30 December 2018

🔭Data Science: Matching (Just the Quotes)

"A physical theory must accept some actual data as inputs and must be able to generate from them another set of possible data (the output) in such a way that both input and output match the assumptions of the theory - laws, constraints, etc. This concept of matching involves relevance: thus boundary conditions are relevant only to field-like theories such as hydrodynamics and quantum mechanics. But matching is more than relevance: it is also logical compatibility." (Mario Bunge, "Philosophy of Physics", 1973)

"The matching procedure often helps inform the reader what is going on in the data […] Matching has some defects, chiefly that it is difficult to do a very good job of matching in complex situations without a large number of cases. […] One limitation of matching, then, is that quite often the match is not very accurate. A second limitation is that if we want to control for more than one variable using matching procedures, the tables begin to have combinations of categories without any cases at all in them, and they become somewhat more difficult for the reader to understand." (Edward R Tufte, "Data Analysis for Politics and Policy", 1974)

"Generalization is the process of matching new, unknown input data with the problem knowledge in order to obtain the best possible solution, or one close to it. Generalization means reacting properly to new situations, for example, recognizing new images, or classifying new objects and situations. Generalization can also be described as a transition from a particular object description to a general concept description. This is a major characteristic of all intelligent systems." (Nikola K Kasabov, "Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering", 1996)

"More than just a new computing architecture, neural networks offer a completely different paradigm for solving problems with computers. […] The process of learning in neural networks is to use feedback to adjust internal connections, which in turn affect the output or answer produced. The neural processing element combines all of the inputs to it and produces an output, which is essentially a measure of the match between the input pattern and its connection weights. When hundreds of these neural processors are combined, we have the ability to solve difficult problems such as credit scoring." (Joseph P Bigus,"Data Mining with Neural Networks: Solving business problems from application development to decision support", 1996)

"Because No Free Lunch theorems dictate that no optimization algorithm can be considered more efficient than any other when considering all possible functions, the desired function class plays a prominent role in the model. In particular, this provides a tractable way to answer the traditionally difficult question of what algorithm is best matched to a particular class of functions. Among the benefits of the model are the ability to specify the function class in a straightforward manner, a natural way to specify noisy or dynamic functions, and a new source of insight into No Free Lunch theorems for optimization." (Christopher K Monson, "No Free Lunch, Bayesian Inference, and Utility: A Decision-Theoretic Approach to Optimization", [thesis] 2006)

"Whereas regression is about attempting to specify the underlying relationship that summarises a set of paired data, correlation is about assessing the strength of that relationship. Where there is a very close match between the scatter of points and the regression line, correlation is said to be 'strong' or 'high' . Where the points are widely scattered, the correlation is said to be 'weak' or 'low'." (Alan Graham, "Developing Thinking in Statistics", 2006)

"A decision theory that rests on the assumptions that human cognitive capabilities are limited and that these limitations are adaptive with respect to the decision environments humans frequently encounter. Decision are thought to be made usually without elaborate calculations, but instead by using fast and frugal heuristics. These heuristics certainly have the advantage of speed and simplicity, but if they are well matched to a decision environment, they can even outperform maximizing calculations with respect to accuracy. The reason for this is that many decision environments are characterized by incomplete information and noise. The information we do have is usually structured in a specific way that clever heuristics can exploit." (E Ebenhoh, "Agent-Based Modelnig with Boundedly Rational Agents", 2007)

"Learning a complicated function that matches the training data closely but fails to recognize the underlying process that generates the data. As a result of overfitting, the model performs poor on new input. Overfitting occurs when the training patterns are sparse in input space and/or the trained networks are too complex." (Frank Padberg, "Counting the Hidden Defects in Software Documents", 2010)

"Unfortunately, creating an objective function that matches the true goal of the data mining is usually impossible, so data scientists often choose based on faith and experience." (Foster Provost & Tom Fawcett, "Data Science for Business", 2013)

"Matching is a family of methods for estimating causal effects by matching similar observations (or units) in the treatment and non-treatment groups. The goal of matching is to make comparisons between similar units in order to achieve as precise an estimate of the true causal effect as possible." (Aleksander Molak, "Causal Inference and Discovery in Python", 2023)

29 December 2018

🔭Data Science: Data (Just the Quotes)

"Before anything can be reasoned upon to a conclusion, certain facts, principles, or data, to reason from, must be established, admitted, or denied." (Thomas Paine, "Rights of Man", 1791) 

"The errors which arise from the absence of facts are far more numerous and more durable than those which result from unsound reasoning respecting true data." (Charles Babbage, "On the Economy of Machinery and Manufactures", 1832)

"In every branch of knowledge the progress is proportional to the amount of facts on which to build, and therefore to the facility of obtaining data." (James C Maxwell, [letter to Lewis Campbell] 1851)

"It is a capital mistake to theorise before one has data." (Arthur C Doyle, "The Adventures of Sherlock Holmes", 1892)

"The man of science, by virtue of his training, is alone capable of realising the difficulties - often enormous - of obtaining accurate data upon which just judgment may be based." (Sir Richard Gregory, "Discovery; or, The Spirit and Service of Science", 1918)

"Not even the most subtle and skilled analysis can overcome completely the unreliability of basic data." (Roy D G Allen, "Statistics for Economists", 1951)

"When evaluating the reliability and generality of data, it is often important to know the aims of the experimenter. When evaluating the importance of experimental results, however, science has a trick of disregarding the experimenter's rationale and finding a more appropriate context for the data than the one he proposed." (Murray Sidman, "Tactics of Scientific Research", 1960)

"Philosophers of science have repeatedly demonstrated that more than one theoretical construction can always be placed upon a given collection of data." (Thomas Kuhn, "The Structure of Scientific Revolutions", 1962) 

"Modern science is characterized by its ever-increasing specialization, necessitated by the enormous amount of data, the complexity of techniques and of theoretical structures within every field. Thus science is split into innumerable disciplines continually generating new subdisciplines. In consequence, the physicist, the biologist, the psychologist and the social scientist are, so to speak, encapusulated in their private universes, and it is difficult to get word from one cocoon to the other." (Ludwig von Bertalanffy, "General System Theory", 1968)

"At root what is needed for scientific inquiry is just receptivity to data, skill in reasoning, and yearning for truth. Admittedly, ingenuity can help too." (Willard v O Quine, "The Web of Belief", 1970)

"Statistical methods of analysis are intended to aid the interpretation of data that are subject to appreciable haphazard variability." (David V. Hinkley & David Cox, "Theoretical Statistics", 1974)

"In a way, science might be described as paranoid thinking applied to Nature: we are looking for natural conspiracies, for connections among apparently disparate data." (Carl Sagan, "The Dragons of Eden", 1977)

"If we gather more and more data and establish more and more associations, however, we will not finally find that we know something. We will simply end up having more and more data and larger sets of correlations." (Kenneth N Waltz, "Theory of International Politics Source: Theory of International Politics", 1979)

"There is a tendency to mistake data for wisdom, just as there has always been a tendency to confuse logic with values, intelligence with insight. Unobstructed access to facts can produce unlimited good only if it is matched by the desire and ability to find out what they mean and where they lead." (Norman Cousins, "Human Options : An Autobiographical Notebook", 1981) 

"Data in isolation are meaningless, a collection of numbers. Only in context of a theory do they assume significance […]" (George Greenstein, "Frozen Star", 1983)

"Data is raw. It simply exists and has no significance beyond its existence (in and of itself). It can exist in any form, usable or not. It does not have meaning of itself. In computer parlance, a spreadsheet generally starts out by holding data." (Russell L Ackoff, "Towards a Systems Theory of Organization, 1985)

"Information is data that has been given meaning by way of relational connection. This "meaning" can be useful, but does not have to be. In computer parlance, a relational database makes information from the data stored within it." (Russell L Ackoff, "Towards a Systems Theory of Organization", 1985)

"Intuition becomes increasingly valuable in the new information society precisely because there is so much data." (John Naisbitt, "Re-Inventing the Corporation", 1988)

"The unit of coding is the most basic segment, or element, of the raw data or information that can be assessed in a meaningful way regarding the phenomenon." (Richard Boyatzis, "Transforming qualitative information", 1998)

"Data are collected as a basis for action. Yet before anyone can use data as a basis for action the data have to be interpreted. The proper interpretation of data will require that the data be presented in context, and that the analysis technique used will filter out the noise."  (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"While all data contain noise, some data contain signals. Before you can detect a signal, you must filter out the noise." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"[…] you simply cannot make sense of any number without a contextual basis. Yet the traditional attempts to provide this contextual basis are often flawed in their execution. [...] Data have no meaning apart from their context. Data presented without a context are effectively rendered meaningless.(Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"The more data we have, the more likely we are to drown in it." (Nassim N Taleb, "Fooled by Randomness", 2001)

"Data is a fact of life. As time goes by, we collect more and more data, making our original reason for collecting the data harder to accomplish. We don't collect data just to waste time or keep busy; we collect data so that we can gain knowledge, which can be used to improve the efficiency of our organization, improve profit margins, and on and on. The problem is that as we collect more data, it becomes harder for us to use the data to derive this knowledge. We are being suffocated by this raw data, yet we need to find a way to use it." (Seth Paul et al. "Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis", 2002)

"Blissful data consist of information that is accurate, meaningful, useful, and easily accessible to many people in an organization. These data are used by the organization’s employees to analyze information and support their decision-making processes to strategic action. It is easy to see that organizations that have reached their goal of maximum productivity with blissful data can triumph over their competition. Thus, blissful data provide a competitive advantage.". (Margaret Y Chu, "Blissful Data", 2004)

