentioned example a report could show the Purchase Order details and aggregating the Invoice & Receipt Quantities/Amounts at Purchase Order level, or show detailed Invoices with aggregated Receipt information, respectively detailed Receipts with aggregated Invoice information.

Unfortunately even if the aggregate functions are quite handy they have their own limitations, being difficult to use them in order to answer to questions like “what was the last product sold for each customer”, “which was latest invoice placed for each customer”, at least not without considerable effort from developer’s side. Fortunately database vendors implemented their own more specialized type of aggregate functions - analytic functions in Oracle and window functions in SQL Server, they allowing modeling such questions with a report. The downside for developers is that each database vendor comes with its own philosophy, so techniques and features working in one database might not work in another.

15 January 2010

🕋Data Warehousing: Dimension Hierarchy (Definitions)

"An arrangement of members of a dimension into levels based on parent-child relationships, such as Year, Quarter, Month, and Day or Country, Region, State or Province, and City. Members in a hierarchy are arranged from more general to more specific." (Microsoft Corporation, "SQL Server 7.0 System Administration Training Kit", 1999)

"A navigation path that allows the user to move from summarized to detailed information with each level of the hierarchy represented by a different attribute." (Reed Jacobsen & Stacia Misner, "Microsoft SQL Server 2005 Analysis Services Step by Step", 2006)

"A series of master-detail relationships within a dimension. Many front-end tools require hierarchy definitions in order to support drilling features. Some aggregate navigation and construction tools, such as Oracle's materialized views, require explicit declaration of a hierarchy if a dimension is to be partially summarized by an aggregate fact table." (Christopher Adamson, "Mastering Data Warehouse Aggregates", 2006)

"A logical tree structure that organizes the members of a dimension such that each member has one parent member and zero or more child members." (Microsoft, "SQL Server 2012 Glossary", 2012)

14 January 2010

🗄️Data Management: Data Cleansing (Part I: An Introduction)

Data Management
Data Management Series

Even if often Data Cleansing or Data Scrubbing is considered synonymous to Data Cleaning, it actually includes the Data Validation and Data Cleaning process, where Data Validation is the process of checking data quality against a set of rules (referred as data quality rules) in a given set of data, and Data Cleaning or Data Correction is the process of correcting the data quality issues identified in Data Validation. Data Cleansing consists in general of the following steps:

Step 1: Defining the scope

The scope definition resumes at the identification of elements, attributes and the records that need to be cleaned. If is intended only to improve overall data quality and nothing else, the focus will be mainly on the data elements and attributes perceived as having low data quality. For data conversion the elements in scope are defined based on the requirements of the destination system and overall business requirements are defined the attributes in scope, an exercise that needs to be performed is the data mapping between the destination on one side and the legacy system(s) and the other data sources (e.g. Excel, MS Access files) on the other side.

From case to case in scope for cleansing might be all the records available in the legacy system(s) for a given set of data elements and attributes, or only a fraction of them, usually the focus is mainly the active and open records, and eventually some historical records. By active records are referred those records not cancelled or disabled, either master and transactional data , by open records the (transactional) records not marked as closed, records on which an action is still pending (e.g. pending Invoice Receipt, Payment, etc.), while by historical records are referred the already closed transactional data (e.g. Purchase Orders, Sales Orders, etc.).

Given the importance of master data for the business they are often the starting point for cleaning, they being also the data elements with the longest issue resolution, the transactional data being in theory easier to clean. The two types of data need to be synchronized the referent data related to the transactional data in scope needs to be loaded too.

Step 2: Defining the data quality rules and error types.

The data quality rules are defined for the attributes in scope and the data quality dimensions considered that apply, typically data accuracy, completeness, conformity, consistency, duplication and referential integrity. The issues are eventually further categorized and prioritized.

Step 3: Validating the data quality rules

The data quality rules are validated against the actual data sets, the output of the rules are consolidated in reports that follow to be interpreted. The number of errors are reported and stored for historical trending in case several iterations are needed for data cleaning.

Step 4: Identifying the data quality issues.

The reports are reviewed by the data owners, the issues being identified and the rules validated, further steps being performed in order to identify the root causes for the discovered issues. This usually leads to the calibration of data quality rules as new scenarios (e.g. exceptions, new error types) can be discovered.

Step 5: Correcting the data quality issues.

The issues are mitigated and corrected, issues’ resolution time, the time needed to correct the issues, is directly dependent on the volume of issues, their complexity, the number of resources allocated to the task, on whether the issues are corrected in the source or on a copy of the data, on whether the cleansing is done manually or specific software tools are used. Specific Data Cleaning software tools can help decreasing considerably the volume of manual work involved during the process, being preferred to use automatic and semiautomatic data cleansing methods whenever is possible.

Step 6: Validating the changes against the same data quality rules.

Once the issues are corrected the data sets are validated against the same rules used at Step 3, the Steps 3 to 5 being repeated until the expected data quality level is achieved. As already highlighted in a previous post, Data Cleansing is not a one-time endeavor, but an iterative process, new iterations being requested by changes occurred in rules or in scope, by the sequencing/scheduling of cleansing work or by reporting frequency (centered or not along the important milestones).

Step 7: Documenting/Reporting error results and validation outcomes, if needed.

Starting with data elements, attributes, and the logic used to select the records in scope for cleaning, and ending with the data quality reports with the issues and the improvement trends it makes sense to document everything and summarize it in a set of best practices and lesson learned sessions.

Step 8: Modify processes/procedures to reduce issues occurrence.

There are chances to discover that the errors found during validation could be avoided by modifying the existing processes, procedures or standards, or enforcing new validation rules in the legacy systems. When the changes are complex might be started even individual projects to address them.

13 January 2010

🧭Business Intelligence: Enterprise Reporting (Report Types)

Have you ever wondered how many types of reports are there? In Information Systems (IS) nomenclature I found the following different types of reports considered:

 Standard reports – reports that are coming with a software application/package, as opposed of custom reports, reports created on customers’ request.

