"The title for any chart presenting data in the graphic form should be so clear and so complete that the chart and its title could be removed from the context and yet give all the information necessary for a complete interpretation of the data. Charts which present new or especially interesting facts are very frequently copied by many magazines. A chart with its title should be considered a unit, so that anyone wishing to make an abstract of the article in which the chart appears could safely transfer the chart and its title for use elsewhere." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)
"The principles of charting and curve plotting are not at all complex, and it is surprising that many business men dodge the simplest charts as though they involved higher mathematics or contained some sort of black magic. [...] The trouble at present is that there are no standards by which graphic presentations can be prepared in accordance with definite rules so that their interpretation by the reader may be both rapid and accurate. It is certain that there will evolve for methods of graphic presentation a few useful and definite rules which will correspond with the rules of grammar for the spoken and written language." (Willard C Brinton, "Graphic Methods for Presenting Facts", 1919)
"The use of two or more amount scales for comparisons of series in which the units are unlike and, therefore, not comparable [...] generally results in an ineffective and confusing presentation which is difficult to understand and to interpret. Comparisons of this nature can be much more clearly shown by reducing the components to a comparable basis as percentages or index numbers." (Rufus R Lutz, "Graphic Presentation Simplified", 1949)
"Charts and graphs represent an extremely useful and flexible medium for explaining, interpreting, and analyzing numerical facts largely by means of points, lines, areas, and other geometric forms and symbols. They make possible the presentation of quantitative data in a simple, clear, and effective manner and facilitate comparison of values, trends, and relationships. Moreover, charts and graphs possess certain qualities and values lacking in textual and tabular forms of presentation." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)
"The number of grid lines should be kept to a minimum. This means that there should be just enough coordinate lines in the field so that the eye can readily interpret the values at any point on the curve. No definite rule can be specified as to the optimum number of lines in a grid. This must be left to the discretion of the chart-maker and can come only from experience. The size of the chart, the type and range of the data, the number of curves, the length and detail of the period covered, as well as other factors, will help to determine the number of grid lines." (Calvin F Schmid, "Handbook of Graphic Presentation", 1954)
"The time-series plot is the most frequently used form of graphic design. With one dimension marching along to the regular rhythm of seconds, minutes, hours, days, weeks, months, years, centuries, or millennia, the natural ordering of the time scale gives this design a strength and efficiency of interpretation found in no other graphic arrangement."
"The frequency of labelled scale calibrations on the axes of a graph can significantly affect the accuracy with which it is interpreted. As little interpolation as possible should be required of the user, in order to minimise errors. If single units cannot be marked, it has been suggested that multiples of 2,5 or 10 should be used."
"Although in most cases the actual value designated by a bar is determined by the location of the end of the bar, many people associate the length or area of the bar with its value. As long as the scale is linear, starts at zero, is continuous, and the bars are the same width, this presents no problem. When any of these conditions are changed, the potential exists that the graph will be misinterpreted." (Robert L Harris, "Information Graphics: A Comprehensive Illustrated Reference", 1996)
"Good graphics can be spoiled by bad annotation. Labels must always be subservient to the information to be conveyed, and legibility should never be sacrificed for style. All the information on the sheet should be easy to read, and more important, easy to interpret. The priorities of the information should be clearly expressed by the use of differing sizes, weights and character of letters." (Bruce Robertson, "How to Draw Charts & Diagrams", 1988)
"Statistics is a tool. In experimental science you plan and carry out experiments, and then analyse and interpret the results. To do this you use statistical arguments and calculations. Like any other tool - an oscilloscope, for example, or a spectrometer, or even a humble spanner - you can use it delicately or clumsily, skillfully or ineptly. The more you know about it and understand how it works, the better you will be able to use it and the more useful it will be." (Roger J Barlow, "Statistics: A guide to the use of statistical methods in the physical sciences", 1989)
"Graphic misrepresentation is a frequent misuse in presentations to the nonprofessional. The granddaddy of all graphical offenses is to omit the zero on the vertical axis. As a consequence, the chart is often interpreted as if its bottom axis were zero, even though it may be far removed. This can lead to attention-getting headlines about 'a soar' or 'a dramatic rise (or fall)'. A modest, and possibly insignificant, change is amplified into a disastrous or inspirational trend."
"Not all statistics start out bad, but any statistic can be made worse. Numbers - even good numbers - can be misunderstood or misinterpreted. Their meanings can be stretched, twisted, distorted, or mangled. These alterations create what we can call mutant statistics - distorted versions of the original figures." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)
"The acquisition of information is a flow from noise to order - a process converting entropy to redundancy. During this process, the amount of information decreases but is compensated by constant re-coding. In the recoding the amount of information per unit increases by means of a new symbol which represents the total amount of the old. The maturing thus implies information condensation. Simultaneously, the redundance decreases, which render the information more difficult to interpret." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)
"Every statistical analysis is an interpretation of the data, and missingness affects the interpretation. The challenge is that when the reasons for the missingness cannot be determined there is basically no way to make appropriate statistical adjustments. Sensitivity analyses are designed to model and explore a reasonable range of explanations in order to assess the robustness of the results." (Gerald van Belle, "Statistical Rules of Thumb", 2002)
"Choose scales wisely, as they have a profound influence on the interpretation of graphs. Not all scales require that zero be included, but bar graphs and other graphs where area is judged do require it."
"Data often arrive in raw form, as long lists of numbers. In this case your job is to summarize the data in a way that captures its essence and conveys its meaning. This can be done numerically, with measures such as the average and standard deviation, or graphically. At other times you find data already in summarized form; in this case you must understand what the summary is telling, and what it is not telling, and then interpret the information for your readers or viewers." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)
"Exploratory Data Analysis is more than just a collection of data-analysis techniques; it provides a philosophy of how to dissect a data set. It stresses the power of visualisation and aspects such as what to look for, how to look for it and how to interpret the information it contains. Most EDA techniques are graphical in nature, because the main aim of EDA is to explore data in an open-minded way. Using graphics, rather than calculations, keeps open possibilities of spotting interesting patterns or anomalies that would not be apparent with a calculation (where assumptions and decisions about the nature of the data tend to be made in advance).
"Generally pie charts are to be avoided, as they can be difficult to interpret particularly when the number of categories is greater than five. Small proportions can be very hard to discern […] In addition, unless the percentages in each of the individual categories are given as numbers it can be much more difficult to estimate them from a pie chart than from a bar chart […]." (Jenny Freeman et al, "How to Display Data", 2008)
"What you design is never exactly what your audience ends up interpreting, so reducing the chances for misinterpretation becomes crucial." (Alberto Cairo, "The Functional Art", 2011)
"Color can tell us where to look, what to compare and contrast, and it can give us a visual scale of measure. Because color can be so effective, it is often used for multiple purposes in the same graphic - which can create graphics that are dazzling but difficult to interpret. Separating the roles that color can play makes it easier to apply color specifically for encouraging different kinds of visual thinking. [...] Choose colors to draw attention, to label, to show relationships (compare and contrast), or to indicate a visual scale of measure." (Felice C Frankel & Angela H DePace, "Visual Strategies", 2012)
"Done well, annotation can help explain and facilitate the viewing and interpretive experience. It is the challenge of creating a layer of user assistance and user insight: how can you maximize the clarity and value of engaging with this visualization design?" (Andy Kirk, "Data Visualization: A successful design process", 2012)
"The big problems with statistics, say its best practitioners, have little to do with computations and formulas. They have to do with judgment - how to design a study, how to conduct it, then how to analyze and interpret the results. Journalists reporting on statistics have many chances to do harm by shaky reporting, and so are also called on to make sophisticated judgments. How, then, can we tell which studies seem credible, which we should report?"
"The universal intelligibility of a pictogram is inversely proportional to its complexity and potential for interpretive ambiguity." (Joel Katz, "Designing Information: Human factors and common sense in information design", 2012)
"Charts are always an interpretation of data, in the same way that a photo is an interpretation of reality, no matter how objective it may seem. This should be not only recognized but encouraged within an ethical framework that seeks to identify its own subjectivity and minimize its influence on choices. There can be no contradiction between 'what I want to say' and 'what the data say'. This difference is often difficult to detect, especially when the subject’s message is fully determined by his beliefs, ideological position, and activism." (Jorge Camões, "Data at Work: Best practices for creating effective charts and information graphics in Microsoft Excel", 2016)
"Commonly, data do not make a clear and unambiguous statement about our world, often requiring tools and methods to provide such clarity. These methods, called statistical data analysis, involve collecting, manipulating, analyzing, interpreting, and presenting data in a form that can be used, understood, and communicated to others." (Forrest W Young et al, "Visual Statistics: Seeing data with dynamic interactive graphics", 2016)
"Confirmation bias can affect nearly every aspect of the way you look at data, from sampling and observation to forecasting - so it’s something to keep in mind anytime you’re interpreting data. When it comes to correlation versus causation, confirmation bias is one reason that some people ignore omitted variables - because they’re making the jump from correlation to causation based on preconceptions, not the actual evidence." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)
"The tricky part is that there aren’t really any hard- and- fast rules when it comes to identifying outliers. Some economists say an outlier is anything that’s a certain distance away from the mean, but in practice it’s fairly subjective and open to interpretation. That’s why statisticians spend so much time looking at data on a case-by-case basis to determine what is - and isn’t - an outlier." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)
"This idea of looking for answers is related to confirmation bias, which is the tendency to interpret data in a way that reinforces your preconceptions. With confirmation bias, you aren’t just looking for an answer - you’re looking for a specific answer." (John H Johnson & Mike Gluck, "Everydata: The misinformation hidden in the little data you consume every day", 2016)
"A common misconception is that data scientists don’t need visualizations. This attitude is not only inaccurate: it is very dangerous. Most machine learning algorithms are not inherently visual, but it is very easy to misinterpret their outputs if you look only at the numbers; there is no substitute for the human eye when it comes to making intuitive sense of things." (Field Cady, "The Data Science Handbook", 2017)
"Most of us have difficulty figuring probabilities and statistics in our heads and detecting subtle patterns in complex tables of numbers. We prefer vivid pictures, images, and stories. When making decisions, we tend to overweight such images and stories, compared to statistical information. We also tend to misunderstand or misinterpret graphics."
"Statistics, because they are numbers, appear to us to be cold, hard facts. It seems that they represent facts given to us by nature and it’s just a matter of finding them. But it’s important to remember that people gather statistics. People choose what to count, how to go about counting, which of the resulting numbers they will share with us, and which words they will use to describe and interpret those numbers. Statistics are not facts. They are interpretations. And your interpretation may be just as good as, or better than, that of the person reporting them to you." (Daniel J Levitin, "Weaponized Lies", 2017)
"The most accurate but least interpretable form of data presentation is to make a table, showing every single value. But it is difficult or impossible for most people to detect patterns and trends in such data, and so we rely on graphs and charts. Graphs come in two broad types: Either they represent every data point visually (as in a scatter plot) or they implement a form of data reduction in which we summarize the data, looking, for example, only at means or medians."
"As a first principle, any visualization should convey its information quickly and easily, and with minimal scope for misunderstanding. Unnecessary visual clutter makes more work for the reader’s brain to do, slows down the understanding (at which point they may give up) and may even allow some incorrect interpretations to creep in." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)
"Even though data is being thrust on more people, it doesn’t mean everyone is prepared to consume and use it effectively. As our dependence on data for guidance and insights increases, the need for greater data literacy also grows. If literacy is defined as the ability to read and write, data literacy can be defined as the ability to understand and communicate data. Today’s advanced data tools can offer unparalleled insights, but they require capable operators who can understand and interpret data." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)