14 March 2017

⛏️Data Management: Data Protection (Definitions)

"The protecting of data from damage, destruction, and unauthorized alteration." (Tom Petrocelli, "Data Protection and Information Lifecycle Management", 2005)

"Deals with issues such as data security, privacy, and availability. Data protection controls are required by regulations and industry mandates such as Sarbanes-Oxley, European Data Protection Law, and others." (Allen Dreibelbis et al, "Enterprise Master Data Management", 2008)

"A set of rules that aim to protect the rights, freedoms and interests of individuals when information related to them is being processed." (Maria Tzanou, "Data Protection in EU Law after Lisbon: Challenges, Developments, and Limitations", 2015)

"An umbrella term for various procedures that ensure information is secure and available only to authorized users." (Peter Sasvari & Zoltán Nagymate, "The Empirical Analysis of Cloud Computing Services among the Hungarian Enterprises", 2015)

"Protection of the data against unauthorized access by third parties as well as protection of personal data (such as customer data) in the processing of data according to the applicable legal provisions." (Boris Otto & Hubert Österle, "Corporate Data Quality", 2015)

"Legal control over access to, and use of, data in computers." (Lucy Self & Petros Chamakiotis, "Understanding Cloud Computing in a Higher Education Context", 2018)

"Data protection is a task of safeguarding personal or sensitive data which are complex and widely distributed." (M Fevzi Esen & Eda Kocabas, "Personal Data Privacy and Protection in the Meeting, Incentive, Convention, and Exhibition (MICE) Industry", 2019)

"Process of protecting important information from corruption, compromise, or loss." (Patrícia C T Gonçalves, "Medical Social Networks, Epidemiology and Health Systems", 2021)

"The process involving use of laws to protect data of individuals from unauthorized disclosure or access." (Frank Makoza, "Learning From Abroad on SIM Card Registration Policy: The Case of Malawi", 2019)

"Is the process in information and communication technology that deals with the ability an organization or individual to safeguard data and information from corruption, theft, compromise, or loss." (Valerianus Hashiyana et al, "Integrated Big Data E-Healthcare Solutions to a Fragmented Health Information System in Namibia", 2021)

"The mechanisms with which an organization enables individuals to retain control of the personal data they willingly share, where security provides policies, controls, protocols, and technologies necessary to fulfill rules and obligations in accordance with privacy regulations, industry standards, and the organization's ethics and social responsibility." (Forrester)

06 March 2017

⛏️Data Management: Audit Trail (Definitions)

"Audit records stored in the sybsecurity database." (Karen Paulsell et al, "Sybase SQL Server: Performance and Tuning Guide", 1996)

"A record of what happened to data from its inception to its current state. Audit trails help verify the integrity of data." (Microsoft Corporation, "Microsoft SQL Server 7.0 Data Warehouse Training Kit", 2000)

"Data maintained to trace activity, such as a transaction log, for purposes of recovery or audit." (Craig S Mullins, "Database Administration", 2012)

"A chronological record of activities on information resources that enables the reconstruction and examination of sequences of activities on those information resources for later review." (Mark Rhodes-Ousley, "Information Security: The Complete Reference, Second Edition" 2nd Ed., 2013)

"A trace of a sequence of events in a clerical or computer system. This audit usually identifies the creation or modification of any element in the system, who did it, and (possibly) why it was done." (Marcia Kaufman et al, "Big Data For Dummies", 2013)

"A chronological record of events or transactions. An audit trail is used for examining or reconstructing a sequence of events or transactions, managing security, and recovering lost transactions." (Sybase, "Open Server Server-Library/C Reference Manual", 2019)

 "A path by which the original input to a process (e.g. data) can be traced back through the process, taking the process output as a starting point. This facilitates result checking and allows a process audit to be carried out [after TMap]." (Software Quality Assurance)

05 March 2017

⛏️Data Management: System of Record (Definitions)

"The system that definitively specifies data values. In dealing with redundant data, you can have values that should be the same but disagree. The system of record is the system you go back to, in order to verify the true value of the data." (Microsoft Corporation, "Microsoft SQL Server 7.0 Data Warehouse Training Kit", 2000)

"The definitive and singular source of operational data. If data element ABC has a value of 25 in a database record but a value of 45 in the system of record, by definition, the first value is incorrect and must be reconciled. The system of record is useful for managing redundancy of data." (William H Inmon, "Building the Data Warehouse", 2005)

"The single authoritative, enterprise-designated source of operational data. It is the most current, accurate source of its data." (David Lyle & John G Schmidt, "Lean Integration", 2010)

"A system that stores the 'official' version of a data attribute." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"The system of record is a system that is charged with keeping the most complete or trustworthy representation of a set of entities. Within the practice of master data management, such representations are referred to as golden records and the system of record can also be called the system of truth." (Laura Sebastian-Coleman, "Measuring Data Quality for Ongoing Improvement ", 2012)

"Records from which information is retrieved by the name, identifying number, symbol, or other identifying particular assigned to the individual. Sometimes abbreviated as SOR." ( Manish Agrawal, "Information Security and IT Risk Management", 2014)

"An information storage system (commonly implemented on a computer system) that is the authoritative data source for a given data element or piece of information. The need to identify systems of record can become acute in organizations where management information systems have been built by taking output data from multiple-source systems, reprocessing this data, and then re-presenting the result for a new business use." (Janice M Roehl-Anderson, "IT Best Practices for Financial Managers", 2010)

28 February 2017

⛏️Data Management: Data Lifecycle (Definitions)

[Data Lifecycle Management (DLM):" "The process by which data is moved to different mass storage devices based on its age." (Tom Petrocelli, "Data Protection and Information Lifecycle Management", 2005)

[master data lifecycle management:] "Supports the definition, creation, access, and management of master data. Master data must be managed and leveraged effectively throughout its entire lifecycle." (Allen Dreibelbis et al, "Enterprise Master Data Management", 2008)

