23 December 2014

🕸Systems Engineering: Entropy (Just the Quotes)

"The second law of thermodynamics appears solely as a law of probability, entropy as a measure of the probability, and the increase of entropy is equivalent to a statement that more probable events follow less probable ones." (Max Planck, "A Survey of Physics", 1923)

"True equilibria can occur only in closed systems and that, in open systems, disequilibria called ‘steady states’, or ‘flow equilibria’ are the predominant and characteristic feature. According to the second law of thermodynamics a closed system must eventually attain a time-independent equilibrium state, with maximum entropy and minimum free energy. An open system may, under certain conditions, attain a time-independent state where the system remains constant as a whole and in its phases, though there is a continuous flow of component materials. This is called a steady state. Steady states are irreversible as a whole. […] A closed system in equilibrium does not need energy for its preservation, nor can energy be obtained from it. In order to perform work, a system must be in disequilibrium, tending toward equilibrium and maintaining a steady state, Therefore the character of an open system is the necessary condition for the continuous working capacity of the organism." (Ludwig on Bertalanffy, "Theoretische Biologie: Band 1: Allgemeine Theorie, Physikochemie, Aufbau und Entwicklung des Organismus", 1932)

"An isolated system or a system in a uniform environment (which for the present consideration we do best to include as a part of the system we contemplate) increases its entropy and more or less rapidly approaches the inert state of maximum entropy. We now recognize this fundamental law of physics to be just the natural tendency of things to approach the chaotic state (the same tendency that the books of a library or the piles of papers and manuscripts on a writing desk display) unless we obviate it. (The analogue of irregular heat motion, in this case, is our handling those objects now and again without troubling to put them back in their proper places.)" (Erwin Schrödinger, "What is Life?", 1944)

"Every process, event, happening - call it what you will; in a word, everything that is going on in Nature means an increase of the entropy of the part of the world where it is going on. Thus a living organism continually increases its entropy – or, as you may say, produces positive entropy – and thus tends to approach the dangerous state of maximum entropy, which is death. It can only keep aloof from it, i.e. alive, by continually drawing from its environment negative entropy – which is something very positive as we shall immediately see. What an organism feeds upon is negative entropy. Or, to put it less paradoxically, the essential thing in metabolism is that the organism succeeds in freeing itself from all the entropy it cannot help producing while alive." (Erwin Schrödinger, "What is Life?", 1944)

"Time itself will come to an end. For entropy points the direction of time. Entropy is the measure of randomness. When all system and order in the universe have vanished, when randomness is at its maximum, and entropy cannot be increased, when there is no longer any sequence of cause and effect, in short when the universe has run down, there will be no direction to time - there will be no time." (Lincoln Barnett, "The Universe and Dr. Einstein", 1948)

"Just as entropy is a measure of disorganization, the information carried by a set of messages is a measure of organization. In fact, it is possible to interpret the information carried by a message as essentially the negative of its entropy, and the negative logarithm of its probability. That is, the more probable the message, the less information it gives. Clichés, for example, are less illuminating than great poems." (Norbert Wiener, "The Human Use of Human Beings", 1950)

"[…] the characteristic tendency of entropy is to increase. As entropy increases, the universe, and all closed systems in the universe, tend naturally to deteriorate and lose their distinctiveness, to move from the least to the most probable state, from a state of organization and differentiation in which distinctions and forms exist, to a state of chaos and sameness." (Norbert Wiener, "The Human Use of Human Beings", 1950)

"The powerful notion of entropy, which comes from a very special branch of physics […] is certainly useful in the study of communication and quite helpful when applied in the theory of language." (J Robert Oppenheimer, "The Growth of Science and the Structure of Culture", Daedalus 87 (1), 1958) 

"Entropy is a measure of the heat energy in a substance that has been lost and is no longer available for work. It is a measure of the deterioration of a system." (William B. Sill & Norman Hoss (Eds.), "Popular Science Encyclopedia of the Sciences", 1963)

"Suppose we divide the space into little volume elements. If we have black and white molecules, how many ways could we distribute them among the volume elements so that white is on one side and black is on the other? On the other hand, how many ways could we distribute them with no restriction on which goes where? Clearly, there are many more ways to arrange them in the latter case. We measure 'disorder' by the number of ways that the insides can be arranged, so that from the outside it looks the same. The logarithm of that number of ways is the entropy. The number of ways in the separated case is less, so the entropy is less, or the 'disorder' is less." (Richard P Feynman, "Order And Entropy" ["The Feynman Lectures on Physics"], 1964)

"The homeostatic principle does not apply literally to the functioning of all complex living systems, in that in counteracting entropy they move toward growth and expansion." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"Higher, directed forms of energy (e.g., mechanical, electric, chemical) are dissipated, that is, progressively converted into the lowest form of energy, i.e., undirected heat movement of molecules; chemical systems tend toward equilibria with maximum entropy; machines wear out owing to friction; in communication channels, information can only be lost by conversion of messages into noise but not vice versa, and so forth." (Ludwig von Bertalanffy, "Robots, Men and Minds", 1967)

"To adapt to a changing environment, the system needs a variety of stable states that is large enough to react to all perturbations but not so large as to make its evolution uncontrollably chaotic. The most adequate states are selected according to their fitness, either directly by the environment, or by subsystems that have adapted to the environment at an earlier stage. Formally, the basic mechanism underlying self-organization is the (often noise-driven) variation which explores different regions in the system’s state space until it enters an attractor. This precludes further variation outside the attractor, and thus restricts the freedom of the system’s components to behave independently. This is equivalent to the increase of coherence, or decrease of statistical entropy, that defines self-organization." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"In an isolated system, which cannot exchange energy and matter with the surroundings, this tendency is expressed in terms of a function of the macroscopic state of the system: the entropy." (Ilya Prigogine, "Thermodynamics of Evolution", 1972) 

"There is nothing supernatural about the process of self-organization to states of higher entropy; it is a general property of systems, regardless of their materials and origin. It does not violate the Second Law of thermodynamics since the decrease in entropy within an open system is always offset by the increase of entropy in its surroundings." (Ervin László, "Introduction to Systems Philosophy", 1972)

"Entropy theory, on the other hand, is not concerned with the probability of succession in a series of items but with the overall distribution of kinds of items in a given arrangement." (Rudolf Arnheim, "Entropy and Art: An Essay on Disorder and Order", 1974) 

"The amount of information conveyed by the message increases as the amount of uncertainty as to what message actually will be produced becomes greater. A message which is one out of ten possible messages conveys a smaller amount of information than a message which is one out of a million possible messages. The entropy of communication theory is a measure of this uncertainty and the uncertainty, or entropy, is taken as the measure of the amount of information conveyed by a message from a source. The more we know about what message the source will produce, the less uncertainty, the less the entropy, and the less the information." (John R Pierce, "An Introduction to Information Theory: Symbols, Signals and Noise", 1979) 

"Thus, an increase in entropy means a decrease in our ability to change thermal energy, the energy of heat, into mechanical energy. An increase of entropy means a decrease of available energy." (John R Pierce, "An Introduction to Information Theory: Symbols, Signals and Noise", 1979)

"The third model regards mind as an information processing system. This is the model of mind subscribed to by cognitive psychologists and also to some extent by the ego psychologists. Since an acquisition of information entails maximization of negative entropy and complexity, this model of mind assumes mind to be an open system." (Thaddus E Weckowicz, "Models of Mental Illness", 1984) 

"Disorder increases with time because we measure time in the direction in which disorder increases." (Stephen W Hawking, "The Direction of Time", New Scientist 115 (1568), 1987)

"Somehow, after all, as the universe ebbs toward its final equilibrium in the featureless heat bath of maximum entropy, it manages to create interesting structures." (James Gleick, "Chaos: Making a New Science", 1987)

"Just like a computer, we must remember things in the order in which entropy increases. This makes the second law of thermodynamics almost trivial. Disorder increases with time because we measure time in the direction in which disorder increases."  (Stephen Hawking, "A Brief History of Time", 1988)

"The new information technologies can be seen to drive societies toward increasingly dynamic high-energy regions further and further from thermodynamical equilibrium, characterized by decreasing specific entropy and increasingly dense free-energy flows, accessed and processed by more and more complex social, economic, and political structures." (Ervin László, "Information Technology and Social Change: An Evolutionary Systems Analysis", Behavioral Science 37, 1992) 

"The second law of thermodynamics, which requires average entropy (or disorder) to increase, does not in any way forbid local order from arising through various mechanisms of self-organization, which can turn accidents into frozen ones producing extensive regularities. Again, such mechanisms are not restricted to complex adaptive systems." (Murray Gell-Mann, "What is Complexity?", Complexity Vol 1 (1), 1995)

"All systems evolve, although the rates of evolution may vary over time both between and within systems. The rate of evolution is a function of both the inherent stability of the system and changing environmental circumstances. But no system can be stabilized forever. For the universe as a whole, an isolated system, time’s arrow points toward greater and greater breakdown, leading to complete molecular chaos, maximum entropy, and heat death. For open systems, including the living systems that are of major interest to us and that interchange matter and energy with their external environments, time’s arrow points to evolution toward greater and greater complexity. Thus, the universe consists of islands of increasing order in a sea of decreasing order. Open systems evolve and maintain structure by exporting entropy to their external environments." (L Douglas Kiel, "Chaos Theory in the Social Sciences: Foundations and Applications", 1996)