"Perception requires imagination because the data people encounter in their lives are never complete and always equivocal. [...] We also use our imagination and take shortcuts to fill gaps in patterns of nonvisual data. As with visual input, we draw conclusions and make judgments based on uncertain and incomplete information, and we conclude, when we are done analyzing the patterns, that out picture is clear and accurate. But is it?" (Leonard Mlodinow, "The Drunkard’s Walk: How Randomness Rules Our Lives", 2008)

"By giving data back to the user, you can create both engagement and revenue. We’re far enough into the data game that most users have realized that they’re not the customer, they’re the product. Their role in the system is to generate data, either to assist in ad targeting or to be sold to the highest bidder, or both." (Dhanurjay Patil, "Data Jujitsu: The Art of Turning Data into Product", 2012)

"Generalizing beyond advertising, when building any data product in which the data is obfuscated (where there isn’t a clear relationship between the user and the result), you can compromise on precision, but not on recall. But when the data is exposed, focus on high precision." (Dhanurjay Patil, "Data Jujitsu: The Art of Turning Data into Product", 2012)

"The value of having numbers - data - is that they aren't subject to someone else's interpretation. They are just the numbers. You can decide what they mean for you." (Emily Oster, "Expecting Better", 2013)

"A study that leaves out data is waving a big red flag. A decision to include or exclude data sometimes makes all the difference in the world. This decision should be based on the relevance and quality of the data, not on whether the data support or undermine a conclusion that is expected or desired." (Gary Smith, "Standard Deviations", 2014)

"Another way to secure statistical significance is to use the data to discover a theory. Statistical tests assume that the researcher starts with a theory, collects data to test the theory, and reports the results - whether statistically significant or not. Many people work in the other direction, scrutinizing the data until they find a pattern and then making up a theory that fits the pattern." (Gary Smith, "Standard Deviations", 2014)

"Data clusters are everywhere, even in random data. Someone who looks for an explanation will inevitably find one, but a theory that fits a data cluster is not persuasive evidence. The found explanation needs to make sense and it needs to be tested with uncontaminated data." (Gary Smith, "Standard Deviations", 2014)

"Data without theory can fuel a speculative stock market bubble or create the illusion of a bubble where there is none. How do we tell the difference between a real bubble and a false alarm? You know the answer: we need a theory. Data are not enough. […] Data without theory is alluring, but misleading." (Gary Smith, "Standard Deviations", 2014)

"These practices - selective reporting and data pillaging - are known as data grubbing. The discovery of statistical significance by data grubbing shows little other than the researcher’s endurance. We cannot tell whether a data grubbing marathon demonstrates the validity of a useful theory or the perseverance of a determined researcher until independent tests confirm or refute the finding. But more often than not, the tests stop there. After all, you won’t become a star by confirming other people’s research, so why not spend your time discovering new theories? The data-grubbed theory consequently sits out there, untested and unchallenged." (Gary Smith, "Standard Deviations", 2014)

"We naturally draw conclusions from what we see […]. We should also think about what we do not see […]. The unseen data may be just as important, or even more important, than the seen data. To avoid survivor bias, start in the past and look forward." (Gary Smith, "Standard Deviations", 2014)

"The term data, unlike the related terms facts and evidence, does not connote truth. Data is descriptive, but data can be erroneous. We tend to distinguish data from information. Data is a primitive or atomic state (as in ‘raw data’). It becomes information only when it is presented in context, in a way that informs. This progression from data to information is not the only direction in which the relationship flows, however; information can also be broken down into pieces, stripped of context, and stored as data. This is the case with most of the data that’s stored in computer systems. Data that’s collected and stored directly by machines, such as sensors, becomes information only when it’s reconnected to its context."  (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"To find signals in data, we must learn to reduce the noise - not just the noise that resides in the data, but also the noise that resides in us. It is nearly impossible for noisy minds to perceive anything but noise in data. […] Signals always point to something. In this sense, a signal is not a thing but a relationship. Data becomes useful knowledge of something that matters when it builds a bridge between a question and an answer. This connection is the signal." (Stephen Few, "Signal: Understanding What Matters in a World of Noise", 2015)

"Data is such an incredible lever arm for change, we need to make sure that the change that is coming, is the one we all want to see." (Dhanurjay Patil, "A Code of Ethics for Data Science", 2016)

"The first epistemic principle to embrace is that there is always a gap between our data and the real world. We fall headfirst into a pitfall when we forget that this gap exists, that our data isn't a perfect reflection of the real-world phenomena it's representing. Do people really fail to remember this? It sounds so basic. How could anyone fall into such an obvious trap?" (Ben Jones, "Avoiding Data Pitfalls: How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations", 2020)

"The way we explore data today, we often aren't constrained by rigid hypothesis testing or statistical rigor that can slow down the process to a crawl. But we need to be careful with this rapid pace of exploration, too. Modern business intelligence and analytics tools allow us to do so much with data so quickly that it can be easy to fall into a pitfall by creating a chart that misleads us in the early stages of the process." (Ben Jones, "Avoiding Data Pitfalls: How to Steer Clear of Common Blunders When Working with Data and Presenting Analysis and Visualizations", 2020)

"In general, the more complex the data, the more the analyst has to make prior inferences of what is considered normal for modeling purposes." (Charu C Aggarwal, "Artificial Intelligence: A Textbook", 2021)

"Understanding the entire data ecosystem, from the production of a data point to its consumption in a dashboard or a visualization, provides the ability to invoke action, which is more valuable than the mere sum of its parts." (Jesús Barrasa et al, "Knowledge Graphs: Data in Context for Responsive Businesses", 2021)

"Data has historically been treated as a second-class citizen, as a form of exhaust or by-product emitted by business applications. This application-first thinking remains the major source of problems in today’s computing environments, leading to ad hoc data pipelines, cobbled together data access mechanisms, and inconsistent sources of similar-yet-different truths. Data mesh addresses these shortcomings head-on, by fundamentally altering the relationships we have with our data. Instead of a secondary by-product, data, and the access to it, is promoted to a first-class citizen on par with any other business service." (Adam Bellemare,"Building an Event-Driven Data Mesh: Patterns for Designing and Building Event-Driven Architectures", 2023)

"'Let the data speak'" is a catchy and powerful slogan, but [...] data itself is not always enough. It’s worth remembering that in many cases 'data cannot speak for themselves' and we might need more information than just observations to address some of our questions." (Aleksander Molak, "Causal Inference and Discovery in Python", 2023)

"Data are most valuable at their point of origin. The value of data is directly related to their timeliness." (Lawrence M Miller)

"Too little attention is given to the need for statistical control, or to put it more pertinently, since statistical control (randomness) is so rarely found, too little attention is given to the interpretation of data that arise from conditions not in statistical control." (William E Deming)

More quotes on" Data" at the-web-of-knowledge.blogspot.com.

🔭Data Science: Experience (Just the Quotes)

"[…] it is from long experience chiefly that we are to expect the most certain rules of practice, yet it is withal to be remembered, that observations, and to put us upon the most probable means of improving any art, is to get the best insight we can into the nature and properties of those things which we are desirous to cultivate and improve." (Stephen Hales, "Vegetable Staticks", 1727)

"In order to supply the defects of experience, we will have recourse to the probable conjectures of analogy, conclusions which we will bequeath to our posterity to be ascertained by new observations, which, if we augur rightly, will serve to establish our theory and to carry it gradually nearer to absolute certainty." (Johann H Lambert, "The System of the World", 1800)

"Induction, analogy, hypotheses founded upon facts and rectified continually by new observations, a happy tact given by nature and strengthened by numerous comparisons of its indications with experience, such are the principal means for arriving at truth." (Pierre-Simon Laplace, "A Philosophical Essay on Probabilities", 1814)

"Observation is so wide awake, and facts are being so rapidly added to the sum of human experience, that it appears as if the theorizer would always be in arrears, and were doomed forever to arrive at imperfect conclusion; but the power to perceive a law is equally rare in all ages of the world, and depends but little on the number of facts observed." (Henry D Thoreau, "A Week on the Concord and Merrimack Rivers", 1862)

"Science is the systematic classification of experience." (George H Lewes, "The Physical Basis of Mind", 1877)

"Experience teaches that one will be led to new discoveries almost exclusively by means of special mechanical models." (Ludwig Boltzmann, "Lectures on Gas Theory", 1896)

"Philosophy, like science, consists of theories or insights arrived at as a result of systemic reflection or reasoning in regard to the data of experience. It involves, therefore, the analysis of experience and the synthesis of the results of analysis into a comprehensive or unitary conception. Philosophy seeks a totality and harmony of reasoned insight into the nature and meaning of all the principal aspects of reality." (Joseph A Leighton, "The Field of Philosophy: An outline of lectures on introduction to philosophy", 1919)

"Abstraction is the detection of a common quality in the characteristics of a number of diverse observations […] A hypothesis serves the same purpose, but in a different way. It relates apparently diverse experiences, not by directly detecting a common quality in the experiences themselves, but by inventing a fictitious substance or process or idea, in terms of which the experience can be expressed. A hypothesis, in brief, correlates observations by adding something to them, while abstraction achieves the same end by subtracting something." (Herbert Dingle, Science and Human Experience, 1931)

"It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience." (Albert Einstein, [lecture] 1933)

"A scientist, whether theorist or experimenter, puts forward statements, or systems of statements, and tests them step by step. In the field of the empirical sciences, more particularly, he constructs hypotheses, or systems of theories, and tests them against experience by observation and experiment." (Karl Popper, "The Logic of Scientific Discovery", 1934)

"Science does not aim, primarily, at high probabilities. It aims at a high informative content, well backed by experience. But a hypothesis may be very probable simply because it tells us nothing, or very little." (Karl Popper, "The Logic of Scientific Discovery", 1934) 