Ad-hoc reports – reports built usually to satisfy one-time requests, though they can easily evolve to a standard report.

Graphic reports- reports providing graphical visualization of data with the help of charts

Transactional reports (OLAP reports) – reports built in transactional systems, containing up-to-date data.

Analytic reports (OLAP reports) – reports built in an OLAP environment, containing data desynchronized from the OLTP environment, the data being refreshed on a periodic basis.

Predictive reports – reports relying on powerful DM models and predictive technique.

Parameterized reports – reports whose output is based on a set of predefined parameters.

Linked reports – reports that provide an access point to other reports.

Snapshot reports – reports that contain data retrieved at a specific point of time.

Cached reports – reports saved in order to improve the performance by reducing the number of requests to the database/report engine.

Click-through reports – reports whose display is based on interactive data selection

Drilldown reports – a set of reports on the same topic showing data at different levels of details, the navigation being made from higher to lower level of details.

Drill-through reports – reports accessible through a hyperlink from the original report.

Sub-reports – a report contained in the body of another report, allowing for example the display of parent/child or header/lines relations.

Metric-based reports – reports supposed to encompass the various types of business metrics; they can be further categorized in:
Health Metrics – reports designed to show the health of a system in terms of its usage and the adherence to the processes defined.
Growth Metrics - reports designed to show the growth of a system in terms of data, transaction or amount volume.
KPI (Key Process Indicator) reports – reports designed to measure an organization progress towards set organizational goals.
LPI (Lean Process Indicator) reports – reports designed to reflect business’ progress toward Lean Management organizational goals.

Dashboards – reports offering an eye-bird view of several key performance indicators.

Another characterization of reports can be based on the functional department for which the report is created, thus we can speak of financial reports, operational reports, sourcing reports, (global) supply chain reports, marketing reports, maintenance reports, etc.

Note:
The term of financial report might refer in special to financial statements.

🗄️Data Management: Data Quality Dimensions (Part III: Completeness)

Data Management
Data Management Series

Completeness refers to the extent to which there are missing data in a dataset, fact reflected in the number of the missing values, also referred as empty (when an empty string or default values is used) or 'Nulls' (aka unknown values), and/or in the number of missing records.

The missing values are typically considered in report to mandatory attributes, attributes that need a not-Null value for each record, though after case might be applied to non-mandatory attributes (optional attributes) too, for example when is intended to understand whether the attributes are adequately maintained or not. It’s interesting that [1] considers also the inapplicable attributes referring to the attributes not applicable (relevant) for certain scenarios (e.g. physical dimensions for service-based materials), which together with the applicable attributes (relevant) can be considered as another type of categorization for attributes. Whether an attribute is mandatory is decided upon business context and not necessarily upon the physical structure containing the attribute, in other words an attribute could be optional as per database schema and mandatory per business rules.

'Missing records' can be a misleading term because is used in several contexts, however within data completeness context it refers only to the cases not covered by data integrity. For example in parent-child table relations the header data was entered though the detail data is missing, either not entered or deleted; such a case is not covered by referential integrity because there is no missing reference, but just the parent without child data (1:n cardinality). 

A mixed example occurs when the same entity is split across several tables at the same level of detail. One of the tables must function as a parent, falling in the previous mentioned example (1:1 cardinality). In such a scenario it depends how one reports the nonconformances per record: (1) the error is counted only once, independently on how many dimensions an error was raised; (2) the error is counted for each dimension. For (2) when the referential integrity failed, an error is raised also for each mandatory attribute. 

Both examples are dealing with explicit data referents – the 'parent' data, though there are cases in which the referents are implicit, for example when the data are not available for a certain time interval (e.g. period, day) even if needed, though also for this case the referents could be made explicit, falling in the previous mentioned examples. In such scenarios all the attributes corresponding to the missing records will be null.

Normally the completeness of parent-child relations is enforced with the help of referential integrity and database transactions, a set of actions performed as a single unit of work, they allow saving the parent data only if the child data were saved successfully, though such type of constraints is not always necessary.

Data should be cleaned when feasible in the source system(s) and this applies to incomplete data as well. It might be feasible to clean the values in Excel files or similar tools, by exporting and then reimporting the clean values back into the respective systems.

In data migrations or similar scenarios, the completeness in particular and data quality in general must be judged against the target system(s) and thus the dataset must be enriched in an intermediate layer as needed. Upon case, one can consider using default values, though this sounds like a technical debt, likely improbably to be addressed later. Moreover, one should prioritize the effort and consider first the attributes which are needed for the good functioning of the target system(s).

Ideally, for the mandatory fields should be applied data validation techniques in the source systems, when feasible. 


Written: Jan-2010, Last Reviewed: Mar-2024 

References:
[1] David Loshin (2009) "Master Data Management"

🗄️Data Management: Data Quality Dimensions (Part II: Conformity)

Data Management
Data Management Series

Conformity or format compliance, as named by [1], refers to the extent data are in the expected format, each attribute being associated with a set of metadata like type (e.g. text, numeric, alphanumeric, positive), length, precision, scale, or any other formatting patterns (e.g. phone number, decimal and digit grouping symbols).

Because distinct decimal, digit grouping, negative sign and currency symbols can be used to represent numeric values, same as different date formats could be used alternatively (e.g. dd-mm-yyyy vs. mm-dd-yyyy), the numeric and date data types are highly sensitive to local computer and general applications settings because the same attribute could be stored, processed and represented in different formats. Therefore, it’s preferable to minimize the variations in formatting by applying the same format to all attributes having the same data type and, whenever is possible, the format should not be confusing. 

For example all the dates in a data set or in a set of data sets being object of the same global context (e.g. data migration, reporting) should have the same format, being preferred a format of type dd-mon-yyyy which, ignoring the different values the month could have for different language settings, it lets no space for interpretations (e.g. 01-10-2009 vs. 10-01-2009). There are also situations in which the constraints imposed by the various applications used restraints the flexibility of working adequately with the local computer formats.