[Data lifecycle management (DLM):] "Managing data as blocks without underlying knowledge of the content of the blocks, based on limited metadata (e.g., creation date, last accessed)." (David G Hill, "Data Protection: Governance, Risk Management, and Compliance", 2009)

"The data life cycle is the set of processes a dataset goes through from its origin through its use(s) to its retirement. Data that moves through multiple systems and multiple uses has a complex life cycle. Danette McGilvray’s POSMAD formulation identifies the phases of the life cycle as: planning for, obtaining, storing and sharing, maintaining, applying, and disposing of data." (Laura Sebastian-Coleman, "Measuring Data Quality for Ongoing Improvement ", 2012)

"The recognition that as data ages, that data takes on different characteristics" (Daniel Linstedt & W H Inmon, "Data Architecture: A Primer for the Data Scientist", 2014)

"The development of a record in the company’s IT systems from its creation until its deletion. This process may also be designated as 'CRUD', an acronym for the Create, Read/Retrieve, Update and Delete database operations." (Boris Otto & Hubert Österle, "Corporate Data Quality", 2015)

"The series of stages that data moves though from initiation, to creation, to destruction. Example: the data life cycle of customer data has four distinct phases and lasts approximately eight years." (Gregory Lampshire, "The Data and Analytics Playbook", 2016)

"covers the period of time from data origination to the time when data are no longer considered useful or otherwise disposed of. The data lifecycle includes three phases, the origination phase during which data are first collected, the active phase during which data are accumulating and changing, and the inactive phase during which data are no longer expected to accumulate or change, but during which data are maintained for possible use." (Meredith Zozus, "The Data Book: Collection and Management of Research Data", 2017)

"The complete set of development stages from creation to disposal, each with its own characteristics and management responsibilities, through which organizational data assets pass." (Kevin J Sweeney, "Re-Imagining Data Governance", 2018)

"An illustrative phrase describing the many manifestations of data from its raw, unanalyzed state, such as survey data, to intellectual property, such as blueprints." (Sue Milton, "Data Privacy vs. Data Security", 2021)

"Refers to all the stages in the existence of digital information from creation to destruction. A lifecycle view is used to enable active management of the data objects and resource over time, thus maintaining accessibility and usability." (CODATA)

🧊Data Warehousing: Data Load Optimization (Part I: A Success Story)

Data Warehousing
Data Warehousing Series

Introduction

This topic has been waiting in the queue for almost two years already - since I finished optimizing an already existing relational data warehouse within a SQL Server 2012 Enterprise Edition environment. Through various simple techniques I managed then to reduce the running time for the load process by more than 65%, from 9 to 3 hours. It’s a considerable performance gain, considering that I didn’t have to refactor any business logic implemented in queries.

The ETL (Extract, Transform, Load) solution was making use of SSIS (SQL Server Integration Services) packages to load data sequentially from several sources into staging tables, and from stating further into base tables. Each package was responsible for deleting the data from the staging tables via TRUNCATE, extracting the data 1:1 from the source into the staging tables, then loading the data 1:1 from the staging table to base tables. It’s the simplest and a relatively effective ETL design I also used with small alterations for data warehouse solutions. For months the data load worked smoothly, until data growth and eventually other problems increased the loading time from 5 to 9 hours.

Using TABLOCK Hint

Using SSIS to bulk load data into SQL Server provides an optimum of performance and flexibility. Within a Data Flow, when “Table Lock” property on the destination is checked, it implies that the insert records are minimally logged, speeding up the load by a factor of two. The TABLOCK hint can be used also for other insert operations performed outside of SSIS packages. At least in this case the movement of data from staging into base tables was performed in plain T-SQL, outside of SSIS packages. Also further data processing had benefitted from this change. Only this optimization step alone provided 30-40% performance gain.

Drop/Recreating the Indexes on Big Tables

As the base tables were having several indexes each, it proved beneficial to drop the indexes for the big tables (e.g. with more than 1000000 records) before loading the data into the base tables, and recreate the indexes afterwards. This was done within SSIS, and provided an additional 20-30% performance gain from the previous step.

Consolidating the Indexes

Adding missing indexes, removing or consolidating (overlapping) indexes are typical index maintenance tasks, apparently occasionally ignored. It doesn’t always bring much performance as compared with the previous methods, though dropping and consolidating some indexes proved to be beneficial as fewer data were maintained. Data processing logic benefited from the creation of new indexes as well.

Running Packages in Parallel

As the packages were run sequentially (one package at a time), the data load was hardly taking advantage of the processing power available on the server. Even if queries could use parallelism, the benefit was minimal. Enabling packages run in parallel added additional performance gain, however this minimized the availability of processing resources for other tasks. When the data load is performed overnight, this causes minimal overhead, however it should be avoided when the data are loading to business hours.

Using Nonclustered Indexes

In my analysis I found out that many tables, especially the ones storing prepared data, were lacking a clustered index, even if further indexes were built on them. I remember that years back there was a (false) myth that fact and/or dimension tables don’t need clustered indexes in SQL Server. Of course clustered indexes have downsides (e.g. fragmentation, excessive key-lookups) though their benefits exceed by far the downsides. Besides missing clustered index, there were cases in which the tables would have benefited from having a narrow clustered index, instead of a multicolumn wide clustered index. Upon case also such cases were addressed.

Removing the Staging Tables

Given the fact that the source and target systems are in the same virtual environment, and the data are loaded 1:1 between the various layers, without further transformations and conversions, one could load the data directly into the base tables. After some tests I came to the conclusion that the load from source tables into the staging table, and the load from staging table into base table (with TABLOCK hint) were taking almost the same amount of time. This means that the base tables will be for the same amount of the time unavailable, if the data were loaded from the sources directly into the base tables. Therefore one could in theory remove the staging tables from the architecture. Frankly, one should think twice when doing such a change, as there can be further implications in time. Even if today the data are imported 1:1, in the future this could change.