"Science is a system of statements based on direct experience, and controlled by experimental verification. Verification in science is not, however, of single statements but of the entire system or a sub-system of such statements." (Rudolf Carnap, "The Unity of Science", 1934)

"Science is the attempt to make the chaotic diversity of our sense experience correspond to a logically uniform system of thought." (Albert Einstein, "Considerations Concerning the Fundaments of Theoretical Physics", Science Vol. 91 (2369), 1940)

"A model, like a novel, may resonate with nature, but it is not a ‘real’ thing. Like a novel, a model may be convincing - it may ‘ring true’ if it is consistent with our experience of the natural world. But just as we may wonder how much the characters in a novel are drawn from real life and how much is artifice, we might ask the same of a model: How much is based on observation and measurement of accessible phenomena, how much is convenience? Fundamentally, the reason for modeling is a lack of full access, either in time or space, to the phenomena of interest." (Kenneth Belitz, Science, Vol. 263, 1944)

"Every bit of knowledge we gain and every conclusion we draw about the universe or about any part or feature of it depends finally upon some observation or measurement. Mankind has had again and again the humiliating experience of trusting to intuitive, apparently logical conclusions without observations, and has seen Nature sail by in her radiant chariot of gold in an entirely different direction." (Oliver J Lee, "Measuring Our Universe: From the Inner Atom to Outer Space", 1950)

"Statistics is the name for that science and art which deals with uncertain inferences - which uses numbers to find out something about nature and experience." (Warren Weaver, 1952)

"The only relevant test of the validity of a hypothesis is comparison of prediction with experience." (Milton Friedman, "Essays in Positive Economics", 1953)

"Mathematical statistics provides an exceptionally clear example of the relationship between mathematics and the external world. The external world provides the experimentally measured distribution curve; mathematics provides the equation (the mathematical model) that corresponds to the empirical curve. The statistician may be guided by a thought experiment in finding the corresponding equation." (Marshall J Walker, "The Nature of Scientific Thought", 1963)

"Experience without theory teaches nothing." (William E Deming, "Out of the Crisis", 1986)

"A discovery in science, or a new theory, even where it appears most unitary and most all-embracing, deals with some immediate element of novelty or paradox within the framework of far vaster, unanalyzed, unarticulated reserves of knowledge, experience, faith, and presupposition. Our progress is narrow: it takes a vast world unchallenged and for granted." (James R Oppenheimer, "Atom and Void", 1989)

"It is ironic but true: the one reality science cannot reduce is the only reality we will ever know. This is why we need art. By expressing our actual experience, the artist reminds us that our science is incomplete, that no map of matter will ever explain the immateriality of our consciousness." (Jonah Lehrer, "Proust Was a Neuroscientist", 2011)

"Science, at its core, is simply a method of practical logic that tests hypotheses against experience. Scientism, by contrast, is the worldview and value system that insists that the questions the scientific method can answer are the most important questions human beings can ask, and that the picture of the world yielded by science is a better approximation to reality than any other." (John M Greer, "After Progress: Reason and Religion at the End of the Industrial Age", 2015)

"Ideally, a decision maker or a forecaster will combine the outside view and the inside view - or, similarly, statistics plus personal experience. But it’s much better to start with the statistical view, the outside view, and then modify it in the light of personal experience than it is to go the other way around. If you start with the inside view you have no real frame of reference, no sense of scale - and can easily come up with a probability that is ten times too large, or ten times too small." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Statistical metrics can show us facts and trends that would be impossible to see in any other way, but often they’re used as a substitute for relevant experience, by managers or politicians without specific expertise or a close-up view." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"The contradiction between what we see with our own eyes and what the statistics claim can be very real. […] The truth is more complicated. Our personal experiences should not be dismissed along with our feelings, at least not without further thought. Sometimes the statistics give us a vastly better way to understand the world; sometimes they mislead us. We need to be wise enough to figure out when the statistics are in conflict with everyday experience - and in those cases, which to believe." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

🔭Data Science: Patterns (Just the Quotes)

"Most surprising and far-reaching analogies revealed themselves between apparently quite disparate natural processes. It seemed that nature had built the most various things on exactly the same pattern; or, in the dry words of the analyst, the same differential equations hold for the most various phenomena." (Ludwig Boltzmann, "On the methods of theoretical physics", 1892)

"It [knowledge] is clearly related to information, which we can now measure; and an economist especially is tempted to regard knowledge as a kind of capital structure, corresponding to information as an income flow. Knowledge, that is to say, is some kind of improbable structure or stock made up essentially of patterns - that is, improbable arrangements, and the more improbable the arrangements, we might suppose, the more knowledge there is." (Kenneth Boulding, "Beyond Economics: Essays on Society", 1968) 

"Faced with information overload, we have no alternative but pattern-recognition."(Marshall McLuhan, "Counterblast", 1969) 

"Without the hard little bits of marble which are called 'facts' or 'data' one cannot compose a mosaic; what matters, however, are not so much the individual bits, but the successive patterns into which you arrange them, then break them up and rearrange them." (Arthur Koestler, "The Act of Creation", 1970) 

"To do science is to search for repeated patterns, not simply to accumulate facts […]" (Robert H MacArthur, "Geographical Ecology", 1972)

"A pattern has an integrity independent of the medium by virtue of which you have received the information that it exists. Each of the chemical elements is a pattern integrity. Each individual is a pattern integrity. The pattern integrity of the human individual is evolutionary and not static." (Buckminster Fuller, "Synergetics: Explorations in the Geometry of Thinking", 1975) 

"In everyday language, the words 'pattern' and 'symmetry' are used almost interchangeably, to indicate a property possessed by a regular arrangement of more-or-less identical units […]” (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"With each pattern, small piecework is standardized into a larger chunk or unit. Patterns become the building blocks for design and construction. Finding and applying patterns indicates progress in a field of human endeavor." (Peter Coad, "Object-Oriented Pattern", 1992)

"The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"It is commonly said that a pattern, however it is written, has four essential parts: a statement of the context where the pattern is useful, the problem that the pattern addresses, the forces that play in forming a solution, and the solution that resolves those forces. [...] it supports the definition of a pattern as 'a solution to a problem in a context', a definition that [unfortunately] fixes the bounds of the pattern to a single problem-solution pair." (Martin Fowler, "Analysis Patterns: Reusable Object Models", 1997) 

"Complexity is looking at interacting elements and asking how they form patterns and how the patterns unfold. It’s important to point out that the patterns may never be finished. They’re open-ended. In standard science this hit some things that most scientists have a negative reaction to. Science doesn’t like perpetual novelty." (W Brian Arthur, 1999)

"Knowledge is encoded in models. Models are synthetic sets of rules, and pictures, and algorithms providing us with useful representations of the world of our perceptions and of their patterns." (Didier Sornette, "Why Stock Markets Crash - Critical Events in Complex Systems", 2003) 

"[...] when data is presented in certain ways, the patterns can be readily perceived. If we can understand how perception works, our knowledge can be translated into rules for displaying information. Following perception‐based rules, we can present our data in such a way that the important and informative patterns stand out. If we disobey the rules, our data will be incomprehensible or misleading." (Colin Ware, "Information Visualization: Perception for Design" 2nd Ed., 2004)

"Exploratory Data Analysis is more than just a collection of data-analysis techniques; it provides a philosophy of how to dissect a data set. It stresses the power of visualisation and aspects such as what to look for, how to look for it and how to interpret the information it contains. Most EDA techniques are graphical in nature, because the main aim of EDA is to explore data in an open-minded way. Using graphics, rather than calculations, keeps open possibilities of spotting interesting patterns or anomalies that would not be apparent with a calculation (where assumptions and decisions about the nature of the data tend to be made in advance)." (Alan Graham, "Developing Thinking in Statistics", 2006) 

"It is the consistency of the information that matters for a good story, not its completeness. Indeed, you will often find that knowing little makes it easier to fit everything you know into a coherent pattern." (Daniel Kahneman, "Thinking, Fast and Slow", 2011) 

"Randomness might be defined in terms of order - its absence, that is. […] Everything we care about lies somewhere in the middle, where pattern and randomness interlace." (James Gleick, "The Information: A History, a Theory, a Flood", 2011)

"Finding patterns is easy in any kind of data-rich environment […] The key is in determining whether the patterns represent signal or noise." (Nate Silver, "The Signal and the Noise: Why So Many Predictions Fail-but Some Don’t", 2012)

"Another way to secure statistical significance is to use the data to discover a theory. Statistical tests assume that the researcher starts with a theory, collects data to test the theory, and reports the results - whether statistically significant or not. Many people work in the other direction, scrutinizing the data until they find a pattern and then making up a theory that fits the pattern." (Gary Smith, "Standard Deviations", 2014)

"Graphs can help us interpret data and draw inferences. They can help us see tendencies, patterns, trends, and relationships. A picture can be worth not only a thousand words, but a thousand numbers. However, a graph is essentially descriptive - a picture meant to tell a story. As with any story, bumblers may mangle the punch line and the dishonest may lie." (Gary Smith, "Standard Deviations", 2014)

"[…] regard it in fact as the great advantage of the mathematical technique that it allows us to describe, by means of algebraic equations, the general character of a pattern even where we are ignorant of the numerical values which will determine its particular manifestation." (Friedrich A von Hayek, "The Market and Other Orders", 2014)

"Remember that even random coin flips can yield striking, even stunning, patterns that mean nothing at all. When someone shows you a pattern, no matter how impressive the person’s credentials, consider the possibility that the pattern is just a coincidence. Ask why, not what. No matter what the pattern, the question is: Why should we expect to find this pattern?" (Gary Smith, "Standard Deviations", 2014)