If for decimal and dates there are a limited number of possibilities that can be dealt with, for alphanumeric values things change drastically because excepting the format masks that could be used during data entry, the adherence to a format depends entirely on the Users and whether they applied the formatting standards defined. In the absence of standards, Users might come with their own encoding, and even then, they might change it over time. 

The use of different encodings could be also required by the standards within a specific country, organization, or other type of such entity. All these together makes from alphanumeric attributes the most often candidate for data cleaning, and the business rules used can be quite complex, needing to handle each specific case. For example, the VAT code could have different length from country to country, and more than one encoding could be used reflecting the changes in formatting policy.

In what concerns the format, the alphanumeric attributes offer greater flexibility than the decimal and date attributes, and their formatting could be in theory ignored unless they are further parsed by other applications. However, considering that such needs change over time, it’s advisable to standardize the various formats used within an organization and use 'standard' delimiters for formatting the various chunks of data with a particular meaning within an alphanumeric attribute, fact that could reduce considerably the volume of overwork needed in order to cleanse the data for further processing. An encoding could be done without the use of delimiters, e.g. when the length of each chunk of data is the same, though chunk length-based formatting could prove to be limited when the length of a chunk changes.

Note:
Delimiters should be chosen from the characters that will never be used in the actual chunks of data or in the various applications dealing with the respective data. For example pipe (“|”) or semicolon (“;”) could be good candidates for such a delimiter though they are often used as delimiters when exporting the data to text files, therefore it’s better to use a dash (“-”) or even a combinations of characters (e.g. “.-.”) when a dash is not enough, while in some cases even a space or a dot could be used as delimiter.


Written: Jan-2010, Last Reviewed: Mar-2024 

References:
[1] David Loshin (2009) "Master Data Management", Morgan Kaufmann OMG Press. ISBN 978-0-12-374225-4.

🗄️Data Management: Data Quality Dimensions (Part I: Uniqueness)

Data Management
Data Management Series

Uniqueness refers to "requirements that entities modeled within the master environment are captured, represented, and referenced uniquely within the relevant application architectures" [1]. An alternative name is the one of duplicates, which stresses the existence of duplicate records within a dataset, the not-uniqueness, being a better indicator for the nonconformance especially when considering datasets.

Why is required to enforce the uniqueness of entities? An entity is defined using a number of attributes representing entity’s characteristics, in case the attributes of two entities have the same values, then more likely the two representations refer to the same entity. This could happen in most of the cases, though there are situations in which the attribute(s) that make(s) it possible to differentiate between two distinct entities is/are not adequately maintained or not considered at all. The impossibility of identifying uniquely an entity increases the chances of using one of the respective entities wrongly, for example booking the Invoice against the wrong Vendor and all the implications derived from it. 

For each type of entity there can be one or more attributes that allow identifying it uniquely, for example in case of a Vendor could be Vendor’s name and address. The more such attributes then more difficult becomes the identification of a Vendor; therefore even if such a set of attributes exists, like in Vendor’s case, it’s preferable to use instead a unique identifier, a numeric or alphanumeric key that identifies uniquely an entity

A Vendor could be uniquely identified by the Vendor ID, though it allows unique identification of a Vendor only in a data repository, the chances being quite high to have another Vendor ID for the same entity in another data repository. Therefore, in order to guarantee the uniqueness of entities is prefer to use instead an attribute that has the same value indifferently from the data repository the entity is stored in (e.g. Vendor Number, Item Number, Customer Number, Asset Number, Sales Order Number, etc.). Such attributes could be enforced to be unique across a set of data repositories, though one of them must function as 'master'.

Multiple identifiers for the same entity may exist, though this can easily create confusion, especially when this happens within the same system and people or machines are not aware that the respective identifiers refer to the same entity, and the more identifiers we have for the same entity the higher the chances of creating confusion. Imagine that in the same system you book some of the Invoices against one of the identifiers, and the remaining Invoices against another identifier of the same entity.

Especially in reports this might be quite a problem as amounts that should appear for the same entity are split against two references, and even if they refer to the same entity report’s users might be not aware of it, the calculations based on such numbers not reflecting the reality. Imagine that you have booked the invoices against two references to the same Vendor, and you want to consider the first 10 Vendors with the highest volume spent; it might happen that the aggregate amounts for each of the respective references didn’t make it in the top 10, though when considered together they can even make it to the first position.

There are even situations in which the use of multiple identifiers for the same entity is inevitable, and important are here the cases in which more than one different system refer to the same entity in their unique way, often being not designed to use a global unique identifier for an entity. Under such circumstances what an organization could do is to either extend the system(s) to store the global identifier or have a mapping in place with the referents used to indicate the same entity. 

The more systems within an enterprise that use/represent the same entity, the more complex is to manage the correct referencing; the logical thing to do is to have in place a master system that stores the global identifier and integrate it with the other systems in place or at least store the global identifier in each of the systems. Such identifiers used for master or even transactional data allow creating consolidated reports based on several systems and mitigating possible issues existing in the data.

Even if such keys are designed to enforce uniqueness this doesn’t mean it necessarily happens; the reason is simple - behind the assignment of a key to an entity there is a process defined, and no matter how robust a process was created if it doesn’t cover all the scenarios that might occur or if it can’t deal (adequately) with various constraints, then in one point in time a flow might lead to a duplicate, a not unique record. Take for example a Product Number's creation - supposing that a Product Number XYZ is created in an ERP system and one or more of the respective Product’s attributes are incorrect. In many cases such errors can be corrected, though each system comes with its own constraints not allowing changing certain attributes (e.g. the Unit of Measure once Inventory was booked). Because an entity with the wrong attributes is inadequate to be used, a new Product Number is created for the same entity, the two identifiers coexisting for some time. (Some systems allow to build a relationship between the Products, showing that one Product replaces another going forward.)