"Contrary to what happens at equilibrium, or near equilibrium, systems far from equilibrium do not conform to any minimum principle that is valid for functions of free energy or entropy production." (Ilya Prigogine, "The End of Certainty: Time, Chaos, and the New Laws of Nature", 1996) 

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"In a closed system, the change in entropy must always be 'positive', meaning toward death. However, in open biological or social systems, entropy can be arrested and may even be transformed into negative entropy - a process of more complete organization and enhanced ability to transform resources. Why? Because the system imports energy and resources from its environment, leading to renewal. This is why education and learning are so important, as they provide new and stimulating input (termed neg-entropy) that can transform each of us." (Stephen G Haines, "The Managers Pocket Guide to Systems Thinking & Learning", 1998)

"Physical systems are subject to the force of entropy, which increases until eventually the entire system fails. The tendency toward maximum entropy is a movement to disorder, complete lack of resource transformation, and death." (Stephen G Haines, "The Managers Pocket Guide to Systems Thinking & Learning", 1998)

"All systems have a tendency toward maximum entropy, disorder, and death. Importing resources from the environment is key to long-term viability; closed systems move toward this disorganization faster than open systems." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"Defined from a societal standpoint, information may be seen as an entity which reduces maladjustment between system and environment. In order to survive as a thermodynamic entity, all social systems are dependent upon an information flow. This explanation is derived from the parallel between entropy and information where the latter is regarded as negative entropy (negentropy). In more common terms information is a form of processed data or facts about objects, events or persons, which are meaningful for the receiver, inasmuch as an increase in knowledge reduces uncertainty." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Emergent self-organization in multi-agent systems appears to contradict the second law of thermodynamics. This paradox has been explained in terms of a coupling between the macro level that hosts self-organization (and an apparent reduction in entropy), and the micro level (where random processes greatly increase entropy). Metaphorically, the micro level serves as an entropy 'sink', permitting overall system entropy to increase while sequestering this increase from the interactions where self-organization is desired." (H Van Dyke Parunak & Sven Brueckner, "Entropy and Self-Organization in Multi-Agent Systems", Proceedings of the International Conference on Autonomous Agents, 2001)

"Entropy [...] is the amount of disorder or randomness present in any system. All non-living systems tend toward disorder; left alone they will eventually lose all motion and degenerate into an inert mass. When this permanent stage is reached and no events occur, maximum entropy is attained. A living system can, for a finite time, avert this unalterable process by importing energy from its environment. It is then said to create negentropy, something which is characteristic of all kinds of life." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"The acquisition of information is a flow from noise to order - a process converting entropy to redundancy. During this process, the amount of information decreases but is compensated by constant recoding. In the recoding the amount of information per unit increases by means of a new symbol which represents the total amount of the old. The maturing thus implies information condensation. Simultaneously, the redundance decreases, which render the information more difficult to interpret." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"The function of living matter is apparently to expand the organization of the universe. Here, locally decreased entropy as a result of biological order in existing life is invalidating the effects of the second law of thermodynamics, although at the expense of increased entropy in the whole system. It is the running down of the universe that made the sun and the earth possible. It is the running down of the sun that made life and us possible." (Lars Skyttner, "General Systems Theory: Ideas and Applications", 2001)

"Nature normally hates power laws. In ordinary systems all quantities follow bell curves, and correlations decay rapidly, obeying exponential laws. But all that changes if the system is forced to undergo a phase transition. Then power laws emerge-nature's unmistakable sign that chaos is departing in favor of order. The theory of phase transitions told us loud and clear that the road from disorder to order is maintained by the powerful forces of self-organization and is paved by power laws. It told us that power laws are not just another way of characterizing a system's behavior. They are the patent signatures of self-organization in complex systems." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"Entropy is not about speeds or positions of particles, the way temperature and pressure and volume are, but about our lack of information." (Hans C von Baeyer," Information, The New Language of Science", 2003)

"The total disorder in the universe, as measured by the quantity that physicists call entropy, increases steadily steadily as we go from past to future. On the other hand, the total order in the universe, as measured by the complexity and permanence of organized structures, also increases steadily as we go from past to future." (Freeman Dyson, [Page-Barbour lecture], 2004)

"At the foundation of classical thermodynamics are the first and second laws. The first law formulates that the total energy of a system is conserved, while the second law states that the entropy of an isolated system can only increase. The second law implies that the free energy of an isolated system is successively degraded by diabatic processes over time, leading to entropy production. This eventually results in an equilibrium state of maximum entropy. In its statistical interpretation, the direction towards higher entropy can be interpreted as a transition to more probable states." (Axel Kleidon & Ralph D Lorenz, "Entropy Production by Earth System Processes" [in "Non- quilibrium Thermodynamics and the Production of Entropy"], 2005)

"However, the law of accelerating returns pertains to evolution, which is not a closed system. It takes place amid great chaos and indeed depends on the disorder in its midst, from which it draws its options for diversity. And from these options, an evolutionary process continually prunes its choices to create ever greater order."  (Ray Kurzweil, "The Singularity is Near", 2005)

"The second law of thermodynamics states that in an isolated system, entropy can only increase, not decrease. Such systems evolve to their state of maximum entropy, or thermodynamic equilibrium. Therefore, physical self-organizing systems cannot be isolated: they require a constant input of matter or energy with low entropy, getting rid of the internally generated entropy through the output of heat ('dissipation'). This allows them to produce ‘dissipative structures’ which maintain far from thermodynamic equilibrium. Life is a clear example of order far from thermodynamic equilibrium." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"We have to be aware that even in mathematical and physical models of self-organizing systems, it is the observer who ascribes properties, aspects, states, and probabilities; and therefore entropy or order to the system. But organization is more than low entropy: it is structure that has a function or purpose." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"Heat is the energy of random chaotic motion, and entropy is the amount of hidden microscopic information." (Leonard Susskind, "The Black Hole War", 2008)

"Second Law of thermodynamics is not an equality, but an inequality, asserting merely that a certain quantity referred to as the entropy of an isolated system - which is a measure of the system’s disorder, or ‘randomness’ - is greater (or at least not smaller) at later times than it was at earlier times." (Roger Penrose, "Cycles of Time: An Extraordinary New View of the Universe", 2010) 

"The laws of thermodynamics tell us something quite different. Economic activity is merely borrowing low-entropy energy inputs from the environment and transforming them into temporary products and services of value. In the transformation process, often more energy is expended and lost to the environment than is embedded in the particular good or service being produced." (Jeremy Rifkin, "The Third Industrial Revolution", 2011)

"In a physical system, information is the opposite of entropy, as it involves uncommon and highly correlated configurations that are difficult to arrive at." (César A Hidalgo, "Why Information Grows: The Evolution of Order, from Atoms to Economies", 2015)

"The passage of time and the action of entropy bring about ever-greater complexity - a branching, blossoming tree of possibilities. Blossoming disorder (things getting worse), now unfolding within the constraints of the physics of our universe, creates novel opportunities for spontaneous ordered complexity to arise." (D J MacLennan, "Frozen to Life", 2015)

"Information theory leads to the quantification of the information content of the source, as denoted by entropy, the characterization of the information-bearing capacity of the communication channel, as related to its noise characteristics, and consequently the establishment of the relationship between the information content of the source and the capacity of the channel. In short, information theory provides a quantitative measure of the information contained in message signals and help determine the capacity of a communication system to transfer this information from source to sink over a noisy channel in a reliable fashion." (Ali Grami, "Information Theory", 2016)

"The Second Law of Thermodynamics states that in an isolated system (one that is not taking in energy), entropy never decreases. (The First Law is that energy is conserved; the Third, that a temperature of absolute zero is unreachable.) Closed systems inexorably become less structured, less organized, less able to accomplish interesting and useful outcomes, until they slide into an equilibrium of gray, tepid, homogeneous monotony and stay there." (Steven Pinker, "The Second Law of Thermodynamics", 2017)

"In information theory this notion, introduced by Claude Shannon, is used to express unpredictability of information content. For instance, if a data set containing n items was divided into k groups each comprising n i items, then the entropy of such a partition is H = p 1 log( p 1 ) + … + p k log( p k ), where p i = n i / n . In case of two alternative partitions, the mutual information is a measure of the mutual dependence between these partitions." (Slawomir T Wierzchon, "Ensemble Clustering Data Mining and Databases", 2018) [where i is used as index]

"Entropy is a measure of amount of uncertainty or disorder present in the system within the possible probability distribution. The entropy and amount of unpredictability are directly proportional to each other." ("G Suseela & Y Asnath V Phamila, "Security Framework for Smart Visual Sensor Networks", 2019)

"In the physics [entropy is the] rate of system´s messiness or disorder in a physical system. In the social systems theory - social entropy is a sociological theory that evaluates social behaviors using a method based on the second law of thermodynamics." (Justína Mikulášková et al, "Spiral Management: New Concept of the Social Systems Management", 2020)

More quotes on "Entropy" at the-web-of-knowledge.blogspot.com.