"We are hardwired to make sense of the world around us - to notice patterns and invent theories to explain these patterns. We underestimate how easily pat - terns can be created by inexplicable random events - by good luck and bad luck." (Gary Smith, "Standard Deviations", 2014)

"A pattern is a design or model that helps grasp something. Patterns help connect things that may not appear to be connected. Patterns help cut through complexity and reveal simpler understandable trends. […] Patterns can be temporal, which is something that regularly occurs over time. Patterns can also be spatial, such as things being organized in a certain way. Patterns can be functional, in that doing certain things leads to certain effects. Good patterns are often symmetric. They echo basic structures and patterns that we are already aware of." (Anil K. Maheshwari, "Business Intelligence and Data Mining", 2015)

"When visuals are applied to data, they can enlighten the audience to insights that they wouldn’t see without charts or graphs. Many interesting patterns and outliers in the data would remain hidden in the rows and columns of data tables without the help of data visualizations. They connect with our visual nature as human beings and impart knowledge that couldn’t be obtained as easily using other approaches that involve just words or numbers." (Brent Dykes, "Effective Data Storytelling: How to Drive Change with Data, Narrative and Visuals", 2019)

More quotes on "Patterns" at the-web-of-knowledge.blogspot.com

28 December 2018

🔭Data Science: Statistics' (Mis)usage (Just the Quotes)

"A witty statesman said, you might prove anything by figures." (Thomas Carlyle, Chartism, 1840)

"It is difficult to understand why statisticians commonly limit their inquiries to Averages, and do not revel in more comprehensive views. Their souls seem as dull to the charm of variety as that of the native of one of our flat English counties, whose retrospect of Switzerland was that, if its mountains could be thrown into its lakes, two nuisances would be got rid of at once. An Average is but a solitary fact, whereas if a single other fact be added to it, an entire Normal Scheme, which nearly corresponds to the observed one, starts potentially into existence." (Sir Francis Galton, "Natural Inheritance", 1889)

"No doubt statistics can be easily misinterpreted; and are often very misleading when first applied to new problems. But many of the worst fallacies involved in the misapplications of statistics are definite and can be definitely exposed, till at last no one ventures to repeat them even when addressing an uninstructed audience: and on the whole arguments which can be reduced to statistical forms, though still in a backward condition, are making more sure and more rapid advances than any others towards obtaining the general acceptance of all who have studied the subjects to which they refer." (Alfred Marshall, "Principles of Economics", 1890)

"A statistical estimate may be good or bad, accurate or the reverse; but in almost all cases it is likely to be more accurate than a casual observer’s impression, and the nature of things can only be disproved by statistical methods." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"Some of the common ways of producing a false statistical argument are to quote figures without their context, omitting the cautions as to their incompleteness, or to apply them to a group of phenomena quite different to that to which they in reality relate; to take these estimates referring to only part of a group as complete; to enumerate the events favorable to an argument, omitting the other side; and to argue hastily from effect to cause, this last error being the one most often fathered on to statistics. For all these elementary mistakes in logic, statistics is held responsible." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"Statistics may, for instance, be called the science of counting. Counting appears at first sight to be a very simple operation, which any one can perform or which can be done automatically; but, as a matter of fact, when we come to large numbers, e.g., the population of the United Kingdom, counting is by no means easy, or within the power of an individual; limits of time and place alone prevent it being so carried out, and in no way can absolute accuracy be obtained when the numbers surpass certain limits." (Sir Arthur L Bowley, "Elements of Statistics", 1901)

"Figures may not lie, but statistics compiled unscientifically and analyzed incompetently are almost sure to be misleading, and when this condition is unnecessarily chronic the so-called statisticians may be called liars." (Edwin B Wilson, "Bulletin of the American Mathematical Society", Vol 18, 1912)

"Great discoveries which give a new direction to currents of thoughts and research are not, as a rule, gained by the accumulation of vast quantities of figures and statistics. These are apt to stifle and asphyxiate and they usually follow rather than precede discovery. The great discoveries are due to the eruption of genius into a closely related field, and the transfer of the precious knowledge there found to his own domain." (Theobald Smith, Boston Medical and Surgical Journal Volume 172, 1915)

"Of itself an arithmetic average is more likely to conceal than to disclose important facts; it is the nature of an abbreviation, and is often an excuse for laziness." (Arthur L Bowley, "The Nature and Purpose of the Measurement of Social Phenomena", 1915)

"Averages are like the economic man; they are inventions, not real. When applied to salaries they hide gaunt poverty at the lower end." (Julia Lathrop, 1919)

"A method is a dangerous thing unless its underlying philosophy is understood, and none more dangerous than the statistical. […] Over-attention to technique may actually blind one to the dangers that lurk about on every side- like the gambler who ruins himself with his system carefully elaborated to beat the game. In the long run it is only clear thinking, experienced methods, that win the strongholds of science." (Edwin B Wilson, "The Statistical Significance of Experimental Data", Science, Volume 58 (1493), 1923)

"[…] the methods of statistics are so variable and uncertain, so apt to be influenced by circumstances, that it is never possible to be sure that one is operating with figures of equal weight." (Havelock Ellis, "The Dance of Life", 1923)

"No human mind is capable of grasping in its entirety the meaning of any considerable quantity of numerical data." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)

"The preliminary examination of most data is facilitated by the use of diagrams. Diagrams prove nothing, but bring outstanding features readily to the eye; they are therefore no substitutes for such critical tests as may be applied to the data, but are valuable in suggesting such tests, and in explaining the conclusions founded upon them." (Sir Ronald A Fisher, "Statistical Methods for Research Workers", 1925)

"Without an adequate understanding of the statistical methods, the investigator in the social sciences may be like the blind man groping in a dark room for a black cat that is not there. The methods of Statistics are useful in an over-widening range of human activities in any field of thought in which numerical data may be had." (Frederick E Croxton & Dudley J Cowden, "Practical Business Statistics", 1937)

"In earlier times they had no statistics and so they had to fall back on lies. Hence the huge exaggerations of primitive literature, giants, miracles, wonders! It's the size that counts. They did it with lies and we do it with statistics: but it's all the same." (Stephen Leacock, "Model memoirs and other sketches from simple to serious", 1939)

"It has long been recognized by public men of all kinds […] that statistics come under the head of lying, and that no lie is so false or inconclusive as that which is based on statistics." (Hilaire Belloc, "The Silence of the Sea", 1940)

"The enthusiastic use of statistics to prove one side of a case is not open to criticism providing the work is honestly and accurately done, and providing the conclusions are not broader than indicated by the data. This type of work must not be confused with the unfair and dishonest use of both accurate and inaccurate data, which too commonly occurs in business. Dishonest statistical work usually takes the form of: (1) deliberate misinterpretation of data; (2) intentional making of overestimates or underestimates; and (3) biasing results by using partial data, making biased surveys, or using wrong statistical methods." (John R Riggleman & Ira N Frisbee, "Business Statistics", 1951)

"By the laws of statistics we could probably approximate just how unlikely it is that it would happen. But people forget - especially those who ought to know better, such as yourself - that while the laws of statistics tell you how unlikely a particular coincidence is, they state just as firmly that coincidences do happen." (Robert A Heinlein, "The Door Into Summer", 1957)

"The statistics themselves prove nothing; nor are they at any time a substitute for logical thinking. There are […] many simple but not always obvious snags in the data to contend with. Variations in even the simplest of figures may conceal a compound of influences which have to be taken into account before any conclusions are drawn from the data." (Alfred R Ilersic, "Statistics", 1959)

"Many people use statistics as a drunkard uses a street lamp - for support rather than illumination. It is not enough to avoid outright falsehood; one must be on the alert to detect possible distortion of truth. One can hardly pick up a newspaper without seeing some sensational headline based on scanty or doubtful data." (Anna C Rogers, "Graphic Charts Handbook", 1961)

"Myth is more individual and expresses life more precisely than does science. Science works with concepts of averages which are far too general to do justice to the subjective variety of an individual life." (Carl G Jung, "Memories, Dreams, Reflections", 1963)

"It has been said that data collection is like garbage collection: before you collect it you should have in mind what you are going to do with it." (Russell Fox et al, "The Science of Science", 1964)

"[…] statistical techniques are tools of thought, and not substitutes for thought." (Abraham Kaplan, "The Conduct of Inquiry", 1964)

"He who accepts statistics indiscriminately will often be duped unnecessarily. But he who distrusts statistics indiscriminately will often be ignorant unnecessarily. There is an accessible alternative between blind gullibility and blind distrust. It is possible to interpret statistics skillfully. The art of interpretation need not be monopolized by statisticians, though, of course, technical statistical knowledge helps. Many important ideas of technical statistics can be conveyed to the non-statistician without distortion or dilution. Statistical interpretation depends not only on statistical ideas but also on ordinary clear thinking. Clear thinking is not only indispensable in interpreting statistics but is often sufficient even in the absence of specific statistical knowledge. For the statistician not only death and taxes but also statistical fallacies are unavoidable. With skill, common sense, patience and above all objectivity, their frequency can be reduced and their effects minimised. But eternal vigilance is the price of freedom from serious statistical blunders." (W Allen Wallis & Harry V Roberts, "The Nature of Statistics", 1965)

"The manipulation of statistical formulas is no substitute for knowing what one is doing." (Hubert M Blalock Jr., "Social Statistics" 2nd Ed., 1972)

"Confidence in the omnicompetence of statistical reasoning grows by what it feeds on." (Harry Hopkins, "The Numbers Game: The Bland Totalitarianism", 1973)

"Probably one of the most common misuses (intentional or otherwise) of a graph is the choice of the wrong scale - wrong, that is, from the standpoint of accurate representation of the facts. Even though not deliberate, selection of a scale that magnifies or reduces - even distorts - the appearance of a curve can mislead the viewer." (Peter H Selby, "Interpreting Graphs and Tables", 1976)