Some systems could allow the deletion of the first entered Product though that’s not always possible. Even if the two Products Numbers are different, they point to the same Product entity, and even if the first entered Product is marked as obsolete, until this happens transactions might be already made with it, and again, it might be possible to revert the transactions back, though that’s not always possible, and that’s not all, once a Product is marked as obsolete, this doesn’t necessarily imply that a User won’t reactivate the Product in the near or far future. As can be seen, the scenarios are quite complex, not all the systems and processes being designed to handle them. If such deviations from uniqueness can’t be corrected in the legacy systems, at least during conversion and migration should be corrected.


Written: Jan-2010, Last Reviewed: Mar-2024

References:
[1] David Loshin (2009) "Master Data Management"

🗄️Data Management: Data Quality (Part II: An Introduction)

Data Management

Introduction

From time to time, I found myself in a meeting with people blaming the poor quality of data for the strange numbers appearing in a report, and often they were right. Sometimes you can see that without going too deep into details, other times you have to spend some considerable amount of time and effort and look over the raw data to identify the records that cause the unexpected variations. We know we have a problem with data quality, though why nobody is doing anything to improve it? Who’s responsible in the end for data quality? How data quality issues appear, how the data quality can be improved and by what means? When and where the data quality must be considered? Why do we have to consider data quality and in definitive what is data quality? Which are data quality’s characteristics or dimensions?

Without pretending to be an expert on data quality but using my and others’ experience and understanding in dealing with data quality, I will try to approach the above questions in several posts. And as usual, before answering more complex questions, inevitably we have to define first what data quality is.

What is Data Quality?

In several consulted sources, mainly books and blogs, data quality’s definition revolve around the 'fitness for use' syntagma (e.g. [1], [3], [4]). The definition makes data quality highly dependent on the context in which it’s considered because each request comes with different data quality expectations/requirements and data quality levels. Even more, the data could have acceptable quality in the legacy system(s), the system(s) used to store the data, though the data might not be appropriate for use in the current form. From this observation can be delimited two aspects of data quality – intrinsic data quality considering the creation and storage of data, and secondly contextual data quality referring to the degree the data meets users’ needs

Except these two aspects [2] considers two other aspects: the representation data quality referring to the "degree of care taken in the presentation and organization of information for users" and the accessibility data quality - "degree of freedom that users have to use data, define or refine the manner in which information is input, processed or presented to them" [2]. These four aspects provide a good framework for categorizing data quality and as can be seen, it targets the four coordinates of data – storage/creation, presentation, use and accessibility – however it ignores the fact data could be consumed also by machines, they needing to parse, understand and process the data. Therefore, could be added a fifth aspect – processing data quality, referring to the data readiness for consumption by machines, this aspect including the existence of metadata (e.g. data models, data mappings, etc.).


Why Data Quality?

Considering the growing dynamics and complexity of economic landscape, nowadays organization’s capacity of staying in business is highly dependent on decision making process’ accuracy, which at its turn is dependent on the reports’ quality used as support in decisions, and further on quality of data the reports are based on. If you have wrong data, you can’t expect the reports to show the correct numbers, same as you can’t expect a decision to be correct without having the actual situation correctly reflected even if occasionally the person taking the decision has a sound understanding of the business above the data level, or a good gut feeling. It is essential for an organization to have adequate data and reports that reflect the current state of art at any time and at the requested level of detail.

In this context is discussed about poor data quality, good data quality, high data quality, or even adequate/inadequate data quality. Paraphrasing data quality’s definition could be said that data are of high quality if they are 'fit for use' [1], and have poor data quality otherwise, though in life things are not black or white, but exist many other nuances in between, dependent on user’s perception and needs. For example, could be sufficient in one million records to have only one value that makes it impossible for a data set to be processed by a software package, and even if the data quality equates with a Six Sigma level, it’s not enough for this case. At the opposite side, a data set with a huge number of defects could be processed without problems and the outcome could be close to what it’s expected, now depends also on the nature of defects, which are the attributes affected and how they affect the result.

Poor data quality reduces considerably the value of data, impeding organizations to exploit the data at their full potential, a fact that limits their strategic competitive advantage. Poor data quality has a domino effect, often involving rework, delays in production, operations and decision making, a decrease in customers’ satisfaction reflected in revenues and lost opportunities, and so on. Unfortunately, the costs of poor data quality are difficult to quantify, they include the cost for finding and fixing the errors, the cost of wasted effort, lost production, and lost opportunity, plus the ones involved with wrong decision making. The same issue affects the costs involved in achieving high data quality levels, the easiest to quantify being the costs directly involved with the data quality initiatives. It's not in scope to detail these aspects, though is worth mentioning them to highlight why many organizations ignore the quality of their data.

How do Data Quality issues appear?

No system is bullet proof, no matter how good it was designed there will always be a chance for errors to appear, even if it’s the software itself, the people, the processes, standards, or procedures. A primary reason for data issues is caused by the weak validation implemented in the systems, either in the UI or in any other data entry points, by the errors that escaped the vigilant eyes of testers, by the (lack of) flexibility/robustness of applications, data models in general and data types in particular. On a secondary plane but not less important is the existence and adherence to processes, standards, or procedures, of whether they are known and respected by users, or whether they cover all the scenarios occurring in the daily business activity.

Who’s responsible for Data Quality?

As everybody in an organization is responsible for quality, the same applies also for data quality, from data entry to decision making everybody’s working with data directly or indirectly, and they are also theoretically responsible for it. From data life-cycle perspective there are the people who are entering the data in the various systems, the ones who are preparing the data for further usage, the ones using the data, and the ones managing the data quality initiatives (e.g. quality leaders, black belts, champions). The first category needs to take the ownership over the data, maintain them adequately, stick to the processes, standards and procedures defined, and together with the other users are responsible for identifying the issues in data, mitigate them and find solutions.

The data users are maybe the broadest category, ranging from simple employees using the data for daily activities to executives. Because often the data they are working with are aggregated at various levels, unless they have a good overview of the business or flexible reports that gives them access also to the row data it will be almost impossible for them to realize the actual data quality. Often the people preparing the data are the ones discovering the issues in data, though this happens by hazard, observing abnormalities in the data.