22 December 2014

🕸Systems Engineering: Complex Systems (Just the Quotes)

"The complexity of a system is no guarantee of its accuracy." (John P Jordan, "Cost accounting; principles and practice", 1920)

"[…] to the scientific mind the living and the non-living form one continuous series of systems of differing degrees of complexity […], while to the philosophic mind the whole universe, itself perhaps an organism, is composed of a vast number of interlacing organisms of all sizes." (James G Needham, "Developments in Philosophy of Biology", Quarterly Review of Biology Vol. 3 (1), 1928)

"A material model is the representation of a complex system by a system which is assumed simpler and which is also assumed to have some properties similar to those selected for study in the original complex system. A formal model is a symbolic assertion in logical terms of an idealised relatively simple situation sharing the structural properties of the original factual system." (Arturo Rosenblueth & Norbert Wiener, "The Role of Models in Science", Philosophy of Science Vol. 12 (4), 1945)

"[Disorganized complexity] is a problem in which the number of variables is very large, and one in which each of the many variables has a behavior which is individually erratic, or perhaps totally unknown. However, in spite of this helter-skelter, or unknown, behavior of all the individual variables, the system as a whole possesses certain orderly and analyzable average properties. [...] [Organized complexity is] not problems of disorganized complexity, to which statistical methods hold the key. They are all problems which involve dealing simultaneously with a sizable number of factors which are interrelated into an organic whole. They are all, in the language here proposed, problems of organized complexity." (Warren Weaver, "Science and Complexity", American Scientist Vol. 36, 1948)

"Cybernetics is likely to reveal a great number of interesting and suggestive parallelisms between machine and brain and society. And it can provide the common language by which discoveries in one branch can readily be made use of in the others. [...] [There are] two peculiar scientific virtues of cybernetics that are worth explicit mention. One is that it offers a single vocabulary and a single set of concepts suitable for representing the most diverse types of system. [...] The second peculiar virtue of cybernetics is that it offers a method for the scientific treatment of the system in which complexity is outstanding and too important to be ignored. Such systems are, as we well know, only too common in the biological world!" (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Roughly, by a complex system I mean one made up of a large number of parts that interact in a nonsimple way. In such systems, the whole is more than the sum of the parts, not in an ultimate, metaphysical sense, but in the important pragmatic sense that, given the properties of the parts and the laws of their interaction, it is not a trivial matter to infer the properties of the whole." (Herbert Simon, "The Architecture of Complexity", Proceedings of the American Philosophical Society, Vol. 106 (6), 1962)

"A more viable model, one much more faithful to the kind of system that society is more and more recognized to be, is in process of developing out of, or is in keeping with, the modern systems perspective (which we use loosely here to refer to general systems research, cybernetics, information and communication theory, and related fields). Society, or the sociocultural system, is not, then, principally an equilibrium system or a homeostatic system, but what we shall simply refer to as a complex adaptive system." (Walter F Buckley, "Society as a complex adaptive system", 1968)

"[…] as a model of a complex system becomes more complete, it becomes less understandable. Alternatively, as a model grows more realistic, it also becomes just as difficult to understand as the real world processes it represents." (Jay M Dutton & William H Starbuck," Computer simulation models of human behavior: A history of an intellectual technology", IEEE Transactions on Systems, 1971)

"Any system that insulates itself from diversity in the environment tends to atrophy and lose its complexity and distinctive nature." (Gareth Morgan, "Images of Organization", 1986)

"Because the individual parts of a complex adaptive system are continually revising their ('conditioned') rules for interaction, each part is embedded in perpetually novel surroundings (the changing behavior of the other parts). As a result, the aggregate behavior of the system is usually far from optimal, if indeed optimality can even be defined for the system as a whole. For this reason, standard theories in physics, economics, and elsewhere, are of little help because they concentrate on optimal end-points, whereas complex adaptive systems 'never get there'. They continue to evolve, and they steadily exhibit new forms of emergent behavior." (John H Holland, "Complex Adaptive Systems", Daedalus Vol. 121 (1), 1992)

"The impossibility of constructing a complete, accurate quantitative description of a complex system forces observers to pick which aspects of the system they most wish to understand." (Thomas Levenson, "Measure for Measure: A musical history of science", 1994)

"Artificial complex systems will be deliberately infused with organic principles simply to keep them going." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Complex adaptive systems have the property that if you run them - by just letting the mathematical variable of 'time' go forward - they'll naturally progress from chaotic, disorganized, undifferentiated, independent states to organized, highly differentiated, and highly interdependent states. Organized structures emerge spontaneously. [...] A weak system gives rise only to simpler forms of self-organization; a strong one gives rise to more complex forms, like life. (J Doyne Farmer, "The Third Culture: Beyond the Scientific Revolution", 1995)

"Complexity must be grown from simple systems that already work." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Even though these complex systems differ in detail, the question of coherence under change is the central enigma for each." (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

"By irreducibly complex I mean a single system composed of several well-matched, interacting parts that contribute to the basic function, wherein the removal of any one of the parts causes the system to effectively cease functioning. An irreducibly complex system cannot be produced directly (that is, by continuously improving the initial function, which continues to work by the same mechanism) by slight, successive modification of a precursor, system, because any precursors to an irreducibly complex system that is missing a part is by definition nonfunctional." (Michael Behe, "Darwin’s Black Box", 1996)

"A dictionary definition of the word ‘complex’ is: ‘consisting of interconnected or interwoven parts’ […] Loosely speaking, the complexity of a system is the amount of information needed in order to describe it. The complexity depends on the level of detail required in the description. A more formal definition can be understood in a simple way. If we have a system that could have many possible states, but we would like to specify which state it is actually in, then the number of binary digits (bits) we need to specify this particular state is related to the number of states that are possible." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"When the behavior of the system depends on the behavior of the parts, the complexity of the whole must involve a description of the parts, thus it is large. The smaller the parts that must be described to describe the behavior of the whole, the larger the complexity of the entire system. […] A complex system is a system formed out of many components whose behavior is emergent, that is, the behavior of the system cannot be simply inferred from the behavior of its components." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"There is no over-arching theory of complexity that allows us to ignore the contingent aspects of complex systems. If something really is complex, it cannot by adequately described by means of a simple theory. Engaging with complexity entails engaging with specific complex systems. Despite this we can, at a very basic level, make general remarks concerning the conditions for complex behaviour and the dynamics of complex systems. Furthermore, I suggest that complex systems can be modelled." (Paul Cilliers," Complexity and Postmodernism", 1998)

"The self-similarity of fractal structures implies that there is some redundancy because of the repetition of details at all scales. Even though some of these structures may appear to teeter on the edge of randomness, they actually represent complex systems at the interface of order and disorder."  (Edward Beltrami, "What is Random?: Chaos and Order in Mathematics and Life", 1999)

"With the growing interest in complex adaptive systems, artificial life, swarms and simulated societies, the concept of 'collective intelligence' is coming more and more to the fore. The basic idea is that a group of individuals (e. g. people, insects, robots, or software agents) can be smart in a way that none of its members is. Complex, apparently intelligent behavior may emerge from the synergy created by simple interactions between individuals that follow simple rules." (Francis Heylighen, "Collective Intelligence and its Implementation on the Web", 1999)

"Bounded rationality simultaneously constrains the complexity of our cognitive maps and our ability to use them to anticipate the system dynamics. Mental models in which the world is seen as a sequence of events and in which feedback, nonlinearity, time delays, and multiple consequences are lacking lead to poor performance when these elements of dynamic complexity are present. Dysfunction in complex systems can arise from the misperception of the feedback structure of the environment. But rich mental models that capture these sources of complexity cannot be used reliably to understand the dynamics. Dysfunction in complex systems can arise from faulty mental simulation-the misperception of feedback dynamics. These two different bounds on rationality must both be overcome for effective learning to occur. Perfect mental models without a simulation capability yield little insight; a calculus for reliable inferences about dynamics yields systematically erroneous results when applied to simplistic models." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"To avoid policy resistance and find high leverage policies requires us to expand the boundaries of our mental models so that we become aware of and understand the implications of the feedbacks created by the decisions we make. That is, we must learn about the structure and dynamics of the increasingly complex systems in which we are embedded." (John D Sterman, "Business dynamics: Systems thinking and modeling for a complex world", 2000) 

"Falling between order and chaos, the moment of complexity is the point at which self-organizing systems emerge to create new patterns of coherence and structures of behaviour." (Mark C Taylor, "The Moment of Complexity: Emerging Network Culture", 2001)

"[…] most earlier attempts to construct a theory of complexity have overlooked the deep link between it and networks. In most systems, complexity starts where networks turn nontrivial." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"[…] networks are the prerequisite for describing any complex system, indicating that complexity theory must inevitably stand on the shoulders of network theory. It is tempting to step in the footsteps of some of my predecessors and predict whether and when we will tame complexity. If nothing else, such a prediction could serve as a benchmark to be disproven. Looking back at the speed with which we disentangled the networks around us after the discovery of scale-free networks, one thing is sure: Once we stumble across the right vision of complexity, it will take little to bring it to fruition. When that will happen is one of the mysteries that keeps many of us going." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"A sudden change in the evolutive dynamics of a system (a ‘surprise’) can emerge, apparently violating a symmetrical law that was formulated by making a reduction on some (or many) finite sequences of numerical data. This is the crucial point. As we have said on a number of occasions, complexity emerges as a breakdown of symmetry (a system that, by evolving with continuity, suddenly passes from one attractor to another) in laws which, expressed in mathematical form, are symmetrical. Nonetheless, this breakdown happens. It is the surprise, the paradox, a sort of butterfly effect that can highlight small differences between numbers that are very close to one another in the continuum of real numbers; differences that may evade the experimental interpretation of data, but that may increasingly amplify in the system’s dynamics." (Cristoforo S Bertuglia & Franco Vaio, "Nonlinearity, Chaos, and Complexity: The Dynamics of Natural and Social Systems", 2003) 