Reducing the Data Volume

Reducing the data volume was identified as a possible further technique to reduce the amount of time needed for data loading. A data warehouse is built based on a set of requirements and presumptions that change over time. It can happen for example that even if the reports need only 1-2 years’ worth of data, the data load considers a much bigger timeframe. Some systems can have up to 5-10 years’ worth of data. Loading all data without a specific requirement leads to waste of resources and bigger load times. Limiting the transactional data to a given timeframe can make a considerable difference. Additionally, there are historical data that have the potential to be archived.

There are also tables for which a weekly or monthly refresh would suffice. Some tables or even data sources can become obsolete, however they continue to be loaded in the data warehouse. Such cases occur seldom, though they occur. Also some unused or redundant column could have been removed from the packages.

Further Thoughts

There are further techniques to optimize the data load within a data warehouse like partitioning large tables, using columnstore indexes or optimizing the storage, however my target was to provide maximum sufficient performance gain with minimum of effort and design changes. Therefore I stopped when I considered that the amount of effort is considerable higher than the performance gain.

Further Reading:
[1] TechNet (2009) The Data Loading Performance Guide, by Thomas Kejser, Peter Carlin & Stuart Ozer (link)
[2] MSDN (2010) Best Practices for Data Warehousing with SQL Server 2008 R2, by Mark Whitehorn, Keith Burns & Eric N Hanson (link)
[3] MSDN (2012) Whitepaper: Fast Track Data Warehouse Reference Guide for SQL Server 2012, by Eric Kraemer, Mike Bassett, Eric Lemoine & Dave Withers (link)
[4] MSDN (2008) Best Practices for Data Warehousing with SQL Server 2008, by Mark Whitehorn & Keith Burns (link)
[5] TechNet (2005) Strategies for Partitioning Relational Data Warehouses in Microsoft SQL Server, by Gandhi Swaminathan (link)
[6] SQL Server Customer Advisory Team (2013) Top 10 Best Practices for Building a Large Scale Relational Data Warehouse (link)

23 February 2017

⛏️Data Management: Data Integration (Definitions)

"The process of coherently using data from across platforms. applications or business units. Data integration ensures that data from different sources is merged allowing silos of data to be combined." (Tony Fisher, "The Data Asset", 2009)

"The planned and controlled:
a) merge using some form of reference,
b) transformation using a set of business rules, and
c) flow of data from a source to a target, for operational and/or analytical use. Data needs to be accessed and extracted, moved, validated and cleansed, standardized, transformed, and loaded. (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"The collection of data from various sources with the same significance into one uniform record. This data may be physically integrated, for example, into a data warehouse or virtually, meaning that the data will remain in the source systems, however will be accessed using a uniform view." (Boris Otto & Hubert Österle, "Corporate Data Quality", 2015)

"Data integration comprises the activities, techniques, and tools required to consolidate and harmonize data from different (multiple) sources into a unified view. The processes of extract, transform, and load (ETL) are part of this discipline." (Piethein Strengholt, "Data Management at Scale", 2020)

"Pulling together and reconciling dispersed data for analytic purposes that organizations have maintained in multiple, heterogeneous systems. Data needs to be accessed and extracted, moved and loaded, validated and cleaned, and standardized and transformed." (Information Management)

"The combination of technical and business processes used to combine data from disparate sources into meaningful insights." (Solutions Review)

"The process of retrieving and combining data from different sources into a unified set for users, organizations, and applications." (MuleSoft) 

"Data integration is the practice of consolidating data from disparate sources into a single dataset with the ultimate goal of providing users with consistent access and delivery of data across the spectrum of subjects and structure types, and to meet the information needs of all applications and business processes." (OmiSci) [source]

"Data integration is the process of combining data from multiple source systems to create unified sets of information for both operational and analytical uses." (Techtarget)

"Data integration is the process of bringing data from disparate sources together to provide users with a unified view. The premise of data integration is to make data more freely available and easier to consume and process by systems and users." (Tibco) [source]

"Data integration is the process of retrieving and combining data from different sources into a unified set of data. Data integration can be used to combine data for users, organizations, and applications." (kloudless)

"Data integration is the process of taking data from multiple disparate sources and collating it in a single location, such as a data warehouse. Once integrated, data can then be used for detailed analytics or to power other enterprise applications." (Xplenty) [source]

"Data integration is the process used to combine data from disparate sources into a unified view that can provide valuable and actionable information." (snowflake) [source]

"Data integration refers to the technical and business processes used to combine data from multiple sources to provide a unified, single view of the data." (OmiSci) [source]

"The discipline of data integration comprises the practices, architectural techniques and tools for achieving the consistent access and delivery of data across the spectrum of data subject areas and data structure types in the enterprise to meet the data consumption requirements of all applications and business processes." (Gartner)

⛏️Data Management: Data Cleaning/Cleansing (Definitions)

"A processing step where missing or inaccurate data is replaced with valid values." (Joseph P Bigus, "Data Mining with Neural Networks: Solving Business Problems from Application Development to Decision Support", 1996)

"The process of validating data prior to a data analysis or Data Mining. This includes both ensuring that the values of the data are valid for a particular attribute or variable (e.g., heights are all positive and in a reasonable range) and that the values for given records or set of records are consistent." (William J Raynor Jr., "The International Dictionary of Artificial Intelligence", 1999)

"The process of correcting errors or omissions in data. This is often part of the extraction, transformation, and loading (ETL) process of extracting data from a source system, usually before attempting to load it into a target system. This is also known as data scrubbing." (Sharon Allen & Evan Terry, "Beginning Relational Data Modeling" 2nd Ed., 2005)

"The removal of inconsistencies, errors, and gaps in source data prior to its incorporation into data warehouses or data marts to facilitate data integration and improve data quality." (Steve Williams & Nancy Williams, "The Profit Impact of Business Intelligence", 2007)

"Software used to identify potential data quality problems. For example, if a customer is listed multiple times in a customer database using variations of the spelling of his or her name, the data cleansing software ensures that each data element is consistent so there is no confusion. Such software is used to make corrections to help standardize the data." (Judith Hurwitz et al, "Service Oriented Architecture For Dummies" 2nd Ed., 2009)