The people managing the data quality initiatives are hardly working with the data, though together with the other type of executives they are responsible for modeling an organization and creating a (data) quality culture.

How can be the Data Quality improved and by what means?

It takes time, resources, consolidated effort, adequate policies, and management’s involvement to reach an acceptable level of data quality. As already stressed data quality can be improved by creating robust processes, standards, or procedures, and sticking to them, creating a culture for quality in general and for data quality in particular, but rather they are the outcome of data quality initiatives.

The first step is recognizing that data quality in the organization as a problem and secondly identifying the nature of the issues eventually by conducting a data quality assessment, though this involve the definition of data quality (business) rules, rules against the quality of data will be checked, establishing an assessment, cleaning, and reporting framework for this purpose. Because improvement is the word of the day, could be conducted Six Sigma projects to identify issues’ root causes and the solutions to address them, monitor issues resolution and whether the found solutions fulfill the intended goals. The use of (Lean) Six Sigma methodology allows introducing quality concepts in the organization, making people aware of the premises and implications of data quality, and in addition it offers a receipt for success.

Depending on the volume of data and the number of issues found, data quality improvement might occur within several iterations, and when the volume of issues is more than organization can handle, then it makes sense to prioritize and fix the issues that impact the organization the most, following to address the remaining issues in time. There will also be situations in which is needed to redesign the existing processes, modify the legacy systems to limit the data entry issues or even start new projects in order fill the gaps.

When must be Data Quality considered?

Data quality comes in discussion especially when the data related issues impacts visibly the business, whether something is done to correct them or not that’s something dependent on whether an organization has in place a data quality vision, policy and adequate mechanisms for assessing and addressing the data quality on a regular basis, or whether the people or departments impacted by the issues take the problem in their hands and do something about it.

Another context in which data quality topic appears is during migration, conversion, and integration between systems, when the system(s) into which the data are supposed to be loaded, the destination system(s), come(s) with a set of rules/constraints requesting the data to be in a certain format/formatting, match specific data types and other data storage related constraints. Even if the data from the legacy system(s) are considered of high quality, in the mentioned activities the data quality is considered against the constraints imposed by the destination system.

What needs to be stressed is that data quality is not one time endeavor but a continuous and consolidated effort that could span along the life cycle of the systems storing the data. How often data quality assessments must be conducted? It depends on data growth and perceived quality, organizations’ data quality policy/vision and the degree they are respected, organization overall maturity and culture, availability of resources and the different usage of data.

Where is Data Quality considered?

Data quality is generally considered against the legacy systems the data following to be cleaned in them, though when data quality is judged against external requests, the data could be cleaned in Excel files or in any other environments designed for this kind of tasks, each scenario having its pluses and minuses, sometimes being preferred a hybrid solution between the two alternatives. Most of the time it makes sense to clean the data in the legacy system because in general it minimizes the overall effort, the data are “actual” and reflected in the other systems using the data. 

Excel or any other similar tools could prove to be better environments for cleaning the data for one time requests, when is needed to do fast mass updates or is not intended/possible to modify the legacy data, however the probability of making mistakes is quite high because the validation implemented in the legacy systems are not available anymore or must be enforced, multiple copies of the same data could exist in case the data needs to be clean by multiple users, while the synchronization between legacy data and cleaned data could be problematic.

There are situations in which the data are not available in any of the systems available in place and there is no adequate possibility to store the new data in them, thus being requested eventually to extend one or more systems (aka data enrichment), solution that could be quite expensive, an alternative being to store the data in ad-hoc solutions (e.g. Excel, MS Access), following to merge the existing data islands (aka data integration) before loading them into the destination system(s). When dealing with a relatively small number of records the data could be entered manually in the destination system itself, though there are all kind of constraints that need to be considered, therefore it is safer and more appropriate to load the data as contiguous sets.


Written: Dec-2009, Last Reviewed: Mar-2024

References:
[1] Joseph M Juran & A Blanton Godfrey (1999) Juran’s Quality Handbook, 5th Ed.
[2] Coral Calero (2008). Handbook of Research on Web Information Systems Quality
[3] US Census Bureau (2006) Definition of Data Quality: Census Bureau Principle, version 1.3. [Online] Available from: http://www.census.gov/quality/P01-0_v1.3_Definition_of_Quality.pdf (Accessed: 24 December 2009).
[4] OCDQ (Obsessive-Compulsive Data Quality) Blog (2009) The Data-Information Continuum. [Online] Available from: http://www.ocdqblog.com/home/the-data-information-continuum.html (Accessed: 24 December 2009)

🕋Data Warehousing: Dimension Table (Definitions)

"A table in a data warehouse whose entries describe data in a fact table. Dimension tables present business entities." (Microsoft Corporation, "SQL Server 7.0 System Administration Training Kit", 1999)

"A table in a data warehouse whose entries describe data in a fact table. Dimension tables present business entities. A database object stored in a data warehouse containing information used to reference the data stored in a fact table." (Microsoft Corporation, "Microsoft SQL Server 7.0 Data Warehouse Training Kit", 2000)

"The relational database table that contains information about each member of a dimension, such as its name, as well as other specific characteristics of each member." (Reed Jacobsen & Stacia Misner, "Microsoft SQL Server 2005 Analysis Services Step by Step", 2006)

"A table in a star schema design that contains dimensional attributes and a surrogate key." (Christopher Adamson, "Mastering Data Warehouse Aggregates", 2006)

"A table that contains the data from which dimensions are created." (Jim Joseph, "Microsoft SQL Server 2008 Reporting Services Unleashed", 2009)

"In the dimensional data model, each dimension table contains the attributes of a single business dimension. Product, store, salesperson, and promotional campaign are examples of business dimensions along which business measurements or facts are analyzed." (Paulraj Ponniah, "Data Warehousing Fundamentals for IT Professionals", 2010)

"A table in a data warehouse whose entries describe data in a fact table." (SQL Server 2012 Glossary, "Microsoft", 2012)

