19 December 2014

🕸Systems Engineering: Cybernetics (Just the Quotes)

"Cybernetics is a word invented to define a new field in science. It combines under one heading the study of what in a human context is sometimes loosely described as thinking and in engineering is known as control and communication. In other words, cybernetics attempts to find the common elements in the functioning of automatic machines and of the human nervous system, and to develop a theory which will cover the entire field of control and communication in machines and in living organisms." (Norbert Wiener, "Cybernetics", 1948) 

"The concept of teleological mechanisms however it be expressed in many terms, may be viewed as an attempt to escape from these older mechanistic formulations that now appear inadequate, and to provide new and more fruitful conceptions and more effective methodologies for studying self-regulating processes, self-orienting systems and organisms, and self-directing personalities. Thus, the terms feedback, servomechanisms, circular systems, and circular processes may be viewed as different but equivalent expressions of much the same basic conception." (Lawrence K Frank, 1948)

The 'cybernetics' of Wiener […] is the science of organization of mechanical and electrical components for stability and purposeful actions. A distinguishing feature of this new science is the total absence of considerations of energy, heat, and efficiency, which are so important in other natural sciences. In fact, the primary concern of cybernetics is on the qualitative aspects of the interrelations among the various components of a system and the synthetic behavior of the complete mechanism." (Qian Xuesen, "Engineering Cybernetics", 1954) 

"Cybernetics might, in fact, be defined as the study of systems that are open to energy but closed to information and control-systems that are 'information-tight'." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"There comes a stage, however, as the system becomes larger and larger, when the reception of all the information is impossible by reason of its sheer bulk. Either the recording channels cannot carry all the information, or the observer, presented with it all, is overwhelmed. When this occurs, what is he to do? The answer is clear: he must give up any ambition to know the whole system. His aim must be to achieve a partial knowledge that, though partial over the whole, is none the less complete within itself, and is sufficient for his ultimate practical purpose." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"[Cybernetics is] the art of ensuring the efficacy of action." (Louis Couffignal, 1958)

"Cybernetics is the science of the process of transmission, processing and storage of information." (Sergei Sobolew, Woprosy Psychology, 1958)

"Cybernetics is the general science of communication. But to refer to communication is consciously or otherwise to refer to distinguishable states of information inputs and outputs and /or to information being processed within some relatively isolated system." (Henryk Greniewski, "Cybernetics without Mathematics", 1960)

"Cybernetics offers a scientific approach to the cussedness of organisms, suggests how their behaviours can be catalysed and the mystique and rule of thumb banished." (Gordon Pask, "An Approach to Cybernetics", 1961)

"Cybernetics is concerned primarily with the construction of theories and models in science, without making a hard and fast distinction between the physical and the biological sciences. The theories and models occur both in symbols and in hardware, and by 'hardware’ we shall mean a machine or computer built in terms of physical or chemical, or indeed any handleable parts. Most usually we shall think of hardware as meaning electronic parts such as valves and relays. Cybernetics insists, also, on a further and rather special condition that distinguishes it from ordinary scientific theorizing: it demands a certain standard of effectiveness. In this respect it has acquired some of the same motive power that has driven research on modern logic, and this is especially true in the construction and application of artificial languages and the use of operational definitions. Always the search is for precision and effectiveness, and we must now discuss the question of effectiveness in some detail. It should be noted that when we talk in these terms we are giving pride of place to the theory of automata at the expense, at least to some extent, of feedback and information theory." (Frank H George, "The Brain As A Computer", 1962)

"[…] cybernetics studies the flow of information round a system, and the way in which this information is used by the system as a means of controlling itself: it does this for animate and inanimate systems indifferently. For cybernetics is an interdisciplinary science, owing as much to biology as to physics, as much to the study of the brain as to the study of computers, and owing also a great deal to the formal languages of science for providing tools with which the behaviour of all these systems can be objectively described." (A Stafford Beer, 1966)

"Cybernetics, based upon the principle of feedback or circular causal trains providing mechanisms for goal-seeking and self-controlling behavior." (Ludwig von Bertalanffy, "General System Theory", 1968)

"A more viable model, one much more faithful to the kind of system that society is more and more recognized to be, is in process of developing out of, or is in keeping with, the modern systems perspective (which we use loosely here to refer to general systems research, cybernetics, information and communication theory, and related fields). Society, or the sociocultural system, is not, then, principally an equilibrium system or a homeostatic system, but what we shall simply refer to as a complex adaptive system." (Walter F Buckley, "Society as a complex adaptive system", 1968)

"According to the science of cybernetics, which deals with the topic of control in every kind of system (mechanical, electronic, biological, human, economic, and so on), there is a natural law that governs the capacity of a control system to work. It says that the control must be capable of generating as much 'variety' as the situation to be controlled. (Anthony S Beer, "Management Science", 1968)

"Perhaps the most important single characteristic of modern organizational cybernetics is this: That in addition to concern with the deleterious impacts of rigidly-imposed notions of what constitutes the application of good 'principles of organization and management' the organization is viewed as a subsystem of a larger system(s), and as comprised itself of functionally interdependent subsystems." (Richard F Ericson, "Organizational cybernetics and human values", 1969)  

"The essence of cybernetic organizations is that they are self-controlling, self-maintaining, self-realizing. Indeed, cybernetics has been characterized as the “science of effective organization,” in just these terms. But the word “cybernetics” conjures, in the minds of an apparently great number of people, visions of computerized information networks, closed loop systems, and robotized man-surrogates, such as ‘artorgas’ and ‘cyborgs’." (Richard F Ericson, "Visions of Cybernetic Organizations", 1972)

"The main object of cybernetics is to supply adaptive, hierarchical models, involving feedback and the like, to all aspects of our environment. Often such modelling implies simulation of a system where the simulation should achieve the object of copying both the method of achievement and the end result. Synthesis, as opposed to simulation, is concerned with achieving only the end result and is less concerned (or completely unconcerned) with the method by which the end result is achieved. In the case of behaviour, psychology is concerned with simulation, while cybernetics, although also interested in simulation, is primarily concerned with synthesis." (Frank H George, "Soviet Cybernetics, the militairy and Professor Lerner", New Scientist, 1973)

"General systems theory and cybernetics supplanted the classical conceptual model of a whole made out of parts and relations between parts with a model emphasizing the difference between systems and environments. This new paradigm made it possible to relate both the structures (including forms of differentiation) and processes of systems to the environment." (Thomas Luckmann & Niklas Luhmann, "The Differentiation of Society", 1977)

"Cybernetics is a homogenous and coherent scientific complex, a science resulting from the blending of at least two sciences - psychology and technology; it is a general and integrative science, a crossroads of sciences, involving both animal and car psychology. It is not just a discipline, circumscribed in a narrow and strictly defined field, but a complex of disciplines born of psychology and centered on it, branched out as branches of a tree in its stem. It is a stepwise synthesis, a suite of multiple, often reciprocal, modeling; syntheses and modeling in which, as a priority, and as a great importance, the modeling of psychology on the technique and then the modeling of the technique on psychology. Cybernetics is an intellectual symphony, a symphony of ideas and sciences." (Stefan Odobleja, 1978)

"Cybernetics is concerned with scientific investigation of systemic processes of a highly varied nature, including such phenomena as regulation, information processing, information storage, adaptation, self-organization, self-reproduction, and strategic behavior. Within the general cybernetic approach, the following theoretical fields have developed: systems theory (system), communication theory, game theory, and decision theory." (Fritz B Simon et al, "Language of Family Therapy: A Systemic Vocabulary and Source Book", 1985)

"In cybernetics, theories tend to rest on four basic pillars: Variety, circularity, process and observation." (Klaus Krippendorff, 1986)

"Cybernetics, although not ignoring formal networks, suggests that an informal communications structure will also be present such that complex conversations at a number of levels between two or more individuals exist." (Robert L Flood, "Dealing with Complexity", 1988)

"Unlike its predecessor, the new cybernetics concerns itself with the interaction of autonomous political actors and subgroups, and the practical and reflexive consciousness of the subjects who produce and reproduce the structure of a political community. A dominant consideration is that of recursiveness, or self-reference of political action both with regards to the expression of political consciousness and with the ways in which systems build upon themselves." (Peter Harries-Jones, The Self-Organizing Policy: An Epistemological Analysis of Political Life by Laurent Dobuzinskis, Canadian Journal of Political Science 21 (2), 1988)