"Complexity is the characteristic property of complicated systems we don’t understand immediately. It is the amount of difficulties we face while trying to understand it. In this sense, complexity resides largely in the eye of the beholder - someone who is familiar with s.th. often sees less complexity than someone who is less familiar with it. [...] A complex system is created by evolutionary processes. There are multiple pathways by which a system can evolve. Many complex systems are similar, but each instance of a system is unique." (Jochen Fromm, The Emergence of Complexity, 2004)

"In complexity thinking the darkness principle is covered by the concept of incompressibility [...] The concept of incompressibility suggests that the best representation of a complex system is the system itself and that any representation other than the system itself will necessarily misrepresent certain aspects of the original system." (Kurt Richardson, "Systems theory and complexity: Part 1", Emergence: Complexity & Organization Vol.6 (3), 2004)

"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)

"Complexity arises when emergent system-level phenomena are characterized by patterns in time or a given state space that have neither too much nor too little form. Neither in stasis nor changing randomly, these emergent phenomena are interesting, due to the coupling of individual and global behaviours as well as the difficulties they pose for prediction. Broad patterns of system behaviour may be predictable, but the system's specific path through a space of possible states is not." (Steve Maguire et al, "Complexity Science and Organization Studies", 2006)

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"The butterfly effect demonstrates that complex dynamical systems are highly responsive and interconnected webs of feedback loops. It reminds us that we live in a highly interconnected world. Thus our actions within an organization can lead to a range of unpredicted responses and unexpected outcomes. This seriously calls into doubt the wisdom of believing that a major organizational change intervention will necessarily achieve its pre-planned and highly desired outcomes. Small changes in the social, technological, political, ecological or economic conditions can have major implications over time for organizations, communities, societies and even nations." (Elizabeth McMillan, "Complexity, Management and the Dynamics of Change: Challenges for practice", 2008)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"If an emerging system is born complex, there is neither leeway to abandon it when it fails, nor the means to join another, successful one. Such a system would be caught in an immovable grip, congested at the top, and prevented, by a set of confusing but locked–in precepts, from changing." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013) 

"Simplicity in a system tends to increase that system’s efficiency. Because less can go wrong with fewer parts, less will. Complexity in a system tends to increase that system’s inefficiency; the greater the number of variables, the greater the probability of those variables clashing, and in turn, the greater the potential for conflict and disarray. Because more can go wrong, more will. That is why centralized systems are inclined to break down quickly and become enmeshed in greater unintended consequences." (Lawrence K Samuels,"Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)

"One of the remarkable features of these complex systems created by replicator dynamics is that infinitesimal differences in starting positions create vastly different patterns. This sensitive dependence on initial conditions is often called the butterfly-effect aspect of complex systems - small changes in the replicator dynamics or in the starting point can lead to enormous differences in outcome, and they change one’s view of how robust the current reality is. If it is complex, one small change could have led to a reality that is quite different." (David Colander & Roland Kupers, "Complexity and the art of public policy : solving society’s problems from the bottom up", 2014)

"The problem of complexity is at the heart of mankind's inability to predict future events with any accuracy. Complexity science has demonstrated that the more factors found within a complex system, the more chances of unpredictable behavior. And without predictability, any meaningful control is nearly impossible. Obviously, this means that you cannot control what you cannot predict. The ability ever to predict long-term events is a pipedream. Mankind has little to do with changing climate; complexity does." (Lawrence K Samuels, "The Real Science Behind Changing Climate", 2014)

More quotes on "Complex Systems" at the-web-of-knowledge.blogspot.com.

20 December 2014

🕸Systems Engineering: Structure (Just the Quotes)

"Unity of plan everywhere lies hidden under the mask of diversity of structure - the complex is everywhere evolved out of the simple." (Thomas H Huxley, "A Lobster; or, the Study of Zoology", 1861)

"Simplicity of structure means organic unity, whether the organism be simple or complex; and hence in all times the emphasis which critics have laid upon Simplicity, though they have not unfrequently confounded it with narrowness of range." (George H Lewes, "The Principles of Success in Literature", 1865)

"The concept of an independent system is a pure creation of the imagination. For no material system is or can ever be perfectly isolated from the rest of the world. Nevertheless it completes the mathematician’s ‘blank form of a universe’ without which his investigations are impossible. It enables him to introduce into his geometrical space, not only masses and configurations, but also physical structure and chemical composition." (Lawrence J Henderson, "The Order of Nature: An Essay", 1917)

"Given a situation, a system with a Leerstelle [a gap], whether a given completion (Lueckenfuellung) does justice to the structure, is the 'right' one, is often determined by the structure of the system, the situation. There are requirements, structurally determined; there are possible in pure cases unambiguous decisions as to which completion does justice to the situation, which does not, which violates the requirements and the situation." (Max Wertheimer, "Some Problems in the Theory of Ethics", Social Research Vol. 2 (3), 1935)

"The first attempts to consider the behavior of so-called 'random neural nets' in a systematic way have led to a series of problems concerned with relations between the 'structure' and the 'function' of such nets. The 'structure' of a random net is not a clearly defined topological manifold such as could be used to describe a circuit with explicitly given connections. In a random neural net, one does not speak of 'this' neuron synapsing on 'that' one, but rather in terms of tendencies and probabilities associated with points or regions in the net." (Anatol Rapoport, "Cycle distributions in random nets", The Bulletin of Mathematical Biophysics 10(3), 1948)

"[…] there are three different but interconnected conceptions to be considered in every structure, and in every structural element involved: equilibrium, resistance, and stability." (Eduardo Torroja, "Philosophy of Structure", 1951)

"Equilibrium requires that the whole of the structure, the form of its elements, and the means of interconnection be so combined that at the supports there will automatically be produced passive forces or reactions that are able to balance the forces acting upon the structures, including the force of its own weight."  (Eduardo Torroja, "Philosophy of Structure", 1951)

"The analysis of engineering systems and the understanding of economic structure have advanced since then, and the time is now more ripe to bring these topics into a potentially fruitful marriage." (Arnold Tustin, "The Mechanism of Economic Systems", 1953)

"The Systems Engineering method recognizes each system is an integrated whole even though composed of devices, specialized structures and sub-functions. It is further recognized that any system has a number of objectives and that the balance between them may differ widely from system to system. The methods seek to optimize the overall system function according to the weighted objectives and to achieve maximum capability of its parts." (Jack A Morton, "Integrating of Systems Engineering with Component Development", Electrical Manufacturing, 1959)

"The process of formulating and structuring a system are important and creative, since they provide and organize the information, which each system. establishes the number of objectives and the balance between them which will be optimized. Furthermore, they help identify and define the system parts. Furthermore, they help identify and define the system parts which make up its 'diverse, specialized structures and subfunctions'." (Harold Chestnut, "Systems Engineering Tools", 1965)

"The Systems engineering method recognizes each system is an integrated whole even though composed of diverse, specialized structures and sub-functions. It further recognizes that any system has a number of objectives and that the balance between them may differ widely from system to system. The methods seek to optimize the overall system functions according to the weighted objectives and to achieve maximum compatibility of its parts." (Harold Chestnut, "Systems Engineering Tools," 1965)

"System theory is basically concerned with problems of relationships, of structure, and of interdependence rather than with the constant attributes of objects. In general approach it resembles field theory except that its dynamics deal with temporal as well as spatial patterns. Older formulations of system constructs dealt with the closed systems of the physical sciences, in which relatively self-contained structures could be treated successfully as if they were independent of external forces. But living systems, whether biological organisms or social organizations, are acutely dependent on their external environment and so must be conceived of as open systems." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"In complex systems cause and effect are often not closely related in either time or space. The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by nonlinear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops. In the complex system the cause of a difficulty may lie far back in time from the symptoms, or in a completely different and remote part of the system. In fact, causes are usually found, not in prior events, but in the structure and policies of the system." (Jay W Forrester, "Urban dynamics", 1969)

"The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by non-linear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive-feedback loops describing growth processes as well as negative, goal-seeking loops." (Jay F Forrester, "Urban Dynamics", 1969)

"To model the dynamic behavior of a system, four hierarchies of structure should be recognized: closed boundary around the system; feedback loops as the basic structural elements within the boundary; level variables representing accumulations within the feedback loops; rate variables representing activity within the feedback loops." (Jay W Forrester, "Urban Dynamics", 1969)

"General systems theory is the scientific exploration of 'wholes' and 'wholeness' which, not so long ago, were considered metaphysical notions transcending the boundaries of science. Hierarchic structure, stability, teleology, differentiation, approach to and maintenance of steady states, goal-directedness - these are a few of such general system properties." (Ervin László, "Introduction to Systems Philosophy", 1972)

"Yet while they exist, regardless of how long, each system has a specific structure made up of certain maintained relationships among its parts, and manifests irreducible characteristics of its own." (Ervin László, "Introduction to Systems Philosophy", 1972)

"General systems theory and cybernetics supplanted the classical conceptual model of a whole made out of parts and relations between parts with a model emphasizing the difference between systems and environments. This new paradigm made it possible to relate both the structures (including forms of differentiation) and processes of systems to the environment." (Thomas Luckmann & Niklas Luhmann, "The Differentiation of Society", 1977

"The branch of modern science called cybernetics gives us concepts that describe the evolutionary process at both the level of intracellular structures and the level of social phenomena. The fundamental unity of the evolutionary process at all levels of organization is transformed from a philosophical view to a scientifically substantiated fact." (Valentin F Turchin, "The Phenomenon of Science: A cybernetic approach to human evolution", 1977)

"Every system of whatever size must maintain its own structure and must deal with a dynamic environment, i.e., the system must strike a proper balance between stability and change. The cybernetic mechanisms for stability (i.e., homeostasis, negative feedback, autopoiesis, equifinality) and change (i.e., positive feedback, algedonodes, self-organization) are found in all viable systems." (Barry Clemson, "Cybernetics: A New Management Tool", 1984)

"Organization denotes those relations that must exist among the components of a system for it to be a member of a specific class. Structure denotes the components and relations that actually constitute a particular unity and make its organization real." (Humberto Maturana, "The Tree of Knowledge", 1987)

"Cybernetics, although not ignoring formal networks, suggests that an informal communications structure will also be present such that complex conversations at a number of levels between two or more individuals exist." (Robert L Flood, "Dealing with Complexity", 1988)

"Systems thinking is a discipline for seeing the 'structures' that underlie complex situations, and for discerning high from low leverage change. That is, by seeing wholes we learn how to foster health. To do so, systems thinking offers a language that begins by restructuring how we think." (Peter Senge, "The Fifth Discipline", 1990)

"Systems, acting dynamically, produce (and incidentally, reproduce) their own boundaries, as structures which are complementary (necessarily so) to their motion and dynamics. They are liable, for all that, to instabilities chaos, as commonly interpreted of chaotic form, where nowadays, is remote from the random. Chaos is a peculiar situation in which the trajectories of a system, taken in the traditional sense, fail to converge as they approach their limit cycles or 'attractors' or 'equilibria'. Instead, they diverge, due to an increase, of indefinite magnitude, in amplification or gain." (Gordon Pask, "Different Kinds of Cybernetics", 1992)

"Complex adaptive systems have the property that if you run them - by just letting the mathematical variable of 'time' go forward - they'll naturally progress from chaotic, disorganized, undifferentiated, independent states to organized, highly differentiated, and highly interdependent states. Organized structures emerge spontaneously. [...] A weak system gives rise only to simpler forms of self-organization; a strong one gives rise to more complex forms, like life. (J Doyne Farmer, "The Third Culture: Beyond the Scientific Revolution", 1995)

"[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations." (Fritjof  Capra, "The web of life: a new scientific understanding of living  systems", 1996)

"Self-organization refers to the spontaneous formation of patterns and pattern change in open, nonequilibrium systems. […] Self-organization provides a paradigm for behavior and cognition, as well as the structure and function of the nervous system. In contrast to a computer, which requires particular programs to produce particular results, the tendency for self-organization is intrinsic to natural systems under certain conditions." (J A Scott Kelso, "Dynamic Patterns : The Self-organization of Brain and Behavior", 1995)

"All systems evolve, although the rates of evolution may vary over time both between and within systems. The rate of evolution is a function of both the inherent stability of the system and changing environmental circumstances. But no system can be stabilized forever. For the universe as a whole, an isolated system, time’s arrow points toward greater and greater breakdown, leading to complete molecular chaos, maximum entropy, and heat death. For open systems, including the living systems that are of major interest to us and that interchange matter and energy with their external environments, time’s arrow points to evolution toward greater and greater complexity. Thus, the universe consists of islands of increasing order in a sea of decreasing order. Open systems evolve and maintain structure by exporting entropy to their external environments." (L Douglas Kiel, "Chaos Theory in the Social Sciences: Foundations and Applications", 1996)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Analysis of a system reveals its structure and how it works. It provides the knowledge required to make it work efficiently and to repair it when it stops working. Its product is know-how, knowledge, not understanding. To enable a system to perform effectively we must understand it - we must be able to explain its behavior—and this requires being aware of its functions in the larger systems of which it is a part." (Russell L Ackoff, "Re-Creating the Corporation", 1999)

"Bounded rationality simultaneously constrains the complexity of our cognitive maps and our ability to use them to anticipate the system dynamics. Mental models in which the world is seen as a sequence of events and in which feedback, nonlinearity, time delays, and multiple consequences are lacking lead to poor performance when these elements of dynamic complexity are present. Dysfunction in complex systems can arise from the misperception of the feedback structure of the environment. But rich mental models that capture these sources of complexity cannot be used reliably to understand the dynamics. Dysfunction in complex systems can arise from faulty mental simulation-the misperception of feedback dynamics. These two different bounds on rationality must both be overcome for effective learning to occur. Perfect mental models without a simulation capability yield little insight; a calculus for reliable inferences about dynamics yields systematically erroneous results when applied to simplistic models." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"The systems approach, on the other hand, provides an expanded structural design of organizations as living systems that more accurately reflects reality." (Stephen G Haines, "The Systems Thinking Approach to Strategic Planning and Management", 2000)

"To avoid policy resistance and find high leverage policies requires us to expand the boundaries of our mental models so that we become aware of and understand the implications of the feedbacks created by the decisions we make. That is, we must learn about the structure and dynamics of the increasingly complex systems in which we are embedded." (John D Sterman, "Business dynamics: Systems thinking and modeling for a complex world", 2000) 

"Self-organization [is] the appearance of structure or pattern without an external agent imposing it." (Francis Heylighen, "The science of Self-organization and Adaptivity", 2001)

"Falling between order and chaos, the moment of complexity is the point at which self-organizing systems emerge to create new patterns of coherence and structures of behaviour." (Mark C Taylor, "The Moment of Complexity: Emerging Network Culture", 2001)

"A self-organizing system not only regulates or adapts its behavior, it creates its own organization. In that respect it differs fundamentally from our present systems, which are created by their designer. We define organization as structure with function. Structure means that the components of a system are arranged in a particular order. It requires both connections, that integrate the parts into a whole, and separations that differentiate subsystems, so as to avoid interference. Function means that this structure fulfils a purpose." (Francis Heylighen & Carlos Gershenson, "The Meaning of Self-organization in Computing", IEEE Intelligent Systems, 2003)

"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)

"Systems thinking is a mental discipline and framework for seeing patterns and interrelationships. It is important to see organizational systems as a whole because of their complexity. Complexity can overwhelm managers, undermining confidence. When leaders can see the structures that underlie complex situations, they can facilitate improvement. But doing that requires a focus on the big picture." (Richard L Daft, "The Leadership Experience", 2008)

"Nature is capable of building complex structures by processes of self-organization; simplicity begets complexity." (Victor J Stenger, God: "The Failed Hypothesis", 2010)

"Cybernetics is the study of systems which can be mapped using loops (or more complicated looping structures) in the network defining the flow of information. Systems of automatic control will of necessity use at least one loop of information flow providing feedback." (Alan Scrivener, "A Curriculum for Cybernetics and Systems Theory", 2012)

"The Second Law of Thermodynamics states that in an isolated system (one that is not taking in energy), entropy never decreases. (The First Law is that energy is conserved; the Third, that a temperature of absolute zero is unreachable.) Closed systems inexorably become less structured, less organized, less able to accomplish interesting and useful outcomes, until they slide into an equilibrium of gray, tepid, homogeneous monotony and stay there." (Steven Pinker, "The Second Law of Thermodynamics", 2017)

🕸Systems Engineering: Self-Organization (Just the Quotes)

"Clearly, if the state of the system is coupled to parameters of an environment and the state of the environment is made to modify parameters of the system, a learning process will occur. Such an arrangement will be called a Finite Learning Machine, since it has a definite capacity. It is, of course, an active learning mechanism which trades with its surroundings. Indeed it is the limit case of a self-organizing system which will appear in the network if the currency supply is generalized." (Gordon Pask, "The Natural History of Networks", 1960)

"It is inherent in the logical character of the abstract self-organizing system that all available methods of organization are used, and that it cannot be realized in a single reference frame. Thus, any of the tricks which the physical model can perform, such as learning and remembering, may be performed by one or all of a variety of mechanisms, chemical or electrical or mechanical." (Gordon Pask, "The Natural History of Networks", 1960)

"To say a system is 'self-organizing' leaves open two quite different meanings. There is a first meaning that is simple and unobjectionable. This refers to the system that starts with its parts separate (so that the behavior of each is independent of the others' states) and whose parts then act so that they change towards forming connections of some type. Such a system is 'self-organizing' in the sense that it changes from 'parts separated' to 'parts joined'. […] In general such systems can be more simply characterized as 'self-connecting', for the change from independence between the parts to conditionality can always be seen as some form of 'connection', even if it is as purely functional […]  'Organizing' […] may also mean 'changing from a bad organization to a good one' […] The system would be 'self-organizing' if a change were automatically made to the feedback, changing it from positive to negative; then the whole would have changed from a bad organization to a good." (W Ross Ashby, "Principles of the self-organizing system", 1962)

"In self-organizing systems, on the other hand, ‘control’ of the organization is typically distributed over the whole of the system. All parts contribute evenly to the resulting arrangement." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local interactions. Because of its distributed character, this organization tends to be robust, resisting perturbations. The dynamics of a self-organizing system is typically non-linear, because of circular or feedback relations between the components. Positive feedback leads to an explosive growth, which ends when all components have been absorbed into the new configuration, leaving the system in a stable, negative feedback state. Non-linear systems have in general several stable states, and this number tends to increase (bifurcate) as an increasing input of energy pushes the system farther from its thermodynamic equilibrium.” (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

“To adapt to a changing environment, the system needs a variety of stable states that is large enough to react to all perturbations but not so large as to make its evolution uncontrollably chaotic. The most adequate states are selected according to their fitness, either directly by the environment, or by subsystems that have adapted to the environment at an earlier stage. Formally, the basic mechanism underlying self-organization is the (often noise-driven) variation which explores different regions in the system’s state space until it enters an attractor. This precludes further variation outside the attractor, and thus restricts the freedom of the system’s components to behave independently. This is equivalent to the increase of coherence, or decrease of statistical entropy, that defines self-organization." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"[The] system may evolve through a whole succession of transitions leading to a hierarchy of more and more complex and organized states. Such transitions can arise in nonlinear systems that are maintained far from equilibrium: that is, beyond a certain critical threshold the steady-state regime become unstable and the system evolves into a new configuration." (Ilya Prigogine, Gregoire Micolis & Agnes Babloyantz, "Thermodynamics of Evolution", Physics Today 25 (11), 1972)

"There is nothing supernatural about the process of self-organization to states of higher entropy; it is a general property of systems, regardless of their materials and origin. It does not violate the Second Law of thermodynamics since the decrease in entropy within an open system is always offset by the increase of entropy in its surroundings." (Ervin László, "Introduction to Systems Philosophy", 1972)

"Every system of whatever size must maintain its own structure and must deal with a dynamic environment, i.e., the system must strike a proper balance between stability and change. The cybernetic mechanisms for stability (i.e., homeostasis, negative feedback, autopoiesis, equifinality) and change (i.e., positive feedback, algedonodes, self-organization) are found in all viable systems." (Barry Clemson, "Cybernetics: A New Management Tool", 1984)

"Autopoietic systems, then, are not only self-organizing systems, they not only produce and eventually change their own structures; their self-reference applies to the production of other components as well. This is the decisive conceptual innovation. […] Thus, everything that is used as a unit by the system is produced as a unit by the system itself. This applies to elements, processes, boundaries, and other structures and, last but not least, to the unity of the system itself." (Niklas Luhmann, "The Autopoiesis of Social Systems", 1990)

"Complex adaptive systems have the property that if you run them - by just letting the mathematical variable of 'time' go forward - they'll naturally progress from chaotic, disorganized, undifferentiated, independent states to organized, highly differentiated, and highly interdependent states. Organized structures emerge spontaneously. [...] A weak system gives rise only to simpler forms of self-organization; a strong one gives rise to more complex forms, like life. (J Doyne Farmer, "The Third Culture: Beyond the Scientific Revolution", 1995)

"Self-organization refers to the spontaneous formation of patterns and pattern change in open, nonequilibrium systems. […] Self-organization provides a paradigm for behavior and cognition, as well as the structure and function of the nervous system. In contrast to a computer, which requires particular programs to produce particular results, the tendency for self-organization is intrinsic to natural systems under certain conditions." (J A Scott Kelso, "Dynamic Patterns : The Self-organization of Brain and Behavior", 1995)

"[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations." (Fritjof  Capra, "The web of life: a new scientific understanding of living  systems", 1996)

"Emergent self-organization in multi-agent systems appears to contradict the second law of thermodynamics. This paradox has been explained in terms of a coupling between the macro level that hosts self-organization (and an apparent reduction in entropy), and the micro level (where random processes greatly increase entropy). Metaphorically, the micro level serves as an entropy 'sink', permitting overall system entropy to increase while sequestering this increase from the interactions where self-organization is desired." (H Van Dyke Parunak & Sven Brueckner, "Entropy and Self-Organization in Multi-Agent Systems", Proceedings of the International Conference on Autonomous Agents, 2001)

"In principle, a self-organising system cannot be constructed, since its organisation and behaviour cannot be prescribed and created by an external source. It emerges autonomously in certain conditions (which cannot be prescribed either). The task of the researcher is to investigate in what kind of systems and under what kind of conditions self-organisation emerges." (Rein Vihalemm, "Chemistry as an Interesting Subject for the Philosophy of Science", 2001)

"Self-organization [is] the appearance of structure or pattern without an external agent imposing it." (Francis Heylighen, "The science of Self-organization and Adaptivity", 2001)

"Through self-organization, the behavior of the group emerges from the collective interactions of all the individuals. In fact, a major recurring theme in swarm intelligence (and of complexity science in general) is that even if individuals follow simple rules, the resulting group behavior can be surprisingly complex - and remarkably effective. And, to a large extent, flexibility and robustness result from self-organization." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"[…] swarm intelligence is becoming a valuable tool for optimizing the operations of various businesses. Whether similar gains will be made in helping companies better organize themselves and develop more effective strategies remains to be seen. At the very least, though, the field provides a fresh new framework for solving such problems, and it questions the wisdom of certain assumptions regarding the need for employee supervision through command-and-control management. In the future, some companies could build their entire businesses from the ground up using the principles of swarm intelligence, integrating the approach throughout their operations, organization, and strategy. The result: the ultimate self-organizing enterprise that could adapt quickly - and instinctively - to fast-changing markets." (Eric Bonabeau & Christopher Meyer, "Swarm Intelligence: A Whole New Way to Think About Business", Harvard Business Review, 2001)

"Nature normally hates power laws. In ordinary systems all quantities follow bell curves, and correlations decay rapidly, obeying exponential laws. But all that changes if the system is forced to undergo a phase transition. Then power laws emerge-nature's unmistakable sign that chaos is departing in favor of order. The theory of phase transitions told us loud and clear that the road from disorder to order is maintained by the powerful forces of self-organization and is paved by power laws. It told us that power laws are not just another way of characterizing a system's behavior. They are the patent signatures of self-organization in complex systems." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002)

"This spontaneous emergence of order at critical points of instability is one of the most important concepts of the new understanding of life. It is technically known as self-organization and is often referred to simply as ‘emergence’. It has been recognized as the dynamic origin of development, learning and evolution. In other words, creativity-the generation of new forms-is a key property of all living systems. And since emergence is an integral part of the dynamics of open systems, we reach the important conclusion that open systems develop and evolve. Life constantly reaches out into novelty." (Fritjof  Capra, "The Hidden Connections", 2002)

"A self-organizing system not only regulates or adapts its behavior, it creates its own organization. In that respect it differs fundamentally from our present systems, which are created by their designer. We define organization as structure with function. Structure means that the components of a system are arranged in a particular order. It requires both connections, that integrate the parts into a whole, and separations that differentiate subsystems, so as to avoid interference. Function means that this structure fulfils a purpose." (Francis Heylighen & Carlos Gershenson, "The Meaning of Self-organization in Computing", IEEE Intelligent Systems, 2003)

"The basic concept of complexity theory is that systems show patterns of organization without organizer (autonomous or self-organization). Simple local interactions of many mutually interacting parts can lead to emergence of complex global structures. […] Complexity originates from the tendency of large dynamical systems to organize themselves into a critical state, with avalanches or 'punctuations' of all sizes. In the critical state, events which would otherwise be uncoupled became correlated." (Jochen Fromm, "The Emergence of Complexity", 2004)

"A system described as self-organizing is one in which elements interact in order to achieve dynamically a global function or behavior." (Carlos Gershenson, "A general methodology for designing self-organizing systems", 2006)

"Like resilience, self-organizazion is often sacrificed for purposes of short-term productivity and stability." (Donella H Meadows, “Thinking in Systems: A Primer”, 2008)

"[…] our mental models fail to take into account the complications of the real world - at least those ways that one can see from a systems perspective. It is a warning list. Here is where hidden snags lie. You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long-term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities and delays. You are likely to mistreat, misdesign, or misread systems if you don’t respect their properties of resilience, self-organization, and hierarchy." (Donella H Meadows, "Thinking in Systems: A Primer", 2008)

"In engineering, a self-organizing system would be one in which elements are designed to dynamically and autonomously solve a problem or perform a function at the system level. In other words, the engineer will not build a system to perform a function explicitly, but elements will be engineered in such a way that their behaviour and interactions will lead to the system function. Thus, the elements need to divide, but also to integrate, the problem." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"Nature is capable of building complex structures by processes of self-organization; simplicity begets complexity." (Victor J Stenger, God: "The Failed Hypothesis", 2010)

"Cybernetics studies the concepts of control and communication in living organisms, machines and organizations including self-organization. It focuses on how a (digital, mechanical or biological) system processes information, responds to it and changes or being changed for better functioning (including control and communication)." (Dmitry A Novikov, "Cybernetics 2.0", 2016)

More quotes on "Self-Organization" at the-web-of-knowledge.blogspot.com.

19 December 2014

🕸Systems Engineering: Feedback (Just the Quotes)

"Feedback is a method of controlling a system by reinserting into it the results of its past performance. If these results are merely used as numerical data for the criticism of the system and its regulation, we have the simple feedback of the control engineers. If, however, the information which proceeds backward from the performance is able to change the general method and pattern of performance, we have a process which may be called learning." (Norbert Wiener, 1954)

"[...] the concept of 'feedback', so simple and natural in certain elementary cases, becomes artificial and of little use when the interconnexions between the parts become more complex. When there are only two parts joined so that each affects the other, the properties of the feedback give important and useful information about the properties of the whole. But when the parts rise to even as few as four, if every one affects the other three, then twenty circuits can be traced through them; and knowing the properties of all the twenty circuits does not give complete information about the system. Such complex systems cannot be treated as an interlaced set of more or less independent feedback circuits, but only as a whole. For understanding the general principles of dynamic systems, therefore, the concept of feedback is inadequate in itself. What is important is that complex systems, richly cross-connected internally, have complex behaviours, and that these behaviours can be goal-seeking in complex patterns." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Traditional organizational theories have tended to view the human organization as a closed system. This tendency has led to a disregard of differing organizational environments and the nature of organizational dependency on environment. It has led also to an over-concentration on principles of internal organizational functioning, with consequent failure to develop and understand the processes of feedback which are essential to survival." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"The structure of a complex system is not a simple feedback loop where one system state dominates the behavior. The complex system has a multiplicity of interacting feedback loops. Its internal rates of flow are controlled by non‐linear relationships. The complex system is of high order, meaning that there are many system states (or levels). It usually contains positive‐feedback loops describing growth processes as well as negative, goal‐seeking loops." (Jay W Forrester, "Urban Dynamics", 1969)

"To model the dynamic behavior of a system, four hierarchies of structure should be recognized: closed boundary around the system; feedback loops as the basic structural elements within the boundary; level variables representing accumulations within the feedback loops; rate variables representing activity within the feedback loops." (Jay W Forrester, "Urban Dynamics", 1969)

"Effect spreads its 'tentacles' not only forwards (as a new cause giving rise to a new effect) but also backwards, to the cause which gave rise to it, thus modifying, exhausting or intensifying its force. This interaction of cause and effect is known as the principle of feedback. It operates everywhere, particularly in all self-organising systems where perception, storing, processing and use of information take place, as for example, in the organism, in a cybernetic device, and in society. The stability, control and progress of a system are inconceivable without feedback." (Alexander Spirkin, "Dialectical Materialism", 1983)

"Ultimately, uncontrolled escalation destroys a system. However, change in the direction of learning, adaptation, and evolution arises from the control of control, rather than unchecked change per se. In general, for the survival and co-evolution of any ecology of systems, feedback processes must be embodied by a recursive hierarchy of control circuits." (Bradford P Keeney, "Aesthetics of Change", 1983)

"Every system of whatever size must maintain its own structure and must deal with a dynamic environment, i.e., the system must strike a proper balance between stability and change. The cybernetic mechanisms for stability (i.e., homeostasis, negative feedback, autopoiesis, equifinality) and change (i.e., positive feedback, algedonodes, self-organization) are found in all viable systems." (Barry Clemson, "Cybernetics: A New Management Tool", 1984) 

"The term closed loop-learning process refers to the idea that one learns by determining what s desired and comparing what is actually taking place as measured at the process and feedback for comparison. The difference between what is desired and what is taking place provides an error indication which is used to develop a signal to the process being controlled." (Harold Chestnut, 1984) 

"The term chaos is used in a specific sense where it is an inherently random pattern of behaviour generated by fixed inputs into deterministic (that is fixed) rules (relationships). The rules take the form of non-linear feedback loops. Although the specific path followed by the behaviour so generated is random and hence unpredictable in the long-term, it always has an underlying pattern to it, a 'hidden' pattern, a global pattern or rhythm. That pattern is self-similarity, that is a constant degree of variation, consistent variability, regular irregularity, or more precisely, a constant fractal dimension. Chaos is therefore order (a pattern) within disorder (random behaviour)." (Ralph D Stacey, "The Chaos Frontier: Creative Strategic Control for Business", 1991)

"In many parts of the economy, stabilizing forces appear not to operate. Instead, positive feedback magnifies the effects of small economic shifts; the economic models that describe such effects differ vastly from the conventional ones. Diminishing returns imply a single equilibrium point for the economy, but positive feedback – increasing returns – makes for many possible equilibrium points. There is no guarantee that the particular economic outcome selected from among the many alternatives will be the ‘best’ one."  (W Brian Arthur, "Returns and Path Dependence in the Economy", 1994)

“[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations.” (Fritjof  Capra, “The web of life: a new scientific understanding of living  systems”, 1996)

"Something of the previous state, however, survives every change. This is called in the language of cybernetics (which took it form the language of machines) feedback, the advantages of learning from experience and of having developed reflexes." (Guy Davenport, "The Geography of the Imagination: Forty Essays", 1997)

"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)

"All dynamics arise from the interaction of just two types of feedback loops, positive (or self-reinforcing) and negative (or self-correcting) loops. Positive loops tend to reinforce or amplify whatever is happening in the system […] Negative loops counteract and oppose change." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

"Much of the art of system dynamics modeling is discovering and representing the feedback processes, which, along with stock and flow structures, time delays, and nonlinearities, determine the dynamics of a system. […] the most complex behaviors usually arise from the interactions (feedbacks) among the components of the system, not from the complexity of the components themselves." (John D Sterman, "Business Dynamics: Systems thinking and modeling for a complex world", 2000)

“The phenomenon of emergence takes place at critical points of instability that arise from fluctuations in the environment, amplified by feedback loops." (Fritjof Capra, "The Hidden Connections: A Science for Sustainable Living", 2002)

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"The work around the complex systems map supported a concentration on causal mechanisms. This enabled poor system responses to be diagnosed as the unanticipated effects of previous policies as well as identification of the drivers of the sector. Understanding the feedback mechanisms in play then allowed experimentation with possible future policies and the creation of a coherent and mutually supporting package of recommendations for change."  (David C Lane et al, "Blending systems thinking approaches for organisational analysis: reviewing child protection", 2015)

More quotes on "Feedback" at the-web-of-knowledge.blogspot.com.

🕸Systems Engineering: Cybernetics (Just the Quotes)

"Cybernetics is a word invented to define a new field in science. It combines under one heading the study of what in a human context is sometimes loosely described as thinking and in engineering is known as control and communication. In other words, cybernetics attempts to find the common elements in the functioning of automatic machines and of the human nervous system, and to develop a theory which will cover the entire field of control and communication in machines and in living organisms." (Norbert Wiener, "Cybernetics", 1948) 

"The concept of teleological mechanisms however it be expressed in many terms, may be viewed as an attempt to escape from these older mechanistic formulations that now appear inadequate, and to provide new and more fruitful conceptions and more effective methodologies for studying self-regulating processes, self-orienting systems and organisms, and self-directing personalities. Thus, the terms feedback, servomechanisms, circular systems, and circular processes may be viewed as different but equivalent expressions of much the same basic conception." (Lawrence K Frank, 1948)

The 'cybernetics' of Wiener […] is the science of organization of mechanical and electrical components for stability and purposeful actions. A distinguishing feature of this new science is the total absence of considerations of energy, heat, and efficiency, which are so important in other natural sciences. In fact, the primary concern of cybernetics is on the qualitative aspects of the interrelations among the various components of a system and the synthetic behavior of the complete mechanism." (Qian Xuesen, "Engineering Cybernetics", 1954) 

"Cybernetics might, in fact, be defined as the study of systems that are open to energy but closed to information and control-systems that are 'information-tight'." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"There comes a stage, however, as the system becomes larger and larger, when the reception of all the information is impossible by reason of its sheer bulk. Either the recording channels cannot carry all the information, or the observer, presented with it all, is overwhelmed. When this occurs, what is he to do? The answer is clear: he must give up any ambition to know the whole system. His aim must be to achieve a partial knowledge that, though partial over the whole, is none the less complete within itself, and is sufficient for his ultimate practical purpose." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"[Cybernetics is] the art of ensuring the efficacy of action." (Louis Couffignal, 1958)

"Cybernetics is the science of the process of transmission, processing and storage of information." (Sergei Sobolew, Woprosy Psychology, 1958)

"Cybernetics is the general science of communication. But to refer to communication is consciously or otherwise to refer to distinguishable states of information inputs and outputs and /or to information being processed within some relatively isolated system." (Henryk Greniewski, "Cybernetics without Mathematics", 1960)

"Cybernetics offers a scientific approach to the cussedness of organisms, suggests how their behaviours can be catalysed and the mystique and rule of thumb banished." (Gordon Pask, "An Approach to Cybernetics", 1961)

"Cybernetics is concerned primarily with the construction of theories and models in science, without making a hard and fast distinction between the physical and the biological sciences. The theories and models occur both in symbols and in hardware, and by 'hardware’ we shall mean a machine or computer built in terms of physical or chemical, or indeed any handleable parts. Most usually we shall think of hardware as meaning electronic parts such as valves and relays. Cybernetics insists, also, on a further and rather special condition that distinguishes it from ordinary scientific theorizing: it demands a certain standard of effectiveness. In this respect it has acquired some of the same motive power that has driven research on modern logic, and this is especially true in the construction and application of artificial languages and the use of operational definitions. Always the search is for precision and effectiveness, and we must now discuss the question of effectiveness in some detail. It should be noted that when we talk in these terms we are giving pride of place to the theory of automata at the expense, at least to some extent, of feedback and information theory." (Frank H George, "The Brain As A Computer", 1962)

"[…] cybernetics studies the flow of information round a system, and the way in which this information is used by the system as a means of controlling itself: it does this for animate and inanimate systems indifferently. For cybernetics is an interdisciplinary science, owing as much to biology as to physics, as much to the study of the brain as to the study of computers, and owing also a great deal to the formal languages of science for providing tools with which the behaviour of all these systems can be objectively described." (A Stafford Beer, 1966)

"Cybernetics, based upon the principle of feedback or circular causal trains providing mechanisms for goal-seeking and self-controlling behavior." (Ludwig von Bertalanffy, "General System Theory", 1968)

"A more viable model, one much more faithful to the kind of system that society is more and more recognized to be, is in process of developing out of, or is in keeping with, the modern systems perspective (which we use loosely here to refer to general systems research, cybernetics, information and communication theory, and related fields). Society, or the sociocultural system, is not, then, principally an equilibrium system or a homeostatic system, but what we shall simply refer to as a complex adaptive system." (Walter F Buckley, "Society as a complex adaptive system", 1968)

"According to the science of cybernetics, which deals with the topic of control in every kind of system (mechanical, electronic, biological, human, economic, and so on), there is a natural law that governs the capacity of a control system to work. It says that the control must be capable of generating as much 'variety' as the situation to be controlled. (Anthony S Beer, "Management Science", 1968)

"Perhaps the most important single characteristic of modern organizational cybernetics is this: That in addition to concern with the deleterious impacts of rigidly-imposed notions of what constitutes the application of good 'principles of organization and management' the organization is viewed as a subsystem of a larger system(s), and as comprised itself of functionally interdependent subsystems." (Richard F Ericson, "Organizational cybernetics and human values", 1969)  

"The essence of cybernetic organizations is that they are self-controlling, self-maintaining, self-realizing. Indeed, cybernetics has been characterized as the “science of effective organization,” in just these terms. But the word “cybernetics” conjures, in the minds of an apparently great number of people, visions of computerized information networks, closed loop systems, and robotized man-surrogates, such as ‘artorgas’ and ‘cyborgs’." (Richard F Ericson, "Visions of Cybernetic Organizations", 1972)

"The main object of cybernetics is to supply adaptive, hierarchical models, involving feedback and the like, to all aspects of our environment. Often such modelling implies simulation of a system where the simulation should achieve the object of copying both the method of achievement and the end result. Synthesis, as opposed to simulation, is concerned with achieving only the end result and is less concerned (or completely unconcerned) with the method by which the end result is achieved. In the case of behaviour, psychology is concerned with simulation, while cybernetics, although also interested in simulation, is primarily concerned with synthesis." (Frank H George, "Soviet Cybernetics, the militairy and Professor Lerner", New Scientist, 1973)

"General systems theory and cybernetics supplanted the classical conceptual model of a whole made out of parts and relations between parts with a model emphasizing the difference between systems and environments. This new paradigm made it possible to relate both the structures (including forms of differentiation) and processes of systems to the environment." (Thomas Luckmann & Niklas Luhmann, "The Differentiation of Society", 1977)

"Cybernetics is a homogenous and coherent scientific complex, a science resulting from the blending of at least two sciences - psychology and technology; it is a general and integrative science, a crossroads of sciences, involving both animal and car psychology. It is not just a discipline, circumscribed in a narrow and strictly defined field, but a complex of disciplines born of psychology and centered on it, branched out as branches of a tree in its stem. It is a stepwise synthesis, a suite of multiple, often reciprocal, modeling; syntheses and modeling in which, as a priority, and as a great importance, the modeling of psychology on the technique and then the modeling of the technique on psychology. Cybernetics is an intellectual symphony, a symphony of ideas and sciences." (Stefan Odobleja, 1978)

"Cybernetics is concerned with scientific investigation of systemic processes of a highly varied nature, including such phenomena as regulation, information processing, information storage, adaptation, self-organization, self-reproduction, and strategic behavior. Within the general cybernetic approach, the following theoretical fields have developed: systems theory (system), communication theory, game theory, and decision theory." (Fritz B Simon et al, "Language of Family Therapy: A Systemic Vocabulary and Source Book", 1985)

"In cybernetics, theories tend to rest on four basic pillars: Variety, circularity, process and observation." (Klaus Krippendorff, 1986)

"Cybernetics, although not ignoring formal networks, suggests that an informal communications structure will also be present such that complex conversations at a number of levels between two or more individuals exist." (Robert L Flood, "Dealing with Complexity", 1988)

"Unlike its predecessor, the new cybernetics concerns itself with the interaction of autonomous political actors and subgroups, and the practical and reflexive consciousness of the subjects who produce and reproduce the structure of a political community. A dominant consideration is that of recursiveness, or self-reference of political action both with regards to the expression of political consciousness and with the ways in which systems build upon themselves." (Peter Harries-Jones, The Self-Organizing Policy: An Epistemological Analysis of Political Life by Laurent Dobuzinskis, Canadian Journal of Political Science 21 (2), 1988)

"At the very least (there is certainly more), cybernetics implies a new philosophy about (1) what we can know, (2) about what it means for something to exist, and (3) about how to get things done. Cybernetics implies that knowledge is to be built up through effective goal-seeking processes, and perhaps not necessarily in uncovering timeless, absolute, attributes of things, irrespective of our purposes and needs." (Jeff Dooley, "Thoughts on the Question: What is Cybernetics", 1995)

"Cybernetics is a science of purposeful behavior. It helps us explain behavior as the continuous action of someone (or thing) in the process, as we see it, of maintaining certain conditions near a goal state, or purpose." (Jeff Dooley, "Thoughts on the Question: What is Cybernetics", 1995)

"In sharp contrast (with the traditional social planning) the systems design approach seeks to understand a problem situation as a system of interconnected, interdependent, and interacting issues and to create a design as a system of interconnected, interdependent, interacting, and internally consistent solution ideas." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)

"The science of cybernetics is not about thermostats or machines; that characterization is a caricature. Cybernetics is about purposiveness, goals, information flows, decision-making control processes and feedback (properly defined) at all levels of living systems." (Peter Corning, "Synergy, Cybernetics, and the Evolution of Politics", 2005) 

"The single most important property of a cybernetic system is that it is controlled by the relationship between endogenous goals and the external environment. [...] In a complex system, overarching goals may be maintained (or attained) by means of an array of hierarchically organized subgoals that may be pursued contemporaneously, cyclically, or seriatim." (Peter Corning, "Synergy, Cybernetics, and the Evolution of Politics", 2005) 

"A great deal of the results in many areas of physics are presented in the form of conservation laws, stating that some quantities do not change during evolution of the system. However, the formulations in cybernetical physics are different. Since the results in cybernetical physics establish how the evolution of the system can be changed by control, they should be formulated as transformation laws, specifying the classes of changes in the evolution of the system attainable by control function from the given class, i.e., specifying the limits of control." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

"Cybernetics is the study of systems and processes that interact with themselves and produce themselves from themselves." (Louis Kauffman, 2007)

"Systematic usage of the methods of modern control theory to study physical systems is a key feature of a new research area in physics that may be called cybernetical physics. The subject of cybernetical physics is focused on studying physical systems by means of feedback interactions with the environment. Its methodology heavily relies on the design methods developed in cybernetics. However, the approach of cybernetical physics differs from the conventional use of feedback in control applications (e.g., robotics, mechatronics) aimed mainly at driving a system to a prespecified position or a given trajectory." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

"For me, as I later came to say, cybernetics is the art of creating equilibrium in a world of possibilities and constraints. This is not just a romantic description, it portrays the new way of thinking quite accurately. Cybernetics differs from the traditional scientific procedure, because it does not try to explain phenomena by searching for their causes, but rather by specifying the constraints that determine the direction of their development." (Ernst von Glasersfeld, "The Cybernetics of Snow Drifts 1948", 2009)

"Cybernetics is the art of creating equilibrium in a world of possibilities and constraints. This is not just a romantic description, it portrays the new way of thinking quite accurately. Cybernetics differs from the traditional scientific procedure, because it does not try to explain phenomena by searching for their causes, but rather by specifying the constraints that determine the direction of their development." (Ernst von Glasersfeld, "Partial Memories: Sketches from an Improbable Life", 2010)

"Cybernetics is the study of systems which can be mapped using loops (or more complicated looping structures) in the network defining the flow of information. Systems of automatic control will of necessity use at least one loop of information flow providing feedback." (Alan Scrivener, "A Curriculum for Cybernetics and Systems Theory", 2012)

"Cybernetics studies the concepts of control and communication in living organisms, machines and organizations including self-organization. It focuses on how a (digital, mechanical or biological) system processes information, responds to it and changes or being changed for better functioning (including control and communication)." (Dmitry A Novikov, "Cybernetics 2.0", 2016)

More quotes on "Cybernetics" at the-web-of-knowledge.blogspot.com.

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.