"The process of reviewing and improving data to make sure it is correct, up to date, and not duplicated." (Tony Fisher, "The Data Asset", 2009)

"The process of correcting data errors to bring the level of data quality to an acceptable level for the information user needs." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"The act of detecting and removing and/or correcting data in a database. Also called data scrubbing." (Craig S Mullins, "Database Administration: The Complete Guide to DBA Practices and Procedures", 2012)

"Synonymous with data fixing or data correcting, data cleaning is the process by which errors, inexplicable anomalies, and missing values are somehow handled. There are three options for data cleaning: correcting the error, deleting the error, or leaving it unchanged." (Jules H Berman, "Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information", 2013)

"The process of detecting, removing, or correcting incorrect data." (Evan Stubbs, "Delivering Business Analytics: Practical Guidelines for Best Practice", 2013)

"The process of finding and fixing errors and inaccuracies in data" (Daniel Linstedt & W H Inmon, "Data Architecture: A Primer for the Data Scientist", 2014)

"The process of removing corrupt, redundant, and inaccurate data in the data governance process." (Robert F Smallwood, "Information Governance: Concepts, Strategies, and Best Practices", 2014) 

"The process of eliminating inaccuracies, irregularities, and discrepancies from data." (Jim Davis & Aiman Zeid, "Business Transformation", 2014)

"The process of reviewing and revising data in order to delete duplicates, correct errors, and provide consistency." (Jason Williamson, "Getting a Big Data Job For Dummies", 2015)

"the processes of identifying and resolving potential data errors." (Meredith Zozus, "The Data Book: Collection and Management of Research Data", 2017)

"A sub-process in data preprocessing, where we remove punctuation, stop words, etc. from the text." (Neha Garg & Kamlesh Sharma, "Machine Learning in Text Analysis", 2020)

"Processing a dataset to make it easier to consume. This may involve fixing inconsistencies and errors, removing non-machine-readable elements such as formatting, using standard labels for row and column headings, ensuring that numbers, dates, and other quantities are represented appropriately, conversion to a suitable file format, reconciliation of labels with another dataset being used (see data integration)." (Open Data Handbook) 

"The process of detecting and correcting faulty records, leading to highly accurate BI-informed decisions, as enormous databases and rapid acquisition of data can lead to inaccurate or faulty data that impacts the resulting BI and analysis. Correcting typographical errors, de-duplicating records, and standardizing syntax are all examples of data cleansing." (Insight Software)

"Transforming data in its native state to a pre-defined standardized format using vendor software." (Solutions Review)

"Data cleansing is the effort to improve the overall quality of data by removing or correcting inaccurate, incomplete, or irrelevant data from a data system.  […] Data cleansing techniques are usually performed on data that is at rest rather than data that is being moved. It attempts to find and remove or correct data that detracts from the quality, and thus the usability, of data. The goal of data cleansing is to achieve consistent, complete, accurate, and uniform data." (Informatica) [source]

"Data cleansing is the process of modifying data to improve accuracy and quality." (Xplenty) [source]

"Data cleaning is the process of preparing data for analysis by removing or modifying data that is incorrect, incomplete, irrelevant, duplicated, or improperly formatted." (Sisense) [source]

"Data Cleansing (or Data Scrubbing) is the action of identifying and then removing or amending any data within a database that is: incorrect, incomplete, duplicated." (experian) [source]

"Data cleansing, or data scrubbing, is the process of detecting and correcting or removing inaccurate data or records from a database. It may also involve correcting or removing improperly formatted or duplicate data or records. Such data removed in this process is often referred to as 'dirty data'. Data cleansing is an essential task for preserving data quality." (Teradata) [source]

"Data scrubbing, also called data cleansing, is the process of amending or removing data in a database that is incorrect, incomplete, improperly formatted, or duplicated." (Techtarget) [source]

"the process of reviewing and revising data in order to delete duplicates, correct errors and provide consistency." (Analytics Insight)

21 February 2017

⛏️Data Management: Validity (Definitions)

"A characteristic of the data collected that indicates they are sound and accurate." (Teri Lund & Susan Barksdale, "10 Steps to Successful Strategic Planning", 2006)

"Implies that the test measures what it is supposed to." (Robert McCrie, "Security Operations Management" 2nd Ed., 2006)

"The determination that values in the field are or are not within a set of allowed or valid values. Measured as part of the Data Integrity Fundamentals data quality dimension." (Danette McGilvray, "Executing Data Quality Projects", 2008)

"A data quality dimension that reflects the confirmation of data items to their corresponding value domains, and the extent to which non-confirmation of certain items affects fitness to use. For example, a data item is invalid if it is defined to be integer but contains a non-integer value, linked to a finite set of possible values but contains a value not included in this set, or contains a NULL value where a NULL is not allowed." (G Shankaranarayanan & Adir Even, "Measuring Data Quality in Context", 2009)

"An aspect of data quality consisting in its steadiness despite the natural process of data obsolescence increasing in time." (Juliusz L Kulikowski, "Data Quality Assessment", 2009)

"An inherent quality characteristic that is a measure of the degree of conformance of data to its domain values and business rules." (David C Hay, "Data Model Patterns: A Metadata Map", 2010)

"Validity is a dimension of data quality, defined as the degree to which data conforms to stated rules. As used in the DQAF, validity is differentiated from both accuracy and correctness. Validity is the degree to which data conform to a set of business rules, sometimes expressed as a standard or represented within a defined data domain." (Laura Sebastian-Coleman, "Measuring Data Quality for Ongoing Improvement ", 2012)

"Validity is defined as the extent to which data corresponds to reference tables, lists of values from golden sources documented in metadata, value ranges, etc." (Rajesh Jugulum, "Competing with High Quality Data", 2014)

"the state of consistency between a measurement and the concept that a researcher intended to measure." (Meredith Zozus, "The Data Book: Collection and Management of Research Data", 2017)