"At the very least (there is certainly more), cybernetics implies a new philosophy about (1) what we can know, (2) about what it means for something to exist, and (3) about how to get things done. Cybernetics implies that knowledge is to be built up through effective goal-seeking processes, and perhaps not necessarily in uncovering timeless, absolute, attributes of things, irrespective of our purposes and needs." (Jeff Dooley, "Thoughts on the Question: What is Cybernetics", 1995)

"Cybernetics is a science of purposeful behavior. It helps us explain behavior as the continuous action of someone (or thing) in the process, as we see it, of maintaining certain conditions near a goal state, or purpose." (Jeff Dooley, "Thoughts on the Question: What is Cybernetics", 1995)

"In sharp contrast (with the traditional social planning) the systems design approach seeks to understand a problem situation as a system of interconnected, interdependent, and interacting issues and to create a design as a system of interconnected, interdependent, interacting, and internally consistent solution ideas." (Béla H Bánáthy, "Designing Social Systems in a Changing World", 1996)

"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)

"The science of cybernetics is not about thermostats or machines; that characterization is a caricature. Cybernetics is about purposiveness, goals, information flows, decision-making control processes and feedback (properly defined) at all levels of living systems." (Peter Corning, "Synergy, Cybernetics, and the Evolution of Politics", 2005) 

"The single most important property of a cybernetic system is that it is controlled by the relationship between endogenous goals and the external environment. [...] In a complex system, overarching goals may be maintained (or attained) by means of an array of hierarchically organized subgoals that may be pursued contemporaneously, cyclically, or seriatim." (Peter Corning, "Synergy, Cybernetics, and the Evolution of Politics", 2005) 

"A great deal of the results in many areas of physics are presented in the form of conservation laws, stating that some quantities do not change during evolution of the system. However, the formulations in cybernetical physics are different. Since the results in cybernetical physics establish how the evolution of the system can be changed by control, they should be formulated as transformation laws, specifying the classes of changes in the evolution of the system attainable by control function from the given class, i.e., specifying the limits of control." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

"Cybernetics is the study of systems and processes that interact with themselves and produce themselves from themselves." (Louis Kauffman, 2007)

"Systematic usage of the methods of modern control theory to study physical systems is a key feature of a new research area in physics that may be called cybernetical physics. The subject of cybernetical physics is focused on studying physical systems by means of feedback interactions with the environment. Its methodology heavily relies on the design methods developed in cybernetics. However, the approach of cybernetical physics differs from the conventional use of feedback in control applications (e.g., robotics, mechatronics) aimed mainly at driving a system to a prespecified position or a given trajectory." (Alexander L Fradkov, "Cybernetical Physics: From Control of Chaos to Quantum Control", 2007)

"For me, as I later came to say, cybernetics is the art of creating equilibrium in a world of possibilities and constraints. This is not just a romantic description, it portrays the new way of thinking quite accurately. Cybernetics differs from the traditional scientific procedure, because it does not try to explain phenomena by searching for their causes, but rather by specifying the constraints that determine the direction of their development." (Ernst von Glasersfeld, "The Cybernetics of Snow Drifts 1948", 2009)

"Cybernetics is the art of creating equilibrium in a world of possibilities and constraints. This is not just a romantic description, it portrays the new way of thinking quite accurately. Cybernetics differs from the traditional scientific procedure, because it does not try to explain phenomena by searching for their causes, but rather by specifying the constraints that determine the direction of their development." (Ernst von Glasersfeld, "Partial Memories: Sketches from an Improbable Life", 2010)

"Cybernetics is the study of systems which can be mapped using loops (or more complicated looping structures) in the network defining the flow of information. Systems of automatic control will of necessity use at least one loop of information flow providing feedback." (Alan Scrivener, "A Curriculum for Cybernetics and Systems Theory", 2012)

"Cybernetics studies the concepts of control and communication in living organisms, machines and organizations including self-organization. It focuses on how a (digital, mechanical or biological) system processes information, responds to it and changes or being changed for better functioning (including control and communication)." (Dmitry A Novikov, "Cybernetics 2.0", 2016)

More quotes on "Cybernetics" at the-web-of-knowledge.blogspot.com.

18 December 2014

🕸Systems Engineering: Equilibrium (Just the Quotes)

"We cannot prevent equilibrium from producing its effects. We may brave human laws, but we cannot resist natural ones." (Jules Verne, "Twenty Thousand Leagues Under the Sea", 1870)

"Every situation is an equilibrium of forces; every life is a struggle between opposing forces working within the limits of a certain equilibrium." (Henri-Frédéric Amiel, "Amiel's Journal", 1885)

"Plasticity, then, in the wide sense of the word, means the possession of a structure weak enough to yield to an influence, but strong enough not to yield all at once. Each relatively stable phase of equilibrium in such a structure is marked by what we may call a new set of habits." (William James, "The Laws of Habit", 1887)

"Every change of one of the factors of an equilibrium occasions a rearrangement of the system in such a direction that the factor in question experiences a change in a sense opposite to the original change." (Henri L Le Chatelier, "Recherches Experimentales et Theoriques sur les Equilibres Chimiques" ["Experimental and Theoretical Research on Chemical Equilibria"], Annales des Mines 8, 1888)

"In every symmetrical system every deformation that tends to destroy the symmetry is complemented by an equal and opposite deformation that tends to restore it. […] One condition, therefore, though not an absolutely sufficient one, that a maximum or minimum of work corresponds to the form of equilibrium, is thus applied by symmetry." (Ernst Mach, "The Science of Mechanics: A Critical and Historical Account of Its Development", 1893)

"We rise from the conception of form to an understanding of the forces which gave rise to it [...] in the representation of form we see a diagram of forces in equilibrium, and in the comparison of kindred forms we discern the magnitude and the direction of the forces which have sufficed to convert the one form into the other." (D'Arcy Wentworth Thompson, "On Growth and Form" Vol. 2, 1917)

"What in the whole denotes a causal equilibrium process, appears for the part as a teleological event." (Ludwig von Bertalanffy, 1929)

"True equilibria can occur only in closed systems and that, in open systems, disequilibria called ‘steady states’, or ‘flow equilibria’ are the predominant and characteristic feature. According to the second law of thermodynamics a closed system must eventually attain a time-independent equilibrium state, with maximum entropy and minimum free energy. An open system may, under certain conditions, attain a time-independent state where the system remains constant as a whole and in its phases, though there is a continuous flow of component materials. This is called a steady state. Steady states are irreversible as a whole. […] A closed system in equilibrium does not need energy for its preservation, nor can energy be obtained from it. In order to perform work, a system must be in disequilibrium, tending toward equilibrium and maintaining a steady state, Therefore the character of an open system is the necessary condition for the continuous working capacity of the organism." (Ludwig on Bertalanffy, "Theoretische Biologie: Band 1: Allgemeine Theorie, Physikochemie, Aufbau und Entwicklung des Organismus", 1932)

"A state of equilibrium in a system does not mean, further, that the system is without tension. Systems can, on the contrary, also come to equilibrium in a state of tension (e.g., a spring under tension or a container with gas under pressure).The occurrence of this sort of system, however, presupposes a certain firmness of boundaries and actual segregation of the system from its environment (both of these in a functional, not a spatial, sense). If the different parts of the system are insufficiently cohesive to withstand the forces working toward displacement (i.e., if the system shows insufficient internal firmness, if it is fluid), or if the system is not segregated from its environment by sufficiently firm walls but is open to its neighboring systems, stationary tensions cannot occur. Instead, there occurs a process in the direction of the forces, which encroaches upon the neighboring regions with diffusion of energy and which goes in the direction of an equilibrium at a lower level of tension in the total region. The presupposition for the existence of a stationary state of tension is thus a certain firmness of the system in question, whether this be its own inner firmness or the firmness of its walls." (Kurt Lewin, "A Dynamic Theory of Personality", 1935)

"The process moves in the direction of a state of equilibrium only for the system as a whole. Part processes may at the same time go on in opposed directions, a circumstance which is of the greatest significance for, for example, the theory of detour behavior. It is hence important to take the system whole which is dominant at the moment as basis." (Kurt Lewin, "A Dynamic Theory of Personality", 1935)