"No matter how much reverence is paid to anything purporting to be ‘statistics’, the term has no meaning unless the source, relevance, and truth are all checked." (Tom Burnam, "The Dictionary of Misinformation", 1975)

"Crude measurement usually yields misleading, even erroneous conclusions no matter how sophisticated a technique is used." (Henry T Reynolds, "Analysis of Nominal Data", 1977)

"Graphs are used to meet the need to condense all the available information into a more usable quantity. The selection process of combining and condensing will inevitably produce a less than complete study and will lead the user in certain directions, producing a potential for misleading." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"It is all too easy to notice the statistical sea that supports our thoughts and actions. If that sea loses its buoyancy, it may take a long time to regain the lost support." (William Kruskal, "Coordination Today: A Disaster or a Disgrace", The American Statistician, Vol. 37, No. 3, 1983)

"There are two kinds of misrepresentation. In one. the numerical data do not agree with the data in the graph, or certain relevant data are omitted. This kind of misleading presentation. while perhaps hard to determine, clearly is wrong and can be avoided. In the second kind of misrepresentation, the meaning of the data is different to the preparer and to the user." (Anker V Andersen, "Graphing Financial Information: How accountants can use graphs to communicate", 1983)

"’Common sense’ is not common but needs to [be] learnt systematically […]. A ‘simple analysis’ can be harder than it looks […]. All statistical techniques, however sophisticated, should be subordinate to subjective judgment." (Christopher Chatfield, "The Initial Examination of Data", Journal of The Royal Statistical Society, Series A, Vol. 148, 1985)

"The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data." (John Tukey, The American Statistician, 40 (1), 1986)

"Beware of the problem of testing too many hypotheses; the more you torture the data, the more likely they are to confess, but confessions obtained under duress may not be admissible in the court of scientific opinion." (Stephen M. Stigler, "Neutral Models in Biology", 1987)

"[In statistics] you have the fact that the concepts are not very clean. The idea of probability, of randomness, is not a clean mathematical idea. You cannot produce random numbers mathematically. They can only be produced by things like tossing dice or spinning a roulette wheel. With a formula, any formula, the number you get would be predictable and therefore not random. So as a statistician you have to rely on some conception of a world where things happen in some way at random, a conception which mathematicians don’t have." (Lucien LeCam, [interview] 1988)

"Torture numbers, and they will confess to anything." (Gregg Easterbrook, "New Republic", 1989)

"Statistics is a very powerful and persuasive mathematical tool. People put a lot of faith in printed numbers. It seems when a situation is described by assigning it a numerical value, the validity of the report increases in the mind of the viewer. It is the statistician's obligation to be aware that data in the eyes of the uninformed or poor data in the eyes of the naive viewer can be as deceptive as any falsehoods." (Theoni Pappas, "More Joy of Mathematics: Exploring mathematical insights & concepts", 1991)

"When looking at the end result of any statistical analysis, one must be very cautious not to over interpret the data. Care must be taken to know the size of the sample, and to be certain the method for gathering information is consistent with other samples gathered. […] No one should ever base conclusions without knowing the size of the sample and how random a sample it was. But all too often such data is not mentioned when the statistics are given - perhaps it is overlooked or even intentionally omitted." (Theoni Pappas, "More Joy of Mathematics: Exploring mathematical insights & concepts", 1991)

"[…] an honest exploratory study should indicate how many comparisons were made […] most experts agree that large numbers of comparisons will produce apparently statistically significant findings that are actually due to chance. The data torturer will act as if every positive result confirmed a major hypothesis. The honest investigator will limit the study to focused questions, all of which make biologic sense. The cautious reader should look at the number of ‘significant’ results in the context of how many comparisons were made." (James L Mills, "Data torturing", New England Journal of Medicine, 1993)

"Fairy tales lie just as much as statistics do, but sometimes you can find a grain of truth in them." (Sergei Lukyanenko, "The Night Watch", 1998)

"Averages, ranges, and histograms all obscure the time-order for the data. If the time-order for the data shows some sort of definite pattern, then the obscuring of this pattern by the use of averages, ranges, or histograms can mislead the user. Since all data occur in time, virtually all data will have a time-order. In some cases this time-order is the essential context which must be preserved in the presentation." (Donald J Wheeler," Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"No comparison between two values can be global. A simple comparison between the current figure and some previous value and convey the behavior of any time series. […] While it is simple and easy to compare one number with another number, such comparisons are limited and weak. They are limited because of the amount of data used, and they are weak because both of the numbers are subject to the variation that is inevitably present in weak world data. Since both the current value and the earlier value are subject to this variation, it will always be difficult to determine just how much of the difference between the values is due to variation in the numbers, and how much, if any, of the difference is due to real changes in the process." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Without meaningful data there can be no meaningful analysis. The interpretation of any data set must be based upon the context of those data. Unfortunately, much of the data reported to executives today are aggregated and summed over so many different operating units and processes that they cannot be said to have any context except a historical one - they were all collected during the same time period. While this may be rational with monetary figures, it can be devastating to other types of data." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Since the average is a measure of location, it is common to use averages to compare two data sets. The set with the greater average is thought to ‘exceed’ the other set. While such comparisons may be helpful, they must be used with caution. After all, for any given data set, most of the values will not be equal to the average." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Innumeracy - widespread confusion about basic mathematical ideas - means that many statistical claims about social problems don't get the critical attention they deserve. This is not simply because an innumerate public is being manipulated by advocates who cynically promote inaccurate statistics. Often, statistics about social problems originate with sincere, well-meaning people who are themselves innumerate; they may not grasp the full implications of what they are saying. Similarly, the media are not immune to innumeracy; reporters commonly repeat the figures their sources give them without bothering to think critically about them." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Not all statistics start out bad, but any statistic can be made worse. Numbers - even good numbers - can be misunderstood or misinterpreted. Their meanings can be stretched, twisted, distorted, or mangled. These alterations create what we can call mutant statistics - distorted versions of the original figures." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"The ease with which somewhat complex statistics can produce confusion is important, because we live in a world in which complex numbers are becoming more common. Simple statistical ideas - fractions, percentages, rates - are reasonably well understood by many people. But many social problems involve complex chains of cause and effect that can be understood only through complicated models developed by experts. [...] environment has an influence. Sorting out the interconnected causes of these problems requires relatively complicated statistical ideas - net additions, odds ratios, and the like. If we have an imperfect understanding of these ideas, and if the reporters and other people who relay the statistics to us share our confusion - and they probably do - the chances are good that we'll soon be hearing - and repeating, and perhaps making decisions on the basis of - mutated statistics." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"While some social problems statistics are deliberate deceptions, many - probably the great majority - of bad statistics are the result of confusion, incompetence, innumeracy, or selective, self-righteous efforts to produce numbers that reaffirm principles and interests that their advocates consider just and right. The best response to stat wars is not to try and guess who's lying or, worse, simply to assume that the people we disagree with are the ones telling lies. Rather, we need to watch for the standard causes of bad statistics - guessing, questionable definitions or methods, mutant numbers, and inappropriate comparisons." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"This is true only if you torture the statistics until they produce the confession you want." (Larry Schweikart, "Myths of the 1980s Distort Debate over Tax Cuts", 2001) [source]

"Every number has its limitations; every number is a product of choices that inevitably involve compromise. Statistics are intended to help us summarize, to get an overview of part of the world’s complexity. But some information is always sacrificed in the process of choosing what will be counted and how. Something is, in short, always missing. In evaluating statistics, we should not forget what has been lost, if only because this helps us understand what we still have." (Joel Best, "More Damned Lies and Statistics: How numbers confuse public issues", 2004)

"In short, some numbers are missing from discussions of social issues because certain phenomena are hard to quantify, and any effort to assign numeric values to them is subject to debate. But refusing to somehow incorporate these factors into our calculations creates its own hazards. The best solution is to acknowledge the difficulties we encounter in measuring these phenomena, debate openly, and weigh the options as best we can." (Joel Best, "More Damned Lies and Statistics : How numbers confuse public issues", 2004)

"Another way to obscure the truth is to hide it with relative numbers. […] Relative scales are always given as percentages or proportions. An increase or decrease of a given percentage only tells us part of the story, however. We are missing the anchoring of absolute values." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"A sin of omission – leaving something out – is a strong one and not always recognized; itʼs hard to ask for something you donʼt know is missing. When looking into the data, even before it is graphed and charted, there is potential for abuse. Simply not having all the data or the correct data before telling your story can cause problems and unhappy endings." (Brian Suda, "A Practical Guide to Designing with Data", 2010)

"The omission of zero magnifies the ups and downs in the data, allowing us to detect changes that might otherwise be ambiguous. However, once zero has been omitted, the graph is no longer an accurate guide to the magnitude of the changes. Instead, we need to look at the actual numbers." (Gary Smith, "Standard Deviations", 2014)

"The search for better numbers, like the quest for new technologies to improve our lives, is certainly worthwhile. But the belief that a few simple numbers, a few basic averages, can capture the multifaceted nature of national and global economic systems is a myth. Rather than seeking new simple numbers to replace our old simple numbers, we need to tap into both the power of our information age and our ability to construct our own maps of the world to answer the questions we need answering." (Zachary Karabell, "The Leading Indicators: A short history of the numbers that rule our world", 2014)

"Even properly done statistics can’t be trusted. The plethora of available statistical techniques and analyses grants researchers an enormous amount of freedom when analyzing their data, and it is trivially easy to ‘torture the data until it confesses’." (Alex Reinhart, "Statistics Done Wrong: The Woefully Complete Guide", 2015)