[semantic validity:] "The compliance of attribute data to rules regarding consistency and truthfulness of association." (O Sami Saydjari, "Engineering Trustworthy Systems: Get Cybersecurity Design Right the First Time", 2018)

[syntactic validity:] "The compliance of attribute data to format and grammar rules." (O Sami Saydjari, "Engineering Trustworthy Systems: Get Cybersecurity Design Right the First Time", 2018)

"Validity is a data quality dimension that refers to information that doesn’t conform to a specific format or doesn’t follow business rules." (Precisely) [source]

⛏️Data Management: Master Data Management [MDM] (Definitions)

"The set of disciplines and methods to ensure the currency, meaning, and quality of a company’s reference data that is shared across various systems and organizations." (Jill Dyché & Evan Levy, "Customer Data Integration", 2006)

"The framework of processes and technologies aimed at creating and maintaining an authoritative, reliable, sustainable, accurate, and secure data environment that represents a “single version of truth,” an accepted system of record used both intra- and interenterprise across a diverse set of application systems, lines of business, and user communities. (Alex Berson & Lawrence Dubov, "Master Data Management and Customer Data Integration for a Global Enterprise", 2007)

"Centralized facilities designed to hold master copies of shared entities, such as customers or products. MDM systems are meant to support transaction systems and usually have some means to reconcile different sources for the same attribute." (Ralph Kimball, "The Data Warehouse Lifecycle Toolkit", 2008)

"Processes that control management of master data values to enable consistent, shared, contextual use across systems, of the most accurate, timely, and relevant version of truth about essential business entities." (DAMA International, "The DAMA Guide to the Data Management Body of Knowledge" 1st Ed., 2009)

"The guiding principles and technology for maintaining data in a manner that can be shared across various systems and departments throughout an organization." (Tony Fisher, "The Data Asset", 2009)

"The processes and tools to help an organization consistently define and manage core reference or descriptive data across the organization. This may involve providing a centralized view of the data to ensure that its use for all business processes is consistent and accurate." (Laura Reeves, "A Manager's Guide to Data Warehousing", 2009)

"Master Data Management comprises a set of processes and tools that consistently define and manage the nontransactional data entities of an organization such as Customers and Products." (Paulraj Ponniah, "Data Warehousing Fundamentals for IT Professionals", 2010)

"A discipline that resolves master data to maintain the golden record, the holistic and panoramic view of master entities and relationships, and the benchmark for master data that can be used across the enterprise, and sometimes between enterprises to facilitate data exchanges." (Alex Berson & Lawrence Dubov, "Master Data Management and Data Governance", 2010)

"A system and services for the single, authoritative source of truth of master data for an enterprise." (Martin Oberhofer et al, "The Art of Enterprise Information Architecture", 2010)

"MDM is a set of disciplines, processes, and technologies for ensuring the accuracy, completeness, timeliness, and consistency of multiple domains of enterprise data across applications, systems, and databases, and across multiple business processes, functional areas, organizations, geographies, and channels." (Dan Power, "Moving Master Data Management into the Cloud", 2010)

"The processes and tools to help an organization consistently define and manage core reference or descriptive data " (Martin Oberhofer et al, "The Art of Enterprise Information Architecture", 2010)

"The set of codes and structures that identify and organize data, such as customer numbers, employee IDs, and general ledger account numbers." (Janice M Roehl-Anderson, "IT Best Practices for Financial Managers", 2010)

"An information quality activity in which the data elements that are used by multiple systems in an organization are identified, managed, and controlled at the enterprise level." (John R Talburt, "Entity Resolution and Information Quality", 2011)

"Data that is key to the operation of a business, such as data about customers, suppliers, partners, products, and materials." (Brenda L Dietrich et al, "Analytics Across the Enterprise", 2014)

"In business, master data management comprises the processes, governance, policies, standards, and tools that consistently define and manage the critical data of an organization to provide a single point of reference." (Keith Holdaway, "Harness Oil and Gas Big Data with Analytics", 2014)

"The data that describes the important details of a business subject area such as customer, product, or material across the organization. Master data allows different applications and lines of business to use the same definitions and data regarding the subject area. Master data gives an accurate, 360-degree view of the business subject." (Jim Davis & Aiman Zeid, "Business Transformation: A Roadmap for Maximizing Organizational Insights", 2014)

"A new trend in IT, Master Data Management is composed of processes and tools that ultimately help an organization define and manage its master data." (Andrew Pham et al, "From Business Strategy to Information Technology Roadmap", 2016)

'It is a technology-enabled discipline in which business and IT work together to ensure the uniformity, accuracy, stewardship, semantic consistency and accountability of the enterprise’s official shared master data assets. Master data is the consistent and uniform set of identifiers and extended attributes that describes the core entities of the enterprise including customers, prospects, citizens, suppliers, sites, hierarchies and chart of accounts." (Richard T Herschel, "Business Intelligence", 2019)

"The most critical data is called master data and the companioned discipline of master data management, which is about making the master data within the organization accessible, secure, transparent, and trustworthy." (Piethein Strengholt, "Data Management at Scale", 2020)

"An umbrella term that incorporates processes, policies, standards, tools and governance that define and manage all of an organization’s critical data in order to formulate one point of reference." (Solutions Review)

"The technology, tools, and processes required to create and maintain consistent and accurate lists of master data of an organization." (Microsoft)

"Master data management solutions provide the capabilities to create the unique and qualified reference of shared enterprise data, such as customer, product, supplier, employee, site, asset, and organizational data." (Forrester)

"Master data management (MDM) is the effort made by an organization to create one single master reference source for all critical business data, leading to fewer errors and less redundancy in business processes." (Informatica) [source]

"Master data management (MDM) is the process of defining, managing, and making use of an organization’s master data so it is visible and accessible via a single reference point." (MuleSoft) [source]

"Master data management (MDM) is the process of making sure an organization is always working with, and making decisions based on, one version of current, ‘true’ data - often referred to as a 'golden record'." (Talend) [source]

20 February 2017

⛏️Data Management: Timeliness (Definitions)

"Coming early or at the right, appropriate or adapted to the times or the occasion." (Martin J Eppler, "Managing Information Quality" 2nd Ed., 2006)

[timeliness & availability] "A data quality dimension that measures the degree to which data are current and available for use as specified, and in the time frame in which they are expected." (Danette McGilvray, "Executing Data Quality Projects", 2008)

"the ability of a task to repeatedly meet its timeliness requirements." (Bruce P Douglass, "Real-Time Agility: The Harmony/ESW Method for Real-Time and Embedded Systems Development", 2009)

"A pragmatic quality characteristic that is a measure of the relative availability of data to support a given process within the timetable required to perform the process." (David C Hay, "Data Model Patterns: A Metadata Map", 2010)

"1.The degree to which available data meets the currency requirements of information consumers. 2.The length of time between data availability and the event or phenomenon they describe." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"Timeliness is a dimension of data quality related to the availability and currency of data. As used in the DQAF, timeliness is associated with data delivery, availability, and processing. Timeliness is the degree to which data conforms to a schedule for being updated and made available. For data to be timely, it must be delivered according to schedule." (Laura Sebastian-Coleman, "Measuring Data Quality for Ongoing Improvement ", 2012)

"The degree to which the model contains elements that reflect the current version of the world Transitive Relation When a relation R is transitive then if R links entity A to entity B, and entity B to entity C, then it also links A to C." (Panos Alexopoulos, "Semantic Modeling for Data", 2020)

"The degree to which the actual time and processing time are separated. The timelier the data is, the smaller the gap is between actual time and record time."  (Zhamak Dehghani, "Data Mesh: Delivering Data-Driven Value at Scale", 2021)

"Length of time between data availability and the event or phenomenon they describe." (SDMX) 

⛏️Data Management: Data Security (Definitions)

"The protection of data from disclosure, alteration, destruction, or loss that either is accidental or is intentional but unauthorized. (Network Working Group, "RFC 4949: Internet Security Glossary", 2007)

"An area of information security focused on the protection of data from either accidental or unauthorized intentional viewing, modification, destruction, duplication, or disclosure during input, processing, storage, transmission, or output operations. Data security deals with data that exists in two modes: data-in-transit and data-at-rest." (Alex Berson & Lawrence Dubov, "Master Data Management and Data Governance", 2010)

"1.The safety of data from unauthorized and inappropriate access or change. 2.The measures taken to prevent unauthorized access, use, modification, or destruction of data." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

[Data Security Managemen:] "The process of ensuring that data is safe from unauthorized and inappropriate access or change. Includes focus on data privacy, confidentiality, access, functional capabilities and use." (DAMA International, "The DAMA Dictionary of Data Management" 1st Et., 2010)

"Protection against illegal or wrongful intrusion. In the IT world, intrusion concerns mostly deal with gaining access to user and company data." (Peter Sasvari & Zoltán Nagymate, "The Empirical Analysis of Cloud Computing Services among the Hungarian Enterprises", 2015)

"Linked to data privacy rights, the term refers to the IT mechanisms to protect data through defined processes, filters, fire walls, encryption-in-transit, etc." (Beatriz Arnillas, "Tech-Savvy Is the New Street Smart: Balancing Protection and Awareness", 2019)

 "The processes and technologies that ensure that sensitive and confidential data about an organization are kept secure according to the organization’s policies." (Lili Aunimo et al, "Big Data Governance in Agile and Data-Driven Software Development: A Market Entry Case in the Educational Game Industry", 2019)

"The process of protecting the availability, integrity, and privacy of information from undesired actions." (Zerin M Khan, "How Do Mobile Applications for Cancer Communicate About Their Privacy Practices?: An Analysis of Privacy Policies", 2021)

"Data security can be described as the set of policies, processes, procedures, and tools that IT organizations implement to prevent unauthorized access to their networks, servers, data storage and any other on-premise or cloud-based IT infrastructure." (Sumo Logic) [source]

"Data security comprises the processes and associated tools that protect sensitive information assets, either in transit or at rest. Data security methods include:
• Encryption (applying a keyed cryptographic algorithm so that data is not easily read and/or altered by unauthorized parties) 
• Masking (substituting all or part of a high-value data item with a low-value representative token) 
• Erasure (ensuring that data that is no longer active or used is reliably deleted from a repository) 
• Resilience (creating backup copies of data so that organizations can recover data should it be erased or corrupted accidentally or stolen during a data breach)." (Gartner)

[Data security and privacy technology] "Technologies that directly touch the data itself and that help organizations: 1) understand where their data is located and identify what data is sensitive; 2) control data movement as well as introduce data-centric controls that protect the data no matter where it is; and 3) enable least privilege access and use. This still encompasses a wide range of technologies." (Forrester)

"Is the protection of data from unauthorized (accidental or intentional) modification, destruction, or disclosure." (MISS-DND)

"The capability of the software product to protect programs and data from unauthorized access, whether this is done voluntarily or involuntarily."  (ISO 9126)

"The degree to which a collection of data is protected from exposure to accidental or malicious alteration or destruction." (IEEE 610.5-1990)

"Those controls that seek to maintain confidentiality, integrity and availability of information." (ISACA)

18 February 2017

⛏️Data Management: Data Migration (Definitions)

"The process of extracting data from operational systems to a data warehouse with minimal effect on the source systems, and the transformation of the source data into a format consistent with the design and requirements of the data warehouse." (Microsoft Corporation, "Microsoft SQL Server 7.0 System Administration Training Kit", 1999)

"The movement of data from one storage system to another." (Tom Petrocelli, "Data Protection and Information Lifecycle Management", 2005)

"Form- and function-preserving movement of data between locations or formats, which can take one of three forms: (1) from one physical system or location to another; (2) from one physical format to another; or (3) from one logical format to another." (David G Hill, "Data Protection: Governance, Risk Management, and Compliance", 2009)

"The process of migrating data to or from an application such as moving data from a sales force automation tool to a data warehouse." (Tony Fisher, "The Data Asset", 2009)