"One may generalize upon these processes in terms of group equilibrium. The group may be said to be in equilibrium when the interactions of its members fall into the customary pattern through which group activities are and have been organized. The pattern of interactions may undergo certain modifications without upsetting the group equilibrium, but abrupt and drastic changes destroy the equilibrium." (William F Whyte, "Street Corner Society", 1943)

"The behavior of two individuals, consisting of effort which results in output, is considered to be determined by a satisfaction function which depends on remuneration (receiving part of the output) and on the effort expended. The total output of the two individuals is not additive, that is, together they produce in general more than separately. Each individual behaves in a way which he considers will maximize his satisfaction function. Conditions are deduced for a certain relative equilibrium and for the stability of this equilibrium, i.e., conditions under which it will not pay the individual to decrease his efforts. In the absence of such conditions ‘exploitation’ occurs which may or may not lead to total parasitism." (Anatol Rapoport, "Mathematical theory of motivation interactions of two individuals," The Bulletin of Mathematical Biophysics 9, 1947)

"The study of the conditions for change begins appropriately with an analysis of the conditions for no change, that is, for the state of equilibrium." (Kurt Lewin, "Quasi-Stationary Social Equilibria and the Problem of Permanent Change", 1947)

"Now a system is said to be at equilibrium when it has no further tendency to change its properties." (Walter J Moore, "Physical chemistry", 1950)

"Physical irreversibility manifests itself in the fact that, whenever the system is in a state far removed from equilibrium, it is much more likely to move toward equilibrium, than in the opposite direction." (William Feller, "An Introduction To Probability Theory And Its Applications", 1950)

"Equilibrium requires that the whole of the structure, the form of its elements, and the means of interconnection be so combined that at the supports there will automatically be produced passive forces or reactions that are able to balance the forces acting upon the structures, including the force of its own weight."  (Eduardo Torroja, "Philosophy of Structure", 1951) 

"[…] there are three different but interconnected conceptions to be considered in every structure, and in every structural element involved: equilibrium, resistance, and stability." (Eduardo Torroja, "Philosophy of Structure" , 1951) 

"Every stable system has the property that if displaced from a state of equilibrium and released, the subsequent movement is so matched to the initial displacement that the system is brought back to the state of equilibrium. A variety of disturbances will therefore evoke a variety of matched reactions." (W Ross Ashby, "Design for a Brain: The Origin of Adaptive Behavior", 1952)

"The primary fact is that all isolated state-determined dynamic systems are selective: from whatever state they have initially, they go towards states of equilibrium. These states of equilibrium are always characterised, in their relation to the change-inducing laws of the system, by being exceptionally resistant." (W Ross Ashby, "Design for a Brain: The Origin of Adaptive Behavior", 1952)

"As shorthand, when the phenomena are suitably simple, words such as equilibrium and stability are of great value and convenience. Nevertheless, it should be always borne in mind that they are mere shorthand, and that the phenomena will not always have the simplicity that these words presuppose." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"Reversible processes are not, in fact, processes at all, they are sequences of states of equilibrium. The processes which we encounter in real life are always irreversible processes." (Arnold Sommerfeld, "Thermodynamics and Statistical Mechanics", Lectures on Theoretical - Physics Vol. V, 1956)

"The static stability of a system is defined by the initial tendency to return to equilibrium conditions following some disturbance from equilibrium. […] If the object has a tendency to continue in the direction of disturbance, negative static stability or static instability exists. […] If the object subject to disturbance has neither the tendency to return nor the tendency to continue in the displacement direction, neutral static stability exists." (Hugh H Hurt, "Aerodynamics for Naval Aviators", 1960)

"While static stability is concerned with the tendency of a displaced body to return to equilibrium, dynamic stability is concerned with the resulting motion with time. If an object is disturbed from equilibrium, the time history of the resulting motion indicates the dynamic stability of the system. In general, the system will demonstrate positive dynamic stability if the amplitude of the motion decreases with time." (Hugh H Hurt, "Aerodynamics for Naval Aviators", 1960)

"[The equilibrium model describes systems] which, in moving to an equilibrium point, typically lose organization, and then tend to hold that minimum level within relatively narrow conditions of disturbance." (Walter F Buckley, "Sociology and modern systems theory", 1967)

"A system is in equilibrium when the forces constituting it are arranged in such a way as to compensate each other, like the two weights pulling at the arms of a pair of scales." (Rudolf Arnheim, "Entropy and Art: An Essay on Disorder and Order", 1971) 

"When matter is becoming disturbed by non-equilibrium conditions it organizes itself, it wakes up. It happens that our world is a non-equilibrium system." (Ilya Prigogine, "Thermodynamics of Evolution", 1972) 

"In an isolated system, which cannot exchange energy and matter with the surroundings, this tendency is expressed in terms of a function of the macroscopic state of the system: the entropy." (Ilya Prigogine, "Thermodynamics of Evolution", 1972) 

"Chance is commonly viewed as a self-correcting process in which a deviation in one direction induces a deviation in the opposite direction to restore the equilibrium. In fact, deviations are not 'corrected' as a chance process unfolds, they are merely diluted." (Amos Tversky, "Judgment Under Uncertainty: Heuristics and Biases", 1974)

"In any system governed by a potential, and in which the system's behavior is determined by no more than four different factors, only seven qualitatively different types of discontinuity are possible. In other words, while there are an infinite number of ways for such a system to change continuously (staying at or near equilibrium), there are only seven structurally stable ways for it to change discontinuously (passing through non-equilibrium states)." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"All environmental areas, from the primeval forest to the large city, can be regarded as ecosystems and investigated accordingly, most of the attention being given to the lasting existence and functioning or 'equilibrium' of these systems." (Wolfgang Haber, Universitas: A Quarterly German Review of the Arts and Sciences Vol.26 (2), 1984)


"If a system is in a state of equilibrium (a steady state), then all sub-systems must be in equilibrium. If all sub-systems are in a state of equilibrium, then the system must be in equilibrium." (Barry Clemson, "Cybernetics: A New Management Tool", 1984)

"When loops are present, the network is no longer singly connected and local propagation schemes will invariably run into trouble. [...] If we ignore the existence of loops and permit the nodes to continue communicating with each other as if the network were singly connected, messages may circulate indefinitely around the loops and process may not converges to a stable equilibrium. […] Such oscillations do not normally occur in probabilistic networks […] which tend to bring all messages to some stable equilibrium as time goes on. However, this asymptotic equilibrium is not coherent, in the sense that it does not represent the posterior probabilities of all nodes of the network." (Judea Pearl, "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference", 1988)

"Regarding stability, the state trajectories of a system tend to equilibrium. In the simplest case they converge to one point (or different points from different initial states), more commonly to one (or several, according to initial state) fixed point or limit cycle(s) or even torus(es) of characteristic equilibrial behaviour. All this is, in a rigorous sense, contingent upon describing a potential, as a special summation of the multitude of forces acting upon the state in question, and finding the fixed points, cycles, etc., to be minima of the potential function. It is often more convenient to use the equivalent jargon of 'attractors' so that the state of a system is 'attracted' to an equilibrial behaviour. In any case, once in equilibrial conditions, the system returns to its limit, equilibrial behaviour after small, arbitrary, and random perturbations." (Gordon Pask, "Different Kinds of Cybernetics", 1992)

"Systems, acting dynamically, produce (and incidentally, reproduce) their own boundaries, as structures which are complementary (necessarily so) to their motion and dynamics. They are liable, for all that, to instabilities chaos, as commonly interpreted of chaotic form, where nowadays, is remote from the random. Chaos is a peculiar situation in which the trajectories of a system, taken in the traditional sense, fail to converge as they approach their limit cycles or 'attractors' or 'equilibria'. Instead, they diverge, due to an increase, of indefinite magnitude, in amplification or gain.(Gordon Pask, "Different Kinds of Cybernetics", 1992)

"The model of competitive equilibrium which has been discussed so far is set in a timeless environment. People and companies all operate in a world in which there is no future and hence no uncertainty." (Paul Ormerod, "The Death of Economics", 1994)