"The representation of a dimension in a star schema. Each row in a dimension table represents all of the attributes for a particular member of the dimension. See also star join, star schema." (Sybase, "Open Server Server-Library/C Reference Manual", 2019)

"The smaller tables used in a data warehouse to denote the attributes of a particular dimension, such as time, location, customer characteristics, product characteristics, etc." (Toby J Teorey, ", Database Modeling and Design 4th Ed", 2010)

10 January 2010

🕋Data Warehousing: Dimension Table (Definitions)

 "A table in a data warehouse whose entries describe data in a fact table. Dimension tables present business entities." (Microsoft Corporation, "SQL Server 7.0 System Administration Training Kit", 1999)

"A table in a data warehouse whose entries describe data in a fact table. Dimension tables present business entities. A database object stored in a data warehouse containing information used to reference the data stored in a fact table." (Microsoft Corporation, "Microsoft SQL Server 7.0 Data Warehouse Training Kit", 2000)

"A table in a star schema design that contains dimensional attributes and a surrogate key." (Christopher Adamson, "Mastering Data Warehouse Aggregates", 2006)

"The relational database table that contains information about each member of a dimension, such as its name, as well as other specific characteristics of each member." (Reed Jacobsen & Stacia Misner, "Microsoft SQL Server 2005 Analysis Services Step by Step", 2006)

"A table that contains the data from which dimensions are created." (Jim Joseph et al, "Microsoft® SQL Server™ 2008 Reporting Services Unleashed", 2009)

"In the dimensional data model, each dimension table contains the attributes of a single business dimension. Product, store, salesperson, and promotional campaign are examples of business dimensions along which business measurements or facts are analyzed." (Paulraj Ponniah, "Data Warehousing Fundamentals for IT Professionals", 2010)

"The smaller tables used in a data warehouse to denote the attributes of a particular dimension, such as time, location, customer characteristics, product characteristics, etc." (Toby J Teorey, ", Database Modeling and Design" 4th Ed, 2010)

"A table in a data warehouse whose entries describe data in a fact table." (SQL Server 2012 Glossary, "Microsoft", 2012)

"The representation of a dimension in a star schema. Each row in a dimension table represents all of the attributes for a particular member of the dimension. See also star join, star schema." (Sybase, "Open Server Server-Library/C Reference Manual", 2019)

🕋Data Warehousing: Dimension (Definitions)

"A structural attribute of a cube, which is an organized hierarchy of categories (levels) that describe data in the fact table. These categories typically describe a similar set of members upon which the user wants to base an analysis. For example, a geography dimension might include levels for Country, Region, State or Province, and City. See also level; measure." (Microsoft Corporation, "SQL Server 7.0 System Administration Training Kit", 1999)

"A list of labels that can be used to cross-tabulate values from other dimensions." (Reed Jacobsen & Stacia Misner, "Microsoft SQL Server 2005 Analysis Services Step by Step", 2006)

"A shorthand term that is used to refer to a dimension table or a dimension attribute." (Christopher Adamson, "Mastering Data Warehouse Aggregates", 2006)

"A group of related objects within a cube that's used to provide information about related data. For example, a product dimension could include a product name, a product category, a product size, product cost, and product price." (Robert D. Schneider and Darril Gibson, "Microsoft SQL Server 2008 All-In-One Desk Reference For Dummies", 2008)

"A structural attribute of a cube upon which the user wants to base an analysis (for example, geography dimension). Dimension describes data in a fact table." (Jim Joseph, "Microsoft SQL Server 2008 Reporting Services Unleashed", 2009)

"Major business categories of information or groupings to describe business data. Dimensions contain information used for constraining queries, report headings, and defining drill paths. Within a dimension, specific attributes are the data elements that are used as row and column headers on reports. Dimensional attributes are also considered to be reference data. When describing the need to report information by region, by week, and by month, the attributes following ''by'' are dimensions. Each of these would be included in a dimension." (Laura Reeves, "A Manager's Guide to Data Warehousing", 2009)

"An aspect of data that provides a way to divide it in an OLAP database (for example, a carmaker's OLAP database may organize product data by the dimensions of model, body style, engine type, and price point)." (Ken Withee, "Microsoft® Business Intelligence For Dummies®", 2010)

"A slice of data used in analysis and reporting. For example, in a report that shows sales by customer and product for the year ending December 2009, "customer," "product," and "time" would be the dimensions used." (Janice M Roehl-Anderson, "IT Best Practices for Financial Managers", 2010)

"In a data warehouse, a data element that categorizes each item in a data set into nonoverlapping regions." (Craig S Mullins, "Database Administration", 2012)

"In multidimensional data, a structural attribute of a cube that organizes data to enable in-depth business analysis." (Sybase, "Open Server Server-Library/C Reference Manual", 2019)

🕋Data Warehousing: Fact Table (Definitions)

"A central table in a data warehouse that contains numerical measures and keys relating facts to a dimension table. Fact tables contain data that describes a specific event within a business, such as a bank transaction or product sale. See also data warehouse; dimension table; snowflake schema; star join; star schema." (Microsoft Corporation, "SQL Server 7.0 System Administration Training Kit", 1999)

"The relational database table that contains values for one or more measures at the lowest level of detail for one or more dimensions." (Reed Jacobsen & Stacia Misner, "Microsoft SQL Server 2005 Analysis Services Step by Step", 2006)

"A table in a star schema that contains facts and foreign keys that reference dimension tables. Fact tables may also contain degenerate dimensions." (Christopher Adamson, "Mastering Data Warehouse Aggregates", 2006)

"A central table in a data warehouse schema that contains numeric measures and keys relating facts to dimension tables. Fact tables contain data that describes specific events within a business, such as bank transactions or product sales." (Jim Joseph et al, "Microsoft® SQL Server™ 2008 Reporting Services Unleashed", 2009)

"In the dimensional data model, the middle table that contains the facts or metrics of the business as attributes in the table. Sales units, sales dollars, costs, and profit margin are examples of business metrics that are analyzed." (Paulraj Ponniah, "Data Warehousing Fundamentals for IT Professionals", 2010)

"The dominating table in a data warehouse and its star schema, containing dimension attributes and data measures at the individual data level." (Toby J Teorey, ", Database Modeling and Design 4th Ed", 2010)

"A central table in a dimensional model that contains numerical measures and key facts relating to dimension tables." (Craig S Mullins, "Database Administration: The Complete Guide to DBA Practices and Procedures 2nd Ed", 2012)

"The data structure where basic facts in a star join are stored" (Daniel Linstedt & W H Inmon, "Data Architecture: A Primer for the Data Scientist", 2014)

"A relational table that contains facts, such as units sold or cost of goods, and foreign keys that link the fact table to each dimension table. See also star join." (Sybase, "Open Server Server-Library/C Reference Manual", 2019)

31 December 2009

🛢DBMS: Database Design (Just the Quotes)

"The database is the heart of our information processing systems and not simply a by-product of processing. […] A database that has been properly structured and organized, and which actually represents and contains that data of an enterprise, will stabilize the information processing systems. [...] The use of data is reckoning, the generation of information which will in turn be used to manage the enterprise. The generation of information is the only reason for having a database." (John K Lyon, "What is a Data Base", Bulletin of ACM SIGFIDET 5(1) , 1973)

"A database has structure which exists in three forms. It has a perceived structure, which is the way that each of us looks at the database. […] The physical structure of the database relates to the manner in which data is physically represented within the database in terms of sort sequence, record and field sizes, and its existence on one or more master files. […] The logical structure describes the way things really exist within the environment. The entities, i.e., the things within the enterprise, really exist; they have properties which distinguish them from all the other things within the business; and the relationships which exist among the entities." (John K Lyon, "What is a Data Base", Bulletin of ACM SIGFIDET 5(1) , 1973)

"Two of the most difficult areas of data-base management are the design of an information structure and the reduction of that structure to a data structure which is compatible with and managed by the DBMS. […] Data-base management systems are tools to be applied by the users of these systems to build an accurate and useful model of their organization and its information needs. To accomplish this, the information structure must accurately define and characterize the items of data and the relations among them that are of interest to the users. This is no small task, for it demands a knowledge of the organization and the distribution of information among its various parts." (Robert W Taylor & Randall L Frank, "CODASYL Data-Base Management Systems", 1976)

"A variety of reasons make careful database design essential. These include data redundancy, application performance, data independence, data security, and ease of programming. All are important factors in the data processing environment, and all can be adversely affected by a poor database design." (Mark L Gillenson, "Database: Step by Step", 1985)

"Database design refers to the process of organizing the data fields needed by one or more applications into an organized structure. This structure must foster the required relationships among the fields while conforming to the physical constraints of the particular database management system in use. There are two parts to the process that people usually associate with the term 'database design'. One is 'logical database design' which has two components. The first involves organizing the data fields into nonredundant groupings based on the data relationships. The second involves an initial organizing of those logical groupings into structures based on the nature of the DBMS and of the applications that will use the data. […] The second part of database design is 'physical database design, which refers to refitting the previously  described derived structures to conform to the performance and operational idiosyncrasies of the DBMS, again guided by the application's processing requirements." (Mark L Gillenson, "Database: Step by Step", 1985)

"The conceptual model is the focal point of the process of database design. All activities either converge upon or emanate from the conceptual model. All structures, through mappings either into or out of the conceptual model, must be to some extent compatible with it." (Andrew Pletch, "Conceptual Modeling in the Classroom", SIGMOD Record 18(1), 1989)

"Because one has to be an optimist to begin an ambitious project, it is not surprising that underestimation of completion time is the norm." (Fernando J Corbató, "On Building Systems That Will Fail", 1991)

"It is important to emphasize the value of simplicity and elegance, for complexity has a way of compounding difficulties and as we have seen, creating mistakes. My definition of elegance is the achievement of a given functionality with a minimum of mechanism and a maximum of clarity." (Fernando J Corbató, "On Building Systems That Will Fail", 1991)

"A database is basically a collection of related facts (e.g. a company's personnel records, or a bus timetable). Discovering the essential kinds of facts that underlie an application, and the conditions that apply to them, is both interesting and illuminating. The quality of the database design used for these facts and conditions is important. Just as a house built from a good architectural plan is more likely to be safe and convenient for living, a well-designed database simplifies the task of ensuring that its facts are correct and easy to get at." (Terry Halpin, "Conceptual Schema & Relational Database Design" 2nd Ed., 1995)

"If an application requires maintenance and retrieval of large amounts of data, a DBMS offers many advantages over manual record-keeping systems. Operations on data may often be performed faster. Data may be stored compactly on disk, and redundancy may be reduced by data sharing. Many data errors can be avoided by automatic integrity checking. With multi-user systems, access rights to data can be enforced by the system. People can spend more time on creative design rather than on routine tasks more suited to computers."(Terry Halpin, "Conceptual Schema & Relational Database Design" 2nd Ed., 1995)

"No matter how sophisticated the information system, if we give it the wrong picture of our UoD to start with, we can't expect to get much sense out of it. This is one aspect of the gigo (Garbage In Garbage Out) principle. Most of the problems with many database applications can be traced to bad database design." (Terry Halpin, "Conceptual Schema & Relational Database Design" 2nd Ed., 1995)

"When we design a database for a particular application, we create a model of it. Technically, the application area that we are modeling is called the universe of discourse (UoD), since it is the world (or universe) that we are interested in talking (or discoursing) about. Typically the UoD is a 'part' of the 'real world'. To build a good model requires a good understanding of the world we are modeling, and hence is a task ideally suited to people rather than machines. The main challenge is to describe the UoD clearly and precisely. Great care is required here, since errors introduced at this stage filter through to later stages in software development, and the later the errors are detected the more expensive they are to remove." (Terry Halpin, "Conceptual Schema & Relational Database Design" 2nd Ed., 1995)

"A bad logical design means that a good physical design cannot be performed. Good logical design is crucial to good database performance, and a bad logical design will result in a physical design that attempts to cover up the weaknesses in it. A bad logical design is hard to change, and once the system is implemented it will be almost impossible to do so." (Ken England, "Microsoft SQL Server 2000 Performance Optimization and Tuning Handbook", 2001)

"[…] physical database design is not a static, one-off process. Once the database has gone into production, the user requirements are likely to change. Even if they do not, the database data is likely to be volatile, and tables are likely to grow." (Ken England, "Microsoft SQL Server 2000 Performance Optimization and Tuning Handbook", 2001)

"The physical design process is a key phase in the overall design process. It is too often ignored until the last minute in the vain hope that performance will be satisfactory. Without a good physical design, performance is rarely satisfactory and throwing hardware at the problem is rarely completely effective. There is no substitute for a good physical design, and the time and effort spent in the physical design process will be rewarded with an efficient and well-tuned database, not to mention happy users!" (Ken England, "Microsoft SQL Server 2000 Performance Optimization and Tuning Handbook", 2001)

"There is no right way to design a database; there are a number of possible approaches and all these may be perfectly valid. It is sometimes said that performance tuning is an art, not a science. This may be true, but it is important to undertake performance tuning experiments with the same kind of rigorous, controlled conditions under which scientific experiments are performed." (Ken England, "Microsoft SQL Server 2000 Performance Optimization and Tuning Handbook", 2001)

"One problem area for refactoring is databases. Most business applications are tightly coupled to the database schema that supports them. That's one reason that the database is difficult to change. Another reason is data migration. Even if you have carefully layered your system to minimize the dependencies between the database schema and the object model, changing the database schema forces you to migrate the data, which can be a long and fraught task." (Martin Fowler et al, "Refactoring: Improving the Design of Existing Code", 2002)

29 December 2009

🛢DBMS: Database Management Systems (Just the Quotes)

Disclaimer: The following definitions are intended for tracing the long road of defining what Database Management Systems (DBMS) are about, therefore the value of the quotes is regarded from the historical perspective.

"The software that allows one or many persons to use and/or modify this data is a database management system (DBMS). A major role of the DBMS is to allow the user to deal with the data in abstract terms, rather than as the computer stores the data. In this sense, the DBMS acts as an interpreter for a (very) high-level language such as APL, ideally allowing the user to specify what must be done, with little or no attention on the user's part to the detailed algorithms or data representation used by the system. However, in the case of a DBMS, there may be even less relationship between the data as seen by the user and as stored in the computer, than between APL arrays and the representation of these arrays in memory." (Jeffrey D Ullman, "Principles of Database Systems", 1980)

"An integrated data management system, that is a true database system, is one in which data can be held nonredundantly while at the same time, a query which requires a mixture of different kinds of data (such as the query that we've been looking at) can be specified in a single command from the highest level programming interface. Any system that does not have this property really should not call itself a 'database' system; 'file management' system would be a more accurate term." (Mark L Gillenson, "Database: Step by Step", 1985)

"The DBMS is a program (or a set of programs) that allows stored data to be integrated, reduces data duplication, ensures data integrity, eliminates program dependency on file formats, and allows even  complicated objects to be easily represented and retrieved. In short, a DBMS is the program that 'processes the database'." (David M Kroenke & Kathleen Dolan , Database Processing: Fundamentals, design, implementation” 3rd Ed., 1988)

"A database management system (DBMS) consists of a collection of interrelated data and a set of programs to access that data. The collection of data, usually referred to as the database, contains information about one particular enterprise. The primary goal of a DBMS is to provide an environment that is both convenient and efficient to use in retrieving and storing database information." (Henry F. Korth & Abraham Silberschatz, "Database System Concepts" 2nd Ed., 1991)

"A database management system is a collection of interrelated files and a set of programs that allow users to access and modify these files. A major purpose of a database system is to provide users with an abstract view of the data. That is, the system hides certain details of how the data is stored and maintained. However, in order for the system to be usable, data must be retrieved efficiently. This concern has lead to the design of complex data structures for the representation of data in the database. Since many database systems users are not computer-trained, the complexity is hidden from them through several levels of abstraction in order to simplify their interaction with the system." (Henry F. Korth & Abraham Silberschatz, "Database System Concepts" 2nd Ed., 1991)

"A DBMS is a large collection of computer processes that can be entirely software or firmware that operate in a generalized or specialized computer that provides languages or mechanisms to: Define the logical database component of a specific database either directly or through reference to the IRDS metadata, that is, the data record types, data record elements, and relationships. Define the physical component of a specific database, that is, the storage structure definition, and the techniques for access strategies, data loading and updates, and database backup. Specify interrogations that access data through one or more types of languages such as host languages like COBOL or FORTRAN, and/or natural languages like query-update, report writers, or procedure-oriented. Specify system control facilities, that is, audit trails, backup and recovery, concurrent operations, and the like." (Michael M Gorman, "Database Management Systems: Understanding and Applying Database Technology", 1991)

"Database packages, more correctly called Database Management Systems or DBMSs, such as Oracle and Microsoft Access provide us with all the facilities necessary to design and use an application database. A DBMS can be viewed as having three components: (1) The user interface is the software that talks' with the user in creating and  accessing the database. […] (2) The database engine: this is the software that manages the storage and accessing of the physical data stored on disk. (3) The data dictionary, a repository of information about the application database." (Colin Ritchie, "Relational Database Principles" 2nd Ed., 2002)

"A Database Management System (DBMS) is an organised set of facilities for accessing and maintaining one or more databases. A DBMS is a shell which surrounds a database or series of databases and through which all interactions take place with the database." (Paul Beynon-Davies, "Database Systems" 3rd Ed. 2004)

"A software system that enables users to define, create, and maintain the database and also provides controlled access to this database." (Thomas M Connolly & Carolyn E Begg, "Database Solutions: A step-by-step guide to building databases", 2004)

"A product or tool that manages any kind of database, not just relational databases." (Rod Stephens, "Beginning Database Design Solutions", 2009)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.