"The process of transferring data from one database to another." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"Moving a specific set of data from one system to the other. It contains a source system where the data resides prior to the migration, criteria determining the scope of data to be migrated, a transformation that the data will go through, and a destination system where the data will be inserted after." (MuleSoft)

"The process of moving data between two or more storage systems, data formats, warehouses or servers." (Solutions Review)

"A Data Migration is the process of transferring data between computer storage systems or file formats. They greatly range in scale and can often be significant projects including numerous preparation and reconciliation activities." (experian) [source]

"Data migration is the process of moving data between different types of storage or file formats. Cloud data migration refers to transferring or replicating data from on-premise systems to cloud-based storage." (Qlik) [source]

"Data migration is the process of moving a specific set of data from one system to the other. One system is the source system where the data resides prior to the migration, and one system is the destination system where the data will be inserted after." (kloudless)

"Data migration is the process of transferring data between data storage systems, data formats or computer systems." (Techtarget) [source]

"Data migration is the process of transferring data from repository to another." (Information Management)

15 February 2017

⛏️Data Management: Data Architecture (Definitions)

"Data Architecture is the design of data for use in defining the target state and the subsequent planning needed to hit the target state. Data architecture includes topics such as database design, information integration, metadata management, business semantics, data modeling, metadata workflow management, and archiving." (Martin Oberhofer et al, "Enterprise Master Data Management", 2008)

"Describes how data is organized and structured to support the development, maintenance, and use of the data by application systems. This includes guidelines and recommendations for historical retention of the data, and how the data is to be used and accessed." (Laura Reeves, "A Manager's Guide to Data Warehousing", 2009)

"the organized arrangement of components to optimize the function, performance, feasibility, cost, and/or aesthetics of an overall structure." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"The logical-data architecture describes the specific data elements held by the team in a platform-agnostic and business-friendly manner. It plots out the specific tables, fields, and relationships within the team’s data assets and is usually fully normalized to minimize redundancy and represents the highest level of design efficiency possible." (Evan Stubbs, "Delivering Business Analytics: Practical Guidelines for Best Practice", 2013)

"The physical-data architecture is the lowest level of detail in data architecture. It describes how the logical architecture is actually implemented within the data mart and describes elements by their technical (rather than business) names." (Evan Stubbs, "Delivering Business Analytics: Practical Guidelines for Best Practice", 2013)

"Defines a company-wide, uniform model of corporate data (the corporate data model). It also describes the architecture for the distribution and retention of data. This describes which data will be stored in which systems, which systems are single sources of truth for which data objects or attributes and the flow of data between the systems." (Boris Otto & Hubert Österle, "Corporate Data Quality", 2015)

"One of the layers of the enterprise architecture (EA) that focuses on the IT data architecture side, both for transactional and business intelligence IT data architecture." (David K Pham, "From Business Strategy to Information Technology Roadmap", 2016)

"The discipline, methods, and outputs related to understanding data, its meaning and relationships." (Gregory Lampshire et al, "The Data and Analytics Playbook", 2016)

"Models, policies, and guidelines that structure how data are collected, stored, used, managed, and integrated within an organization." (Jonathan Ferrar et al, "The Power of People", 2017)

"Data architecture is the structure that enables the storage, transformation, exploitation, and governance of data." (Pradeep Menon, "Data Lakehouse in Action", 2022)

"Data architecture is the process of designing and building complex data platforms. This involves taking a comprehensive view, which includes not only moving and storing data but also all aspects of the data platform. Building a well-designed data ecosystem can be transformative to a business." (Brian Lipp, "Modern Data Architectures with Python", 2023)

"A data architecture defines a high-level architectural approach and concept to follow, outlines a set of technologies to use, and states the flow of data that will be used to build your data solution to capture big data. [...] Data architecture refers to the overall design and organization of data within an information system." (James Serra, "Deciphering Data Architectures", 2024)

"Data architecture encompasses the rules, policies, models, and standards that govern data collection and how that data is then stored, managed, processed, and used within an organization’s databases and data systems." (snowflake) [source]

"Data architecture is the process by which an organization aligns its data environment with its operational goals." (Xplenty) [source]

14 February 2017

⛏️Data Management: Data Asset (Definitions)

[information asset:] "Data in any form or media placed into meaningful context for users, collected in relation to business or research activity." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"The term data asset refers generically to organizational data, or to any transactional system, data storage system, or application that contains data required for business functions. Any of these systems might be involved in the production and use of data and therefore may affect its quality. Treating data as an asset enables organizations to manage and increase its value. The quality of the data in a system has direct effects on the successful execution of business functions and therefore the success of the enterprise as a whole." (Laura Sebastian-Coleman, "Measuring Data Quality for Ongoing Improvement ", 2012)

[information asset:] "digitally stored content owned by an individual or organization." ( Manish Agrawal, "Information Security and IT Risk Management", 2014)

"Any entity that is comprised of data. For example, a database is a data asset that is comprised of data records. A data asset may be a system or application output file, database, document, or web page. A data asset also includes a service that may be provided to access data from an application. For example, a service that returns individual records from a database would be a data asset. Similarly, a web site that returns data in response to specific queries would be a data asset." (CNSSI 4009-2015)

"Data assets refer to a system, application output file, document, database, or web page that companies use to generate revenues." (CFI) [source]

12 February 2017

⛏️Data Management: Data Quality (Definitions)

"Data are of high quality if they are fit for their intended use in operations, decision-making, and planning." (Joseph M Juran, 1964)

"[…] data has quality if it satisfies the requirements of its intended use. It lacks quality to the extent that it does not satisfy the requirement. In other words, data quality depends as much on the intended use as it does on the data itself. To satisfy the intended use, the data must be accurate, timely, relevant, complete, understood, and trusted." (Jack E Olson, "Data Quality: The Accuracy Dimension", 2003)

"A set of measurable characteristics of data that define how well data represents the real-world construct to which it refers." (Alex Berson & Lawrence Dubov, "Master Data Management and Customer Data Integration for a Global Enterprise", 2007)

"The state of completeness, validity, consistency, timeliness and accuracy that makes data appropriate for a specific use." (Keith Gordon, "Principles of Data Management", 2007)

"Deals with data validation and cleansing services (to ensure relevance, validity, accuracy, and consistency of the master data), reconciliation services (aimed at helping cleanse the master data of duplicates as part of consistency), and cross-reference services (to help with matching master data across multiple systems)." (Martin Oberhofer et al,"Enterprise Master Data Management", 2008)

"A set of data properties (features, parameters, etc.) describing their ability to satisfy user’s expectations or requirements concerning data using for information acquiring in a given area of interest, learning, decision making, etc." (Juliusz L Kulikowski, "Data Quality Assessment", 2009)

"Assessment of the cleanliness, accuracy, and reliability of data." (Laura Reeves, "A Manager's Guide to Data Warehousing", 2009)

"A set of measurable characteristics of data that define how well the data represents the real-world construct to which it refers." (Alex Berson & Lawrence Dubov, "Master Data Management and Data Governance", 2010)

"This term refers to whether an organization’s data is reliable, consistent, up to date, free of duplication, and can be used efficiently across the organization." (Tony Fisher, "The Data Asset", 2009)

"A set of measurable characteristics of data that define how well the data represents the real-world construct to which it refers." (Alex Berson & Lawrence Dubov, "Master Data Management and Data Governance", 2010)

"The degree of data accuracy, accessibility, relevance, time-liness, and completeness." (Linda Volonino & Efraim Turban, "Information Technology for Management" 8th Ed., 2011)

"The degree of fitness for use of data in particular application. Also the degree to which data conforms to data specifications as measured in data quality dimensions. Sometimes used interchangeably with information quality." (John R Talburt, "Entity Resolution and Information Quality", 2011) 

"The degree to which data is accurate, complete, timely, consistent with all requirements and business rules, and relevant for a given use." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"Contextual data quality considers the extent to which data are applicable (pertinent) to the task of the data user, not to the context of representation itself. Contextually appropriate data must be relevant to the consumer, in terms of timeliness and completeness. Dimensions include: value-added, relevancy, timeliness, completeness, and appropriate amount of data (from the Wang & Strong framework.)" (Laura Sebastian-Coleman, "Measuring Data Quality for Ongoing Improvement ", 2012)

"Intrinsic data quality denotes that data have quality in their own right; it is understood largely as the extent to which data values are in conformance with the actual or true values. Intrinsically good data is accurate, correct, and objective, and comes from a reputable source. Dimensions include: accuracy objectivity, believability, and reputation (from the Wang & Strong framework)." (Laura Sebastian-Coleman, "Measuring Data Quality for Ongoing Improvement ", 2012)

"Representational data quality indicates that the system must present data in such a way that it is easy to understand (represented concisely and consistently) so that the consumer is able to interpret the data; understood as the extent to which data is presented in an intelligible and clear manner. Dimensions include: interpretability, ease of understanding, representational consistency, and concise representation (rom the Wang & Strong framework)." (Laura Sebastian-Coleman, "Measuring Data Quality for Ongoing Improvement ", 2012)

"The level of quality of data represents the degree to which data meets the expectations of data consumers, based on their intended use of the data." (Laura Sebastian-Coleman, "Measuring Data Quality for Ongoing Improvement", 2013) 

"The relative value of data, which is based on the accuracy of the knowledge that can be generated using that data. High-quality data is consistent, accurate, and unambiguous, and it can be processed efficiently." (Jim Davis & Aiman Zeid, "Business Transformation: A Roadmap for Maximizing Organizational Insights", 2014)

"The properties of data embodied by the “Five C’s”: clean, consistent, conformed, current, and comprehensive." (Daniel Linstedt & W H Inmon, "Data Architecture: A Primer for the Data Scientist", 2014)

"The degree to which data in an IT system is complete, up-to-date, consistent, and (syntactically and semantically) correct." (Tilo Linz et al, "Software Testing Foundations, 4th Ed", 2014)

"A measure for the suitability of data for certain requirements in the business processes, where it is used. Data quality is a multi-dimensional, context-dependent concept that cannot be described and measured by a single characteristic, but rather various data quality dimensions. The desired level of data quality is thereby oriented on the requirements in the business processes and functions, which use this data [...]" (Boris Otto & Hubert Österle, "Corporate Data Quality", 2015)

"[...] characteristics of data such as consistency, accuracy, reliability, completeness, timeliness, reasonableness, and validity. Data-quality software ensures that data elements are represented in a consistent way across different data stores or systems, making the data more trustworthy across the enterprise." (Judith S Hurwitz, "Cognitive Computing and Big Data Analytics", 2015)

"Refers to the accuracy, completeness, timeliness, integrity, and acceptance of data as determined by its users." (Gregory Lampshire, "The Data and Analytics Playbook", 2016)

"A measure of the useableness of data. An ideal dataset is accurate, complete, timely in publication, consistent in its naming of items and its handling of e.g. missing data, and directly machine-readable (see data cleaning), conforms to standards of nomenclature in the field, and is published with sufficient metadata that users can easily understand, for example, who it is published by and the meaning of the variables in the dataset." (Open Data Handbook) 

"Refers to the level of 'quality' in data. If a particular data store is seen as holding highly relevant data for a project, that data is seen as quality to the users." (Solutions Review)

"the processes and techniques involved in ensuring the reliability and application efficiency of data. Data is of high quality if it reliably reflects underlying processes and fits the intended uses in operations, decision making and planning." (KDnuggets)

"The narrow definition of data quality is that it's about data that is missing or incorrect. A broader definition is that data quality is achieved when a business uses data that is comprehensive, consistent, relevant and timely." (Information Management)

"Data Quality refers to the accuracy of datasets, and the ability to analyse and create actionable insights for other users." (experian) [source]

"Data quality refers to the current condition of data and whether it is suitable for a specific business purpose." (Xplenty) [source]
Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.