"Self-organization refers to the spontaneous formation of patterns and pattern change in open, nonequilibrium systems. […] Self-organization provides a paradigm for behavior and cognition, as well as the structure and function of the nervous system. In contrast to a computer, which requires particular programs to produce particular results, the tendency for self-organization is intrinsic to natural systems under certain conditions." (J A Scott Kelso, "Dynamic Patterns : The Self-organization of Brain and Behavior", 1995)

"Contrary to what happens at equilibrium, or near equilibrium, systems far from equilibrium do not conform to any minimum principle that is valid for functions of free energy or entropy production." (Ilya Prigogine, "The End of Certainty: Time, Chaos, and the New Laws of Nature", 1996) 

"[…] self-organization is the spontaneous emergence of new structures and new forms of behavior in open systems far from equilibrium, characterized by internal feedback loops and described mathematically by nonlinear equations.” (Fritjof Capra, “The web of life: a new scientific understanding of living systems”, 1996)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"An equilibrium is not always an optimum; it might not even be good. This may be the most important discovery of game theory." (Ivar Ekeland, "Le meilleur des mondes possibles" ["The Best of All Possible Worlds"], 2000)

"Positive feedbacks, when unchecked, can produce runaways until the deviation from equilibrium is so large that other effects can be abruptly triggered and lead to ruptures and crashes." (Didier Sornette, "Why Stock Markets Crash - Critical Events in Complex Systems", 2003)

"The players in a game are said to be in strategic equilibrium (or simply equilibrium) when their play is mutually optimal: when the actions and plans of each player are rational in the given strategic environment - i. e., when each knows the actions and plans of the others." (Robert Aumann, "War and Peace", 2005)

"The second law of thermodynamics states that in an isolated system, entropy can only increase, not decrease. Such systems evolve to their state of maximum entropy, or thermodynamic equilibrium. Therefore, physical self-organizing systems cannot be isolated: they require a constant input of matter or energy with low entropy, getting rid of the internally generated entropy through the output of heat ('dissipation'). This allows them to produce ‘dissipative structures’ which maintain far from thermodynamic equilibrium. Life is a clear example of order far from thermodynamic equilibrium." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

🕸Systems Engineering: Stability (Just the Quotes)

"[…] there are three different but interconnected conceptions to be considered in every structure, and in every structural element involved: equilibrium, resistance, and stability." (Eduardo Torroja, "Philosophy of Structure" , 1951) 

"As shorthand, when the phenomena are suitably simple, words such as equilibrium and stability are of great value and convenience. Nevertheless, it should be always borne in mind that they are mere shorthand, and that the phenomena will not always have the simplicity that these words presuppose." (W Ross Ashby, "An Introduction to Cybernetics", 1956)

"The static stability of a system is defined by the initial tendency to return to equilibrium conditions following some disturbance from equilibrium. […] If the object has a tendency to continue in the direction of disturbance, negative static stability or static instability exists. […] If the object subject to disturbance has neither the tendency to return nor the tendency to continue in the displacement direction, neutral static stability exists." (Hugh H Hurt, "Aerodynamics for Naval Aviators", 1960)

"While static stability is concerned with the tendency of a displaced body to return to equilibrium, dynamic stability is concerned with the resulting motion with time. If an object is disturbed from equilibrium, the time history of the resulting motion indicates the dynamic stability of the system. In general, the system will demonstrate positive dynamic stability if the amplitude of the motion decreases with time." (Hugh H Hurt, "Aerodynamics for Naval Aviators", 1960)

"The thing the ecologically illiterate don't realize about an ecosystem is that it's a system. A system! A system maintains a certain fluid stability that can be destroyed by a misstep in just one niche. A system has order, a flowing from point to point. If something dams the flow, order collapses. The untrained miss the collapse until too late. That's why the highest function of ecology is the understanding of consequences." (Frank Herbert, "Dune", 1965)

"[...] in a state of dynamic equilibrium with their environments. If they do not maintain this equilibrium they die; if they do maintain it they show a degree of spontaneity, variability, and purposiveness of response unknown in the non-living world. This is what is meant by ‘adaptation to environment’ […] [Its] essential feature […] is stability - that is, the ability to withstand disturbances." (Kenneth Craik, 'Living organisms', “The Nature of Psychology”, 1966)

"Clearly, if it is possible to have a self-regulating system that implicitly arranges its own stability, then this is of the keenest management interest." (Anthony S Beer, "Management Science", 1968)

"One of the central problems studied by mankind is the problem of the succession of form. Whatever is the ultimate nature of reality (assuming that this expression has meaning). it is indisputable that our universe is not chaos. We perceive beings, objects, things to which we give names. These beings or things are forms or structures endowed with a degree of stability: they take up some part of space and last for some period of time." (René Thom, "Structural Stability and Morphogenesis", 1972)

"There seems to be a time scale in all natural processes beyond which structural stability and calculability become incompatible." (René Thom, "Structural Stability and Morphogenesis", 1972)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999) 

"The phenomenon of emergence takes place at critical points of instability that arise from fluctuations in the environment, amplified by feedback loops." (Fritjof Capra, "The Hidden Connections", 2002)

"Like resilience, self-organizazion is often sacrificed for purposes of short-term productivity and stability." (Donella Meadows, "Thinking in Systems: A Primer", 2008)

"Among complex systems, stability is typically meta-stability, which is preserved through cycling, whilst growth and shrinkage are often components of a larger-scale, cyclic wave." (Nick Land, "Eternal Return, and After", 2011)

"Stability is often defined as a resilient system that keeps processing transactions, even if transient impulses (rapid shocks to the system), persistent stresses (force applied to the system over an extended period), or component failures disrupt normal processing." (Michael Hüttermann et al, "DevOps for Developers", 2013)

More quotes on "Stability" at the-web-of-knowledge.blogspot.com.

✨Performance Management: Motivation (Just the Quotes)

"A manager sets objectives - A manager organizes - A manager motivates and communicates - A manager, by establishing yardsticks, measures." (Peter F Drucker, "The Practice of Management", 1954)

"A manager [...] sets objectives [...] organizes [...] motivates and communicates [...] measure[s] [...] develops people. Every manager does these things - knowingly or not. A manager may do them well, or may do them wretchedly, but always does them." (Peter F Drucker, "People and Performance", 1977)

"The single most important task of a manager is to elicit peak performance from his subordinates. So if two things limit high output, a manager has two ways to tackle the issue: through training and motivation." (Andrew S Grove, "High Output Management", 1983)

"Training won't cover up for poor equipment and outmoded methods. It won't offset mediocre products or deteriorating markets. It won't compensate for poor compensation or abusive supervisory or management practices. And training definitely won't turn the unwilling and uncaring in your organization into motivated, devoted, gung-ho fireballs." (Ron Zemke, Training, 1986)

"The [quality control] issue has more to do with people and motivation and less to do with capital and equipment than one would think. It involves a cultural change." (Michael Beer, The Washington Post, 1987)

"Even when you have skilled, motivated, hard-working people, the wrong team structure can undercut their efforts instead of catapulting them to success. A poor team structure can increase development time, reduce quality, damage morale, increase turnover, and ultimately lead to project cancellation." (Steve McConnell, "Rapid Development", 1996)

"Mission statements should be inspirational. They should supply energy and motivation to the organization. But inspirational mission statements and slogans are not sufficient." (Robert S Kaplan & David P Norton, "The Balanced Scorecard", Harvard Business Review, 1996)

"Motivation is undoubtedly the single greatest influence on how well people perform. Most productivity studies have found that motivation has a stronger influence on productivity than any other factor."  (Steve McConnell, "Rapid Development", 1996)

"Organizations must know and understand the current organizational culture to be successful at implementing change. We know that it is the organization’s culture that drives its people to action; therefore, management must understand what motivates their people to attain goals and objectives. Only by understanding the current organizational culture will it be possible to begin to try and change it." (Margaret Y Chu, "Blissful Data", 2004)

"Leadership is the capacity to influence others through inspiration motivated by passion, generated by vision, produced by a conviction, ignited by a purpose." (Myles Munroe, "Charge: Finding the Leader Within You", 2008)

"Great companies don't hire skilled people and motivate them, they hire already motivated people and inspire them. People are either motivated or they are not. Unless you give motivated people something to believe in, something bigger than their job to work toward, they will motivate themselves to find a new job and you'll be stuck with whoever's left." (Simon Sinek, "Start With Why: How Great Leaders Inspire Everyone to Take Action", 2009)