"GIGO is a famous saying coined by early computer scientists: garbage in, garbage out. At the time, people would blindly put their trust into anything a computer output indicated because the output had the illusion of precision and certainty. If a statistic is composed of a series of poorly defined measures, guesses, misunderstandings, oversimplifications, mismeasurements, or flawed estimates, the resulting conclusion will be flawed." (Daniel J Levitin, "Weaponized Lies", 2017)

"Most of us have difficulty figuring probabilities and statistics in our heads and detecting subtle patterns in complex tables of numbers. We prefer vivid pictures, images, and stories. When making decisions, we tend to overweight such images and stories, compared to statistical information. We also tend to misunderstand or misinterpret graphics." (Daniel J Levitin, "Weaponized Lies", 2017)

"If we don’t understand the statistics, we’re likely to be badly mistaken about the way the world is. It is all too easy to convince ourselves that whatever we’ve seen with our own eyes is the whole truth; it isn’t. Understanding causation is tough even with good statistics, but hopeless without them. [...] And yet, if we understand only the statistics, we understand little. We need to be curious about the world that we see, hear, touch, and smell, as well as the world we can examine through a spreadsheet." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

"Do not put faith in what statistics say until you have carefully considered what they do not say." (William W Watt)

"Errors using inadequate data are much less than those using no data at all." (Charles Babbage)

"Facts are stubborn things, but statistics are pliable." (Mark Twain)

"I can prove anything by statistics except the truth." (George Canning

"If the statistics are boring, you've got the wrong numbers." (Edward Tufte)

"If your experiment needs statistics, you ought to have done a better experiment." (Ernest Rutherford)

"It is easy to lie with statistics. It is hard to tell the truth without it." (Andrejs Dunkels)

27 December 2018

🔭Data Science: Experiment (Just the Quotes)

"Those who have not imbibed the prejudices of philosophers, are easily convinced that natural knowledge is to be founded on experiment and observation." (Colin Maclaurin, "An Account of Sir Isaac Newton’s Philosophical Discoveries", 1748)

"We have three principal means: observation of nature, reflection, and experiment. Observation gathers the facts reflection combines them, experiment verifies the result of the combination. It is essential that the observation of nature be assiduous, that reflection be profound, and that experimentation be exact. Rarely does one see these abilities in combination. And so, creative geniuses are not common." (Denis Diderot, "On the Interpretation of Nature", 1753)

"Facts, observations, experiments - these are the materials of a great edifice, but in assembling them we must combine them into classes, distinguish which belongs to which order and to which part of the whole each pertains." (Antoine L Lavoisier, "Mémoires de l’Académie Royale des Sciences", 1777)

"The art of drawing conclusions from experiments and observations consists in evaluating probabilities and in estimating whether they are sufficiently great or numerous enough to constitute proofs. This kind of calculation is more complicated and more difficult than it is commonly thought to be […]" (Antoine-Laurent Lavoisier, cca. 1790)

"We must trust to nothing but facts: These are presented to us by Nature, and cannot deceive. We ought, in every instance, to submit our reasoning to the test of experiment, and never to search for truth but by the natural road of experiment and observation." (Antoin-Laurent de Lavoisiere, "Elements of Chemistry", 1790)

"Conjecture may lead you to form opinions, but it cannot produce knowledge. Natural philosophy must be built upon the phenomena of nature discovered by observation and experiment." (George Adams, "Lectures on Natural and Experimental Philosophy" Vol. 1, 1794)

"[Precision] is the very soul of science; and its attainment afford the only criterion, or at least the best, of the truth of theories, and the correctness of experiments." (John F W Herschel, "A Preliminary Discourse on the Study of Natural Philosophy", 1830)

"The hypothesis, by suggesting observations and experiments, puts us upon the road to that independent evidence if it be really attainable; and till it be attained, the hypothesis ought not to count for more than a suspicion." (John S Mill, "A System of Logic, Ratiocinative and Inductive", 1843)

"The framing of hypotheses is, for the enquirer after truth, not the end, but the beginning of his work. Each of his systems is invented, not that he may admire it and follow it into all its consistent consequences, but that he may make it the occasion of a course of active experiment and observation. And if the results of this process contradict his fundamental assumptions, however ingenious, however symmetrical, however elegant his system may be, he rejects it without hesitation. He allows no natural yearning for the offspring of his own mind to draw him aside from the higher duty of loyalty to his sovereign, Truth, to her he not only gives his affections and his wishes, but strenuous labour and scrupulous minuteness of attention." (William Whewell, "Philosophy of the Inductive Sciences" Vol. 2, 1847)

"An anticipative idea or an hypothesis is, then, the necessary starting point for all experimental reasoning. Without it, we could not make any investigation at all nor learn anything; we could only pile up sterile observations. If we experiment without a preconceived idea, we should move at random […]" (Claude Bernard, "An Introduction to the Study of Experimental Medicine", 1865)

"Isolated facts and experiments have in themselves no value, however great their number may be. They only become valuable in a theoretical or practical point of view when they make us acquainted with the law of a series of uniformly recurring phenomena, or, it may be, only give a negative result showing an incompleteness in our knowledge of such a law, till then held to be perfect." (Hermann von Helmholtz, "The Aim and Progress of Physical Science", 1869)

"It is surprising to learn the number of causes of error which enter into the simplest experiment, when we strive to attain rigid accuracy." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"A discoverer is a tester of scientific ideas; he must not only be able to imagine likely hypotheses, and to select suitable ones for investigation, but, as hypotheses may be true or untrue, he must also be competent to invent appropriate experiments for testing them, and to devise the requisite apparatus and arrangements." (George Gore, "The Art of Scientific Discovery", 1878)

"Even one well-made observation will be enough in many cases, just as one well-constructed experiment often suffices for the establishment of a law." (Émile Durkheim, "The Rules of Sociological Method", "The Rules of Sociological Method", 1895)

"Every experiment, every observation has, besides its immediate result, effects which, in proportion to its value, spread always on all sides into ever distant parts of knowledge." (Sir Michael Foster, "Annual Report of the Board of Regents of the Smithsonian Institution", 1898)

"If the number of experiments be very large, we may have precise information as to the value of the mean, but if our sample be small, we have two sources of uncertainty: (I) owing to the 'error of random sampling' the mean of our series of experiments deviates more or less widely from the mean of the population, and (2) the sample is not sufficiently large to determine what is the law of distribution of individuals." William S Gosset, "The Probable Error of a Mean", Biometrika, 1908)

"An experiment is an observation that can be repeated, isolated and varied. The more frequently you can repeat an observation, the more likely are you to see clearly what is there and to describe accurately what you have seen. The more strictly you can isolate an observation, the easier does your task of observation become, and the less danger is there of your being led astray by irrelevant circumstances, or of placing emphasis on the wrong point. The more widely you can vary an observation, the more clearly will be the uniformity of experience stand out, and the better is your chance of discovering laws." (Edward B Titchener, "A Text-Book of Psychology", 1909)

"Theory is the best guide for experiment - that were it not for theory and the problems and hypotheses that come out of it, we would not know the points we wanted to verify, and hence would experiment aimlessly" (Henry Hazlitt,  "Thinking as a Science", 1916)

"A scientist, whether theorist or experimenter, puts forward statements, or systems of statements, and tests them step by step. In the field of the empirical sciences, more particularly, he constructs hypotheses, or systems of theories, and tests them against experience by observation and experiment." (Karl Popper, "The Logic of Scientific Discovery", 1934)

"While it is true that theory often sets difficult, if not impossible tasks for the experiment, it does, on the other hand, often lighten the work of the experimenter by disclosing cogent relationships which make possible the indirect determination of inaccessible quantities and thus render difficult measurements unnecessary." (Georg Joos, "Theoretical Physics", 1934)

"In relation to any experiment we may speak of this hypothesis as the null hypothesis, and it should be noted that the null hypothesis is never proved or established, but is possibly disproved, in the course of experimentation. Every experiment may be said to exist only in order to give the facts a chance of disproving the null hypothesis." (Ronald Fisher, "The Design of Experiments", 1935)

"Statistics is a scientific discipline concerned with collection, analysis, and interpretation of data obtained from observation or experiment. The subject has a coherent structure based on the theory of Probability and includes many different procedures which contribute to research and development throughout the whole of Science and Technology." (Egon Pearson, 1936)

"Experiment as compared with mere observation has some of the characteristics of cross-examining nature rather than merely overhearing her." (Alan Gregg, "The Furtherance of Medical Research", 1941)

"The well-known virtue of the experimental method is that it brings situational variables under tight control. It thus permits rigorous tests of hypotheses and confidential statements about causation. The correlational method, for its part, can study what man has not learned to control. Nature has been experimenting since the beginning of time, with a boldness and complexity far beyond the resources of science. The correlator’s mission is to observe and organize the data of nature’s experiments." (Lee J Cronbach, "The Two Disciplines of Scientific Psychology", The American Psychologist Vol. 12, 1957)

"A satisfactory prediction of the sequential properties of learning data from a single experiment is by no means a final test of a model. Numerous other criteria - and some more demanding - can be specified. For example, a model with specific numerical parameter values should be invariant to changes in independent variables that explicitly enter in the model." (Robert R Bush & Frederick Mosteller,"A Comparison of Eight Models?", Studies in Mathematical Learning Theory, 1959)

"Mathematical statistics provides an exceptionally clear example of the relationship between mathematics and the external world. The external world provides the experimentally measured distribution curve; mathematics provides the equation (the mathematical model) that corresponds to the empirical curve. The statistician may be guided by a thought experiment in finding the corresponding equation." (Marshall J Walker, "The Nature of Scientific Thought", 1963)

"Observation, reason, and experiment make up what we call the scientific method. (Richard Feynman, "Mainly mechanics, radiation, and heat", 1963)

"Science consists simply of the formulation and testing of hypotheses based on observational evidence; experiments are important where applicable, but their function is merely to simplify observation by imposing controlled conditions." (Henry L Batten, "Evolution of the Earth", 1971)

"In moving from conjecture to experimental data, (D), experiments must be designed which make best use of the experimenter's current state of knowledge and which best illuminate his conjecture. In moving from data to modified conjecture, (A), data must be analyzed so as to accurately present information in a manner which is readily understood by the experimenter." (George E P Box & George C Tjao, "Bayesian Inference in Statistical Analysis", 1973)

"Statistical methods are tools of scientific investigation. Scientific investigation is a controlled learning process in which various aspects of a problem are illuminated as the study proceeds. It can be thought of as a major iteration within which secondary iterations occur. The major iteration is that in which a tentative conjecture suggests an experiment, appropriate analysis of the data so generated leads to a modified conjecture, and this in turn leads to a new experiment, and so on." (George E P Box & George C Tjao, "Bayesian Inference in Statistical Analysis", 1973)

"A hypothesis is empirical or scientific only if it can be tested by experience. […] A hypothesis or theory which cannot be, at least in principle, falsified by empirical observations and experiments does not belong to the realm of science." (Francisco J Ayala, "Biological Evolution: Natural Selection or Random Walk", American Scientist, 1974)

"An experiment is a failure only when it also fails adequately to test the hypothesis in question, when the data it produces don't prove anything one way or the other." (Robert M Pirsig, "Zen and the Art of Motorcycle Maintenance", 1974)

"The essential function of a hypothesis consists in the guidance it affords to new observations and experiments, by which our conjecture is either confirmed or refuted." (Ernst Mach, "Knowledge and Error: Sketches on the Psychology of Enquiry", 1976)

"Theoretical scientists, inching away from the safe and known, skirting the point of no return, confront nature with a free invention of the intellect. They strip the discovery down and wire it into place in the form of mathematical models or other abstractions that define the perceived relation exactly. The now-naked idea is scrutinized with as much coldness and outward lack of pity as the naturally warm human heart can muster. They try to put it to use, devising experiments or field observations to test its claims. By the rules of scientific procedure it is then either discarded or temporarily sustained. Either way, the central theory encompassing it grows. If the abstractions survive they generate new knowledge from which further exploratory trips of the mind can be planned. Through the repeated alternation between flights of the imagination and the accretion of hard data, a mutual agreement on the workings of the world is written, in the form of natural law." (Edward O Wilson, "Biophilia", 1984)

"The only touchstone for empirical truth is experiment and observation." (Heinz Pagels, "Perfect Symmetry: The Search for the Beginning of Time", 1985)

"Any physical theory is always provisional, in the sense that it is only a hypothesis: you can never prove it. No matter how many times the results of experiments agree with some theory, you can never be sure that the next time the result will not contradict the theory." (Stephen Hawking,  "A Brief History of Time", 1988)

"Scientists use mathematics to build mental universes. They write down mathematical descriptions - models - that capture essential fragments of how they think the world behaves. Then they analyse their consequences. This is called 'theory'. They test their theories against observations: this is called 'experiment'. Depending on the result, they may modify the mathematical model and repeat the cycle until theory and experiment agree. Not that it's really that simple; but that's the general gist of it, the essence of the scientific method." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"Clearly, science is not simply a matter of observing facts. Every scientific theory also expresses a worldview. Philosophical preconceptions determine where facts are sought, how experiments are designed, and which conclusions are drawn from them." (Nancy R Pearcey & Charles B. Thaxton, "The Soul of Science: Christian Faith and Natural Philosophy", 1994)

"Probability theory is an ideal tool for formalizing uncertainty in situations where class frequencies are known or where evidence is based on outcomes of a sufficiently long series of independent random experiments. Possibility theory, on the other hand, is ideal for formalizing incomplete information expressed in terms of fuzzy propositions." (George Klir, "Fuzzy sets and fuzzy logic", 1995)

"The methods of science include controlled experiments, classification, pattern recognition, analysis, and deduction. In the humanities we apply analogy, metaphor, criticism, and (e)valuation. In design we devise alternatives, form patterns, synthesize, use conjecture, and model solutions." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"[…] because observations are all we have, we take them seriously. We choose hard data and the framework of mathematics as our guides, not unrestrained imagination or unrelenting skepticism, and seek the simplest yet most wide-reaching theories capable of explaining and predicting the outcome of today’s and future experiments." (Brian Greene, "The Fabric of the Cosmos", 2004)

"In science, for a theory to be believed, it must make a prediction - different from those made by previous theories - for an experiment not yet done. For the experiment to be meaningful, we must be able to get an answer that disagrees with that prediction. When this is the case, we say that a theory is falsifiable - vulnerable to being shown false. The theory also has to be confirmable, it must be possible to verify a new prediction that only this theory makes. Only when a theory has been tested and the results agree with the theory do we advance the statement to the rank of a true scientific theory." (Lee Smolin, "The Trouble with Physics", 2006)

"Observation and experiment, without a rational hypothesis, is like a man groping at objects at random with his eyes shut." (Henry P Tappan, "Elements of Logic", 2015)

"The dialectical interplay of experiment and theory is a key driving force of modern science. Experimental data do only have meaning in the light of a particular model or at least a theoretical background. Reversely theoretical considerations may be logically consistent as well as intellectually elegant: Without experimental evidence they are a mere exercise of thought no matter how difficult they are. Data analysis is a connector between experiment and theory: Its techniques advise possibilities of model extraction as well as model testing with experimental data." (Achim Zielesny, "From Curve Fitting to Machine Learning" 2nd Ed., 2016)

"If your experiment needs statistics, you ought to have done a better experiment." (Ernest Rutherford)

More quotes on "Experiment" at the-web-of-knowledge.blogspot.com

26 December 2018

🔭Data Science: Uncertainty (Just the Quotes)

"If the number of experiments be very large, we may have precise information as to the value of the mean, but if our sample be small, we have two sources of uncertainty: (I) owing to the 'error of random sampling' the mean of our series of experiments deviates more or less widely from the mean of the population, and (2) the sample is not sufficiently large to determine what is the law of distribution of individuals." William S Gosset, "The Probable Error of a Mean", Biometrika, 1908)

"The making of decisions, as everyone knows from personal experience, is a burdensome task. Offsetting the exhilaration that may result from correct and successful decision and the relief that follows the termination of a struggle to determine issues is the depression that comes from failure, or error of decision, and the frustration which ensues from uncertainty." (Chester I Barnard, "The Functions of the Executive", 1938)

"Uncertainty is introduced, however, by the impossibility of making generalizations, most of the time, which happens to all members of a class. Even scientific truth is a matter of probability and the degree of probability stops somewhere short of certainty." (Wayne C Minnick, "The Art of Persuasion", 1957)

"Statistics is a body of methods and theory applied to numerical evidence in making decisions in the face of uncertainty." (Lawrence Lapin, "Statistics for Modern Business Decisions", 1973)

"The most dominant decision type [that will have to be made in an organic organization] will be decisions under uncertainty." (Henry L Tosi & Stephen J Carroll, "Management", 1976)

"The greater the uncertainty, the greater the amount of decision making and information processing. It is hypothesized that organizations have limited capacities to process information and adopt different organizing modes to deal with task uncertainty. Therefore, variations in organizing modes are actually variations in the capacity of organizations to process information and make decisions about events which cannot be anticipated in advance." (John K Galbraith, "Organization Design", 1977)

"Probability is the mathematics of uncertainty. Not only do we constantly face situations in which there is neither adequate data nor an adequate theory, but many modem theories have uncertainty built into their foundations. Thus learning to think in terms of probability is essential. Statistics is the reverse of probability (glibly speaking). In probability you go from the model of the situation to what you expect to see; in statistics you have the observations and you wish to estimate features of the underlying model." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Probability plays a central role in many fields, from quantum mechanics to information theory, and even older fields use probability now that the presence of 'noise' is officially admitted. The newer aspects of many fields start with the admission of uncertainty." (Richard Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Models are often used to decide issues in situations marked by uncertainty. However statistical differences from data depend on assumptions about the process which generated these data. If the assumptions do not hold, the inferences may not be reliable either. This limitation is often ignored by applied workers who fail to identify crucial assumptions or subject them to any kind of empirical testing. In such circumstances, using statistical procedures may only compound the uncertainty." (David A Greedman & William C Navidi, "Regression Models for Adjusting the 1980 Census", Statistical Science Vol. 1 (1), 1986)

"The mathematical theories generally called 'mathematical theories of chance' actually ignore chance, uncertainty and probability. The models they consider are purely deterministic, and the quantities they study are, in the final analysis, no more than the mathematical frequencies of particular configurations, among all equally possible configurations, the calculation of which is based on combinatorial analysis. In reality, no axiomatic definition of chance is conceivable." (Maurice Allais, "An Outline of My Main Contributions to Economic Science", [Noble lecture] 1988)

"The worst, i.e., most dangerous, feature of 'accepting the null hypothesis' is the giving up of explicit uncertainty. [...] Mathematics can sometimes be put in such black-and-white terms, but our knowledge or belief about the external world never can." (John Tukey, "The Philosophy of Multiple Comparisons", Statistical Science Vol. 6 (1), 1991)

"In nonlinear systems - and the economy is most certainly nonlinear - chaos theory tells you that the slightest uncertainty in your knowledge of the initial conditions will often grow inexorably. After a while, your predictions are nonsense." (M Mitchell Waldrop, "Complexity: The Emerging Science at the Edge of Order and Chaos", 1992)

"Statistics as a science is to quantify uncertainty, not unknown." (Chamont Wang, "Sense and Nonsense of Statistical Inference: Controversy, Misuse, and Subtlety", 1993)

"There is a new science of complexity which says that the link between cause and effect is increasingly difficult to trace; that change (planned or otherwise) unfolds in non-linear ways; that paradoxes and contradictions abound; and that creative solutions arise out of diversity, uncertainty and chaos." (Andy P Hargreaves & Michael Fullan, "What’s Worth Fighting for Out There?", 1998)

"Information entropy has its own special interpretation and is defined as the degree of unexpectedness in a message. The more unexpected words or phrases, the higher the entropy. It may be calculated with the regular binary logarithm on the number of existing alternatives in a given repertoire. A repertoire of 16 alternatives therefore gives a maximum entropy of 4 bits. Maximum entropy presupposes that all probabilities are equal and independent of each other. Minimum entropy exists when only one possibility is expected to be chosen. When uncertainty, variety or entropy decreases it is thus reasonable to speak of a corresponding increase in information." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Any scientific data without (a stated) uncertainty is of no avail. Therefore the analysis and description of uncertainty are almost as important as those of the data value itself . It should be clear that the uncertainty itself also has an uncertainty – due to its nature as a scientific quantity – and so on. The uncertainty of an uncertainty is generally not determined." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"As uncertainties of scientific data values are nearly as important as the data values themselves, it is usually not acceptable that a best estimate is only accompanied by an estimated uncertainty. Therefore, only the size of nondominant uncertainties should be estimated. For estimating the size of a nondominant uncertainty we need to find its upper limit, i.e., we want to be as sure as possible that the uncertainty does not exceed a certain value." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"Before best estimates are extracted from data sets by way of a regression analysis, the uncertainties of the individual data values must be determined.In this case care must be taken to recognize which uncertainty components are common to all the values, i.e., those that are correlated (systematic)." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"Due to the theory that underlies uncertainties an infinite number of data values would be necessary to determine the true value of any quantity. In reality the number of available data values will be relatively small and thus this requirement can never be fully met; all one can get is the best estimate of the true value." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"For linear dependences the main information usually lies in the slope. It is obvious that those points that lie far apart have the strongest influence on the slope if all points have the same uncertainty. In this context we speak of the strong leverage of distant points; when determining the parameter 'slope' these distant points carry more effective weight. Naturally, this weight is distinct from the 'statistical' weight usually used in regression analysis." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"In error analysis the so-called 'chi-squared' is a measure of the agreement between the uncorrelated internal and the external uncertainties of a measured functional relation. The simplest such relation would be time independence. Theory of the chi-squared requires that the uncertainties be normally distributed. Nevertheless, it was found that the test can be applied to most probability distributions encountered in practice." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"In many cases systematic errors are interpreted as the systematic difference between nature (which is being questioned by the experimenter in his experiment) and the model (which is used to describe nature). If the model used is not good enough, but the measurement result is interpreted using this model, the final result (the interpretation) will be wrong because it is biased, i.e., it has a systematic deviation (not uncertainty). If we do not use the best model (the best theory) available for the description of a certain phenomenon this procedure is just wrong. It has nothing to do with an uncertainty." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"It is also inevitable for any model or theory to have an uncertainty (a difference between model and reality). Such uncertainties apply both to the numerical parameters of the model and to the inadequacy of the model as well. Because it is much harder to get a grip on these types of uncertainties, they are disregarded, usually." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"It is important that uncertainty components that are independent of each other are added quadratically. This is also true for correlated uncertainty components, provided they are independent of each other, i.e., as long as there is no correlation between the components." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"It is the nature of an uncertainty that it is not known and can never be known, whether the best estimate is greater or less than the true value." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"Outliers or flyers are those data points in a set that do not quite fit within the rest of the data, that agree with the model in use. The uncertainty of such an outlier is seemingly too small. The discrepancy between outliers and the model should be subject to thorough examination and should be given much thought. Isolated data points, i.e., data points that are at some distance from the bulk of the data are not outliers if their values are in agreement with the model in use." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"The fact that the same uncertainty (e.g., scale uncertainty) is uncorrelated if we are dealing with only one measurement, but correlated (i.e., systematic) if we look at more than one measurement using the same instrument shows that both types of uncertainties are of the same nature. Of course, an uncertainty keeps its characteristics (e.g., Poisson distributed), independent of the fact whether it occurs only once or more often." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"To fulfill the requirements of the theory underlying uncertainties, variables with random uncertainties must be independent of each other and identically distributed. In the limiting case of an infinite number of such variables, these are called normally distributed. However, one usually speaks of normally distributed variables even if their number is finite." (Manfred Drosg, "Dealing with Uncertainties: A Guide to Error Analysis", 2007)

"In fact, H [entropy] measures the amount of uncertainty that exists in the phenomenon. If there were only one event, its probability would be equal to 1, and H would be equal to 0 - that is, there is no uncertainty about what will happen in a phenomenon with a single event because we always know what is going to occur. The more events that a phenomenon possesses, the more uncertainty there is about the state of the phenomenon. In other words, the more entropy, the more information." (Diego Rasskin-Gutman, "Chess Metaphors: Artificial Intelligence and the Human Mind", 2009)

"Data always vary randomly because the object of our inquiries, nature itself, is also random. We can analyze and predict events in nature with an increasing amount of precision and accuracy, thanks to improvements in our techniques and instruments, but a certain amount of random variation, which gives rise to uncertainty, is inevitable." (Alberto Cairo, "The Functional Art", 2011)

"The storytelling mind is allergic to uncertainty, randomness, and coincidence. It is addicted to meaning. If the storytelling mind cannot find meaningful patterns in the world, it will try to impose them. In short, the storytelling mind is a factory that churns out true stories when it can, but will manufacture lies when it can't." (Jonathan Gottschall, "The Storytelling Animal: How Stories Make Us Human", 2012)

"The data is a simplification - an abstraction - of the real world. So when you visualize data, you visualize an abstraction of the world, or at least some tiny facet of it. Visualization is an abstraction of data, so in the end, you end up with an abstraction of an abstraction, which creates an interesting challenge. […] Just like what it represents, data can be complex with variability and uncertainty, but consider it all in the right context, and it starts to make sense." (Nathan Yau, "Data Points: Visualization That Means Something", 2013)

"Without precise predictability, control is impotent and almost meaningless. In other words, the lesser the predictability, the harder the entity or system is to control, and vice versa. If our universe actually operated on linear causality, with no surprises, uncertainty, or abrupt changes, all future events would be absolutely predictable in a sort of waveless orderliness." (Lawrence K Samuels, "Defense of Chaos", 2013)

"The greater the uncertainty, the bigger the gap between what you can measure and what matters, the more you should watch out for overfitting - that is, the more you should prefer simplicity." (Brian Christian & Thomas L Griffiths, "Algorithms to Live By: The Computer Science of Human Decisions", 2016)

"A notable difference between many fields and data science is that in data science, if a customer has a wish, even an experienced data scientist may not know whether it’s possible. Whereas a software engineer usually knows what tasks software tools are capable of performing, and a biologist knows more or less what the laboratory can do, a data scientist who has not yet seen or worked with the relevant data is faced with a large amount of uncertainty, principally about what specific data is available and about how much evidence it can provide to answer any given question. Uncertainty is, again, a major factor in the data scientific process and should be kept at the forefront of your mind when talking with customers about their wishes."  (Brian Godsey, "Think Like a Data Scientist", 2017)

"The elements of this cloud of uncertainty (the set of all possible errors) can be described in terms of probability. The center of the cloud is the number zero, and elements of the cloud that are close to zero are more probable than elements that are far away from that center. We can be more precise in this definition by defining the cloud of uncertainty in terms of a mathematical function, called the probability distribution." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"Uncertainty is an adversary of coldly logical algorithms, and being aware of how those algorithms might break down in unusual circumstances expedites the process of fixing problems when they occur - and they will occur. A data scientist’s main responsibility is to try to imagine all of the possibilities, address the ones that matter, and reevaluate them all as successes and failures happen." (Brian Godsey, "Think Like a Data Scientist", 2017)

"Bootstrapping provides an intuitive, computer-intensive way of assessing the uncertainty in our estimates, without making strong assumptions and without using probability theory. But the technique is not feasible when it comes to, say, working out the margins of error on unemployment surveys of 100,000 people. Although bootstrapping is a simple, brilliant and extraordinarily effective idea, it is just too clumsy to bootstrap such large quantities of data, especially when a convenient theory exists that can generate formulae for the width of uncertainty intervals." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"Entropy is a measure of amount of uncertainty or disorder present in the system within the possible probability distribution. The entropy and amount of unpredictability are directly proportional to each other." (G Suseela & Y Asnath V Phamila, "Security Framework for Smart Visual Sensor Networks", 2019)

"Estimates based on data are often uncertain. If the data were intended to tell us something about a wider population (like a poll of voting intentions before an election), or about the future, then we need to acknowledge that uncertainty. This is a double challenge for data visualization: it has to be calculated in some meaningful way and then shown on top of the data or statistics without making it all too cluttered." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Uncertainty confuses many people because they have the unreasonable expectation that science and statistics will unearth precise truths, when all they can yield is imperfect estimates that can always be subject to changes and updates." (Alberto Cairo, "How Charts Lie", 2019)

"We over-fit when we go too far in adapting to local circumstances, in a worthy but misguided effort to be ‘unbiased’ and take into account all the available information. Usually we would applaud the aim of being unbiased, but this refinement means we have less data to work on, and so the reliability goes down. Over-fitting therefore leads to less bias but at a cost of more uncertainty or variation in the estimates, which is why protection against over-fitting is sometimes known as the bias/variance trade-off." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.