"Teams should be able to act with the same unity of purpose and focus as a well-motivated individual." (Bill Gates, "Business @ the Speed of Thought: Succeeding in the Digital Economy", 2009)

"Ultimately, leadership is not about glorious crowning acts. It's about keeping your team focused on a goal and motivated to do their best to achieve it, especially when the stakes are high and the consequences really matter. It is about laying the groundwork for others' success, and then standing back and letting them shine." (Chris Hadfield, "An Astronaut's Guide to Life on Earth", 2013)

"Companies leverage two basic pulleys of human behavior to increase the likelihood of an action occuring: the ease of performing an action and the psychological motivation to do it." (Nir Eyal, "Hooked: How to Build Habit-Forming Products", 2014)

"Teams motivated by targets tend not to take ownership of problems. They attend only to those aspects that affect targets and leave the rest to be picked up by someone else. To some extent, the problem isn’t the target itself but rather the incentive behind the target." (Sriram Narayan, "Agile IT Organization Design: For Digital Transformation and Continuous Delivery", 2015)

"Goals may cause systematic problems in organizations due to narrowed focus, unethical behavior, increased risk taking, decreased cooperation, and decreased motivation. Use care when applying goals in your organization." (John Doerr, "Measure what Matters", 2018)

"Control is not leadership; management is not leadership; leadership is leadership. If you seek to lead, invest at least 50% of your time in leading yourself–your own purpose, ethics, principles, motivation, conduct. Invest at least 20% leading those with authority over you and 15% leading your peers." (Dee Hock)

✨Performance Management: Excellence (Just the Quotes)

"Excellence is an art won by training and habituation. We do not act rightly because we have virtue or excellence, but we rather have those because we have acted rightly. We are what we repeatedly do. Excellence, then, is not an act but a habit." (Aristotle)

"With regard to excellence, it is not enough to know, but we must try to have and use it." (Aristotel, "Nochomachean Ethics", cca. 340 BC)

"It takes a long time to bring excellence to maturity." (Publilius Syrus, "Moral Sayings", cca. 1st century BC)

"The best way to come to grips with one’s own business knowledge is to look at the things the business has done well, and the things it apparently does poorly. […] Knowledge is a perishable commodity. It has to be reaffirmed, relearned, repracticed all the time. One has to work constantly at regaining one’s specific excellence. […] The right knowledge is the knowledge needed to exploit the market opportunities." (Peter F Drucker, "Managing for Results: Economic Tasks and Risk-taking Decisions", 1964)

"Because ease of use is the purpose, this ratio of function to conceptual complexity is the ultimate test of system design. Neither function alone nor simplicity alone defines a good design. [...] Function, and not simplicity, has always been the measure of excellence for its designers." (Fred P Brooks, "The Mythical Man-Month: Essays", 1975)

"The achievement of excellence can occur only if the organization promotes a culture of creative dissatisfaction." (Lawrence M Miller, "American Spirit", 1984)

"Managers jeopardize product quality by setting unreachable deadlines. They don’​​​​​​t think about their action in such terms; they think rather that what they’​​​​​​re doing is throwing down an interesting challenge to their workers, something to help them strive for excellence." (Tom DeMarco & Timothy Lister, "Peopleware: Productive Projects and Teams", 1987)

"When a team outgrows individual performance and learns team confidence, excellence becomes a reality." (Joe Paterno, American Heritage, 1988)

"Excellence is a better teacher than is mediocrity. The lessons of the ordinary are everywhere. Truly profound and original insights are to be found only in studying the exemplary." (Warren G Bennis, "Organizing Genius: The Secrets of Creative Collaboration", 1997)

"The desire for excellence is an essential feature for doing great work. Without such a goal you will tend to wander like a drunken sailor. The sailor takes one step in one direction and the next in some independent direction. As a result the steps tend to cancel each other, and the expected distance from the starting point is proportional to the square root of the number of steps taken. With a vision of excellence, and with the goal of doing significant work, there is tendency for the steps to go in the same direction and thus go a distance proportional to the number of steps taken, which in a lifetime is a large number indeed." (Richard Hamming, "The Art of Doing Science and Engineering: Learning to Learn", 1997)

"If a team cannot perform with excellence at a moment's notice, they probably will fail in the long run." (Mike Krzyzewski, "Leading with the Heart: Coach K's Successful Strategies for Basketball, Business, and Life", 2010)

"In the pursuit of excellence, there is no finish line." (Robert H Farman)

17 December 2014

🕸Systems Engineering: Coherence (Just the Quotes)

"Principles taken upon trust, consequences lamely deduced from them, want of coherence in the parts, and of evidence in the whole, these are every where to be met with in the systems of the most eminent philosophers, and seem to have drawn disgrace upon philosophy itself." (David Hume, "A Treatise of Human Nature", 1739-40)

"A system is said to be coherent if every fact in the system is related every other fact in the system by relations that are not merely conjunctive. A deductive system affords a good example of a coherent system." (Lizzie S Stebbing, "A modern introduction to logic", 1930)

"Even these humble objects reveal that our reality is not a mere collocation of elemental facts, but consists of units in which no part exists by itself, where each part points beyond itself and implies a larger whole. Facts and significance cease to be two concepts belonging to different realms, since a fact is always a fact in an intrinsically coherent whole. We could solve no problem of organization by solving it for each point separately, one after the other; the solution had to come for the whole. Thus we see how the problem of significance is closely bound up with the problem of the relation between the whole and its parts. It has been said: The whole is more than the sum of its parts. It is more correct to say that the whole is something else than the sum of its parts, because summing is a meaningless procedure, whereas the whole-part relationship is meaningful." (Kurt Koffka, "Principles of Gestalt Psychology", 1935)

"[…] reality is a system, completely ordered and fully intelligible, with which thought in its advance is more and more identifying itself. We may look at the growth of knowledge […] as an attempt by our mind to return to union with things as they are in their ordered wholeness. […] and if we take this view, our notion of truth is marked out for us. Truth is the approximation of thought to reality […] Its measure is the distance thought has travelled […] toward that intelligible system […] The degree of truth of a particular proposition is to be judged in the first instance by its coherence with experience as a whole, ultimately by its coherence with that further whole, all comprehensive and fully articulated, in which thought can come to rest." (Brand Blanshard, "The Nature of Thought" Vol. II, 1939)

"We cannot define truth in science until we move from fact to law. And within the body of laws in turn, what impresses us as truth is the orderly coherence of the pieces. They fit together like the characters of a great novel, or like the words of a poem. Indeed, we should keep that last analogy by us always, for science is a language, and like a language it defines its parts by the way they make up a meaning. Every word in a sentence has some uncertainty of definition, and yet the sentence defines its own meaning and that of its words conclusively. It is the internal unity and coherence of science which gives it truth, and which makes it a better system of prediction than any less orderly language." (Jacob Bronowski, "The Common Sense of Science", 1953)

"In our definition of system we noted that all systems have interrelationships between objects and between their attributes. If every part of the system is so related to every other part that any change in one aspect results in dynamic changes in all other parts of the total system, the system is said to behave as a whole or coherently. At the other extreme is a set of parts that are completely unrelated: that is, a change in each part depends only on that part alone. The variation in the set is the physical sum of the variations of the parts. Such behavior is called independent or physical summativity." (Arthur D Hall & Robert E Fagen, "Definition of System", General Systems Vol. 1, 1956)

"The essential vision of reality presents us not with fugitive appearances but with felt patterns of order which have coherence and meaning for the eye and for the mind. Symmetry, balance and rhythmic sequences express characteristics of natural phenomena: the connectedness of nature - the order, the logic, the living process. Here art and science meet on common ground." (Gyorgy Kepes, "The New Landscape: In Art and Science", 1956)

"Within the confines of my abstraction, for instance, it is clear that the problem of truth and validity cannot be solved completely, if what we mean by the truth of an image is its correspondence with some reality in the world outside it.  The difficulty with any correspondence theory of truth is that images can only be compared with images.  They can never be compared with any outside reality.  The difficulty with the coherence theory of truth, on the other hand, is that the coherence or consistency of the image is simply not what we mean by its truth." (Kenneth E Boulding, "The Image: Knowledge in life and society", 1956)

"Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local interactions. Because of its distributed character, this organization tends to be robust, resisting perturbations. The dynamics of a self-organizing system is typically non-linear, because of circular or feedback relations between the components. Positive feedback leads to an explosive growth, which ends when all components have been absorbed into the new configuration, leaving the system in a stable, negative feedback state. Non-linear systems have in general several stable states, and this number tends to increase (bifurcate) as an increasing input of energy pushes the system farther from its thermodynamic equilibrium." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"To adapt to a changing environment, the system needs a variety of stable states that is large enough to react to all perturbations but not so large as to make its evolution uncontrollably chaotic. The most adequate states are selected according to their fitness, either directly by the environment, or by subsystems that have adapted to the environment at an earlier stage. Formally, the basic mechanism underlying self-organization is the (often noise-driven) variation which explores different regions in the system’s state space until it enters an attractor. This precludes further variation outside the attractor, and thus restricts the freedom of the system’s components to behave independently. This is equivalent to the increase of coherence, or decrease of statistical entropy, that defines self-organization." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"Early scientific thinking was holistic, but speculative - the modern scientific temper reacted by being empirical, but atomistic. Neither is free from error, the former because it replaces factual inquiry with faith and insight, and the latter because it sacrifices coherence at the altar of facticity. We witness today another shift in ways of thinking: the shift toward rigorous but holistic theories. This means thinking in terms of facts and events in the context of wholes, forming integrated sets with their own properties and relationships."(Ervin László, "Introduction to Systems Philosophy", 1972)

"When loops are present, the network is no longer singly connected and local propagation schemes will invariably run into trouble. [...] If we ignore the existence of loops and permit the nodes to continue communicating with each other as if the network were singly connected, messages may circulate indefinitely around the loops and process may not converges to a stable equilibrium. […] Such oscillations do not normally occur in probabilistic networks […] which tend to bring all messages to some stable equilibrium as time goes on. However, this asymptotic equilibrium is not coherent, in the sense that it does not represent the posterior probabilities of all nodes of the network." (Judea Pearl, "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference", 1988)

"There are a variety of swarm topologies, but the only organization that holds a genuine plurality of shapes is the grand mesh. In fact, a plurality of truly divergent components can only remain coherent in a network. No other arrangement-chain, pyramid, tree, circle, hub-can contain true diversity working as a whole. This is why the network is nearly synonymous with democracy or the market." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Falling between order and chaos, the moment of complexity is the point at which self-organizing systems emerge to create new patterns of coherence and structures of behaviour." (Mark C Taylor, "The Moment of Complexity: Emerging Network Culture", 2001)

"The word 'coherence' literally means holding or sticking together, but it is usually used to refer to a system, an idea, or a worldview whose parts fit together in a consistent and efficient way. Coherent things work well: A coherent worldview can explain almost anything, while an incoherent worldview is hobbled by internal contradictions. [...] Whenever a system can be analyzed at multiple levels, a special kind of coherence occurs when the levels mesh and mutually interlock." (Jonathan Haidt,"The Happiness Hypothesis: Finding Modern Truth in Ancient Wisdom", 2006)

"A system is an interconnected set of elements that is coherently organized in a way that achieves something." (Donella H Meadows, "Thinking in Systems: A Primer", 2008)

"A worldview must be coherent, logical and adequate. Coherence means that the fundamental ideas constituting the worldview must be seen as proceeding from a single, unifying, overarching concept. A logical worldview means simply that the various ideas constituting it should not be contradictory. Adequate means that it is capable of explaining, logically and coherently, every element of contemporary experience." (M G Jackson, "Transformative Learning for a New Worldview: Learning to Think Differently", 2008)

"Each systems archetype embodies a particular theory about dynamic behavior that can serve as a starting point for selecting and formulating raw data into a coherent set of interrelationships. Once those relationships are made explicit and precise, the 'theory' of the archetype can then further guide us in our data-gathering process to test the causal relationships through direct observation, data analysis, or group deliberation." (Daniel H Kim, "Systems Archetypes as Dynamic Theories", The Systems Thinker Vol. 24 (1), 2013)

"Even more important is the way complex systems seem to strike a balance between the need for order and the imperative for change. Complex systems tend to locate themselves at a place we call 'the edge of chaos'. We imagine the edge of chaos as a place where there is enough innovation to keep a living system vibrant, and enough stability to keep it from collapsing into anarchy. It is a zone of conflict and upheaval, where the old and new are constantly at war. Finding the balance point must be a delicate matter - if a living system drifts too close, it risks falling over into incoherence and dissolution; but if the system moves too far away from the edge, it becomes rigid, frozen, totalitarian. Both conditions lead to extinction. […] Only at the edge of chaos can complex systems flourish. This threshold line, that edge between anarchy and frozen rigidity, is not a like a fence line, it is a fractal line; it possesses nonlinearity. (Stephen H Buhner, "Plant Intelligence and the Imaginal Realm: Beyond the Doors of Perception into the Dreaming of Earth", 2014)

"The work around the complex systems map supported a concentration on causal mechanisms. This enabled poor system responses to be diagnosed as the unanticipated effects of previous policies as well as identification of the drivers of the sector. Understanding the feedback mechanisms in play then allowed experimentation with possible future policies and the creation of a coherent and mutually supporting package of recommendations for change."  (David C Lane et al, "Blending systems thinking approaches for organisational analysis: reviewing child protection", 2015)

16 December 2014

🕸Systems Engineering: Change (Just the Quotes)

"Every part of the system is so related to every other part that a change in a particular part causes a changes in all other parts and in the total system." (Arthur D Hall, "A methodology for systems engineering", 1962)

"To say a system is 'self-organizing' leaves open two quite different meanings. There is a first meaning that is simple and unobjectionable. This refers to the system that starts with its parts separate (so that the behavior of each is independent of the others' states) and whose parts then act so that they change towards forming connections of some type. Such a system is 'self-organizing' in the sense that it changes from 'parts separated' to 'parts joined'. […] In general such systems can be more simply characterized as 'self-connecting', for the change from independence between the parts to conditionality can always be seen as some form of 'connection', even if it is as purely functional […]" (W Ross Ashby, "Principles of the self-organizing system", 1962)

 "The systems approach to problems focuses on systems taken as a whole, not on their parts taken separately. Such an approach is concerned with total - system performance even when a change in only one or a few of its parts is contemplated because there are some properties of systems that can only be treated adequately from a holistic point of view. These properties derive from the relationship between parts of systems: how the parts interact and fit together." (Russell L Ackoff, "Towards a System of Systems Concepts", 1971)

"Every system of whatever size must maintain its own structure and must deal with a dynamic environment, i.e., the system must strike a proper balance between stability and change. The cybernetic mechanisms for stability (i.e., homeostasis, negative feedback, autopoiesis, equifinality) and change (i.e., positive feedback, algedonodes, self-organization) are found in all viable systems." (Barry Clemson, "Cybernetics: A New Management Tool", 1984)

"Systems thinking is a discipline for seeing the 'structures' that underlie complex situations, and for discerning high from low leverage change. That is, by seeing wholes we learn how to foster health. To do so, systems thinking offers a language that begins by restructuring how we think." (Peter Senge, "The Fifth Discipline", 1990)

"Systems thinking is a discipline for seeing wholes. It is a framework for seeing interrelationships rather than things, for seeing patterns of change rather than static 'snapshots'. It is a set of general principles- distilled over the course of the twentieth century, spanning fields as diverse as the physical and social sciences, engineering, and management. [...] During the last thirty years, these tools have been applied to understand a wide range of corporate, urban, regional, economic, political, ecological, and even psychological systems. And systems thinking is a sensibility for the subtle interconnectedness that gives living systems their unique character." (Peter Senge, "The Fifth Discipline", 1990)

"Even though these complex systems differ in detail, the question of coherence under change is the central enigma for each." (John H Holland," Hidden Order: How Adaptation Builds Complexity", 1995)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"The concept ‘complexity’ is not univocal either. Firstly, it is useful to distinguish between the notions ‘complex’ and ‘complicated’. If a system- despite the fact that it may consist of a huge number of components - can be given a complete description in terms of its individual constituents, such a system is merely complicated. […] In a complex system, on the other hand, the interaction among constituents of the system, and the interaction between the system and its environment, are of such a nature that the system as a whole cannot be fully understood simply by analysing its components. Moreover, these relationships are not fixed, but shift and change, often as a result of self-organisation. This can result in novel features, usually referred to in terms of emergent properties." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems" , 1998)

"Systems thinking means the ability to see the synergy of the whole rather than just the separate elements of a system and to learn to reinforce or change whole system patterns. Many people have been trained to solve problems by breaking a complex system, such as an organization, into discrete parts and working to make each part perform as well as possible. However, the success of each piece does not add up to the success of the whole. to the success of the whole. In fact, sometimes changing one part to make it better actually makes the whole system function less effectively." (Richard L Daft, "The Leadership Experience", 2002)

"The butterfly effect demonstrates that complex dynamical systems are highly responsive and interconnected webs of feedback loops. It reminds us that we live in a highly interconnected world. Thus our actions within an organization can lead to a range of unpredicted responses and unexpected outcomes. This seriously calls into doubt the wisdom of believing that a major organizational change intervention will necessarily achieve its pre-planned and highly desired outcomes. Small changes in the social, technological, political, ecological or economic conditions can have major implications over time for organizations, communities, societies and even nations." (Elizabeth McMillan, "Complexity, Management and the Dynamics of Change: Challenges for practice", 2008)

"The other element of systems thinking is learning to influence the system with reinforcing feedback as an engine for growth or decline. [...] Without this kind of understanding, managers will hit blockages in the form of seeming limits to growth and resistance to change because the large complex system will appear impossible to manage. Systems thinking is a significant solution." (Richard L Daft, "The Leadership Experience" 4th Ed., 2008)

"Enterprise engineering is an emerging discipline that studies enterprises from an engineering perspective. The first paradigm of this discipline is that enterprises are purposefully designed and implemented systems. Consequently, they can be re-designed and re-implemented if there is a need for change. The second paradigm of enterprise engineering is that enterprises are social systems. This means that the system elements are social individuals, and that the essence of an enterprise's operation lies in the entering into and complying with commitments between these social individuals." (Erik Proper, "Advances in Enterprise Engineering II", 2009)

"Most systems in nature are inherently nonlinear and can only be described by nonlinear equations, which are difficult to solve in a closed form. Non-linear systems give rise to interesting phenomena such as chaos, complexity, emergence and self-organization. One of the characteristics of non-linear systems is that a small change in the initial conditions can give rise to complex and significant changes throughout the system. This property of a non-linear system such as the weather is known as the butterfly effect where it is purported that a butterfly flapping its wings in Japan can give rise to a tornado in Kansas. This unpredictable behaviour of nonlinear dynamical systems, i.e. its extreme sensitivity to initial conditions, seems to be random and is therefore referred to as chaos. This chaotic and seemingly random behaviour occurs for non-linear deterministic system in which effects can be linked to causes but cannot be predicted ahead of time." (Robert K Logan, "The Poetry of Physics and The Physics of Poetry", 2010)

"The fundamental assumption underlying all software projects is that software is easy to change. If you violate this assumption by creating inflexible structures, then you undercut the economic model that the entire industry is based on." (Robert C Martin, "The Clean Coder: A code of conduct for professional programmers", 2011)

"Without precise predictability, control is impotent and almost meaningless. In other words, the lesser the predictability, the harder the entity or system is to control, and vice versa. If our universe actually operated on linear causality, with no surprises, uncertainty, or abrupt changes, all future events would be absolutely predictable in a sort of waveless orderliness." (Lawrence K Samuels, "Defense of Chaos", 2013)

"One of the remarkable features of these complex systems created by replicator dynamics is that infinitesimal differences in starting positions create vastly different patterns. This sensitive dependence on initial conditions is often called the butterfly-effect aspect of complex systems - small changes in the replicator dynamics or in the starting point can lead to enormous differences in outcome, and they change one’s view of how robust the current reality is. If it is complex, one small change could have led to a reality that is quite different." (David Colander & Roland Kupers, "Complexity and the art of public policy : solving society’s problems from the bottom up", 2014)

"Cybernetics studies the concepts of control and communication in living organisms, machines and organizations including self-organization. It focuses on how a (digital, mechanical or biological) system processes information, responds to it and changes or being changed for better functioning (including control and communication)." (Dmitry A Novikov, "Cybernetics 2.0", 2016)

✨Performance Management: Success (Just the Quotes)

"The role of the manager here is also clear: it is that of the coach. First, an ideal coach takes no personal credit for the success of his team, and because of that his players trust him. Second, he is tough on his team. By being critical, he tries to get the best performance his team members can provide. Third, a good coach was likely a good player himself at one time. And having played the game well, he also understands it well."  (Andrew S Grove, "High Output Management", 1983)

"The skills that make technical professionals competent in their specialties are not necessarily the same ones that make them successful within their organizations." (Bernard Rosenbaum, "Training", 1986)

"Whether you call it a 'team' or an 'ensemble' or a 'harmonious work group' is not what matters; what matters is helping all parties understand that the success of the individual is tied irrevocably to the success of the whole." (Tom DeMarco & Timothy Lister, "Peopleware: Productive Projects and Teams", 1987)

"Even when you have skilled, motivated, hard-working people, the wrong team structure can undercut their efforts instead of catapulting them to success. A poor team structure can increase development time, reduce quality, damage morale, increase turnover, and ultimately lead to project cancellation." (Steve McConnell, "Rapid Development", 1996)

"Good leaders make people feel that they're at the very heart of things, not at the periphery. Everyone feels that he or she makes a difference to the success of the organization. When that happens, people feel centered and that gives their work meaning." (Warren Bennis, "Managing People Is Like Herding Cats", 1999)

"How people feel can be more a factor in the success of a change than what they think. Anxiety of any kind can only complicate the task of change introduction. That’s why the period of sudden decline of corporate fortunes is exactly the worst moment to introduce a change. People are uneasy about their jobs, worried about lasting corporate health, perhaps shocked by the vitality of the competition. In retrospect, a far better time to introduce the change would have been back in the period of healthy growth. Growth always carries with it a certain necessity for change. You may have to hire more people, expand to larger quarters, diversify or centralize, all to accommodate your own burgeoning success. But growth feels good; it feels like winning. It even feels good enough to reduce the amount of change resistance." (Tom DeMarco, "Slack: Getting Past Burnout, Busywork, and the Myth of Total Efficiency", 2001)

"Lack of power is a great excuse for failure, but sufficient power is never a necessary condition of leadership. There is never sufficient power. In fact, it is success in the absence of sufficient power that defines leadership." (Tom DeMarco, "Slack: Getting Past Burnout, Busywork, and the Myth of Total Efficiency", 2001)

"Ultimately, leadership is not about glorious crowning acts. It's about keeping your team focused on a goal and motivated to do their best to achieve it, especially when the stakes are high and the consequences really matter. It is about laying the groundwork for others' success, and then standing back and letting them shine." (Chris Hadfield, "An Astronaut's Guide to Life on Earth", 2013)

"Trust is fundamental to leading others into the dark, since trust enables fear to be 'actionable' as courage rather than actionable as anger. Since the bedrock of trust is faith that all will be OK within uncertainty, leaders’ fundamental role is to ultimately lead themselves. Research has found that successful leaders share three behavioral traits: they lead by example, admit their mistakes, and see positive qualities in others. All three are linked to spaces of play. Leading by example creates a space that is trusted - and without trust, there is no play. Admitting mistakes is to celebrate uncertainty. Seeing qualities in others is to encourage diversity." (Beau Lotto, "Deviate: The Science of Seeing Differently", 2017)

"While basic laws underlie command authority, the real foundation of successful leadership is the moral authority derived from professional competence and integrity. Competence and integrity are not separable." (William C Westmoreland)

15 December 2014

✨Performance Management: Productivity (Just the Quotes)

"The productivity of a work group seems to depend on how the group members see their own goals in relation to the goals of the organization." (Paul Hersey & Kenneth H Blanchard, "Management of Organizational Behavior", 1972)

"When companies see their productivity drop, they should ask how they can improve jobs, and not merely by setting up new productivity targets but also by sharing gains with workers and responding to their needs." (Jerome M Rosow, "Management", 1976)

"The productivity of work is not the responsibility of the worker but of the manager." (Peter F Drucker, "Management in Turbulent Times", 1980)

"Stressing output is the key to improving productivity, while looking to increase activity can result in just the opposite." (Andrew S Grove, "High Output Management", 1983)

"Operating managers should in no way ignore short-term performance imperatives [when implementing productivity improvement programs.] The pressures arise from many sources and must be dealt with. Moreover, unless managers know that the day-to-day job is under control and improvements are being made, they will not have the time, the perspective, the self-confidence, or the good working relationships that are essential for creative, realistic strategic thinking and decision making." (Robert H Schaefer, Harvard Business Review, 1986)

"Opportunities abound for linking productivity to business strategy." (John L Grahn, Harvard Business Review, 1986)

"Productivity is closely tied to morale, and morale is a reflection of how people see themselves. If you can improve your employees' perceptions of themselves, you can improve their morale and thereby boost productivity." (Howard Hurst, Personnel Journal, 1986)

"The way to get higher productivity is to train better managers and have fewer of them." (William Woodside, "Thriving on Chaos", 1987)

"A good part of the problem [poor productivity ...] lies with the current accounting system, which sort of makes overhead disappear - it simply gets added into the cost of a product, like a tax." (Paul Strassmann, Inc. Magazine, 1988)

"Even when you have skilled, motivated, hard-working people, the wrong team structure can undercut their efforts instead of catapulting them to success. A poor team structure can increase development time, reduce quality, damage morale, increase turnover, and ultimately lead to project cancellation." (Steve McConnell, "Rapid Development", 1996)

"It's better to wait for a productive programmer to become available than it is to wait for the first available programmer to become productive." (Steve McConnell, "Software Project Survival Guide", 1997)

"Today’s big companies do very little to enhance the productivity of their professionals. In fact, their vertically oriented organization structures, retrofitted with ad hoc and matrix overlays, nearly always make professional work more complex and inefficient." (Lowell L Bryan & Claudia Joyce, "The 21st century organization", 2005)

"Productivity is the name of the game, and gains in productivity will only come when better understanding and better relationships exist between management and the work force. [...] Managers have traditionally developed the skills in finance, planning, marketing and production techniques. Too often the relationships with their people have been assigned a secondary role. This is too important a subject not to receive first-line attention." (William Hewlett, "The Human Side of Management", [speech])

🕸Systems Engineering: Symmetry (Just the Quotes)

"In every symmetrical system every deformation that tends to destroy the symmetry is complemented by an equal and opposite deformation that tends to restore it. […] One condition, therefore, though not an absolutely sufficient one, that a maximum or minimum of work corresponds to the form of equilibrium, is thus applied by symmetry." (Ernst Mach, "The Science of Mechanics: A Critical and Historical Account of Its Development", 1893)

"Symmetry is evidently a kind of unity in variety, where a whole is determined by the rhythmic repetition of similar." (George Santayana, "The Sense of Beauty", 1896)

"It is the harmony of the diverse parts, their symmetry, their happy balance; in a word it is all that introduces order, all that gives unity, that permits us to see clearly and to comprehend at once both the ensemble and the details." (Henri Poincaré, "The Future of Mathematics", Monist, Vol. 20 (1), 1910)

"But seldom is asymmetry merely the absence of symmetry. Even in asymmetric designs one feels symmetry as the norm from which one deviates under the influence of forces of non-formal character." (Hermann Weyl, "Symmetry", 1952)

"[…] nature, at the fundamental level, does not just prefer symmetry in a physical theory; nature demands it." (Jennifer T Thompson, "Beyond Einstein: The Cosmic Quest for the Theory of the Universe", 1987)

"Chaos demonstrates that deterministic causes can have random effects […] There's a similar surprise regarding symmetry: symmetric causes can have asymmetric effects. […] This paradox, that symmetry can get lost between cause and effect, is called symmetry-breaking. […] From the smallest scales to the largest, many of nature's patterns are a result of broken symmetry; […]" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"In everyday language, the words 'pattern' and 'symmetry' are used almost interchangeably, to indicate a property possessed by a regular arrangement of more-or-less identical units […]" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"Nature behaves in ways that look mathematical, but nature is not the same as mathematics. Every mathematical model makes simplifying assumptions; its conclusions are only as valid as those assumptions. The assumption of perfect symmetry is excellent as a technique for deducing the conditions under which symmetry-breaking is going to occur, the general form of the result, and the range of possible behaviour. To deduce exactly which effect is selected from this range in a practical situation, we have to know which imperfections are present" (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"Symmetry breaking in psychology is governed by the nonlinear causality of complex systems (the 'butterfly effect'), which roughly means that a small cause can have a big effect. Tiny details of initial individual perspectives, but also cognitive prejudices, may 'enslave' the other modes and lead to one dominant view." (Klaus Mainzer, "Thinking in Complexity", 1994)

"Complex systems operate under conditions far from equilibrium. Complex systems need a constant flow of energy to change, evolve and survive as complex entities. Equilibrium, symmetry and complete stability mean death. Just as the flow, of energy is necessary to fight entropy and maintain the complex structure of the system, society can only survive as a process. It is defined not by its origins or its goals, but by what it is doing." (Paul Cilliers,"Complexity and Postmodernism: Understanding Complex Systems", 1998)

"A sudden change in the evolutive dynamics of a system (a ‘surprise’) can emerge, apparently violating a symmetrical law that was formulated by making a reduction on some (or many) finite sequences of numerical data. This is the crucial point. As we have said on a number of occasions, complexity emerges as a breakdown of symmetry (a system that, by evolving with continuity, suddenly passes from one attractor to another) in laws which, expressed in mathematical form, are symmetrical. Nonetheless, this breakdown happens. It is the surprise, the paradox, a sort of butterfly effect that can highlight small differences between numbers that are very close to one another in the continuum of real numbers; differences that may evade the experimental interpretation of data, but that may increasingly amplify in the system’s dynamics." (Cristoforo S Bertuglia & Franco Vaio, "Nonlinearity, Chaos, and Complexity: The Dynamics of Natural and Social Systems", 2003)

"A symmetry is a set of transformations applied to a structure, such that the transformations preserve the properties of the structure." (Philip Dorrell, "What is Music?: Solving a Scientific Mystery", 2004)

"A graph enables us to visualize a relation over a set, which makes the characteristics of relations such as transitivity and symmetry easier to understand. […] Notions such as paths and cycles are key to understanding the more complex and powerful concepts of graph theory. There are many degrees of connectedness that apply to a graph; understanding these types of connectedness enables the engineer to understand the basic properties that can be defined for the graph representing some aspect of his or her system. The concepts of adjacency and reachability are the first steps to understanding the ability of an allocated architecture of a system to execute properly." (Dennis M Buede, "The Engineering Design of Systems: Models and methods", 2009)

More quotes on "Symmetry" at the-web-of-knowledge.blogspot.com.

14 December 2014

🕸Systems Engineering: Exponential Growth (Just the Quotes)

"However, and conversely, our models fall far short of representing the world fully. That is why we make mistakes and why we are regularly surprised. In our heads, we can keep track of only a few variables at one time. We often draw illogical conclusions from accurate assumptions, or logical conclusions from inaccurate assumptions. Most of us, for instance, are surprised by the amount of growth an exponential process can generate. Few of us can intuit how to damp oscillations in a complex system." (Donella H Meadows, "Limits to Growth", 1972) 

"Taking no action to solve these problems is equivalent of taking strong action. Every day of continued exponential growth brings the world system closer to the ultimate limits of that growth. A decision to do nothing is a decision to increase the risk of collapse." (Donella Meadows et al, "The Limits to Growth", 1972) 

"Every day of continued exponential growth brings the world system closer to the ultimate limits of that growth." (Mihajlo D Mesarovic, "Mankind at the Turning Point", 1974)

"It has long been appreciated by science that large numbers behave differently than small numbers. Mobs breed a requisite measure of complexity for emergent entities. The total number of possible interactions between two or more members accumulates exponentially as the number of members increases. At a high level of connectivity, and a high number of members, the dynamics of mobs takes hold. " (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Mathematics says the sum value of a network increases as the square of the number of members. In other words, as the number of nodes in a network increases arithmetically, the value of the network increases exponentially. Adding a few more members can dramatically increase the value of the network." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"It is in the nature of exponential growth that events develop extremely slowly for extremely long periods of time, but as one glides through the knee of the curve, events erupt at an increasingly furious pace. And that is what we will experience as we enter the twenty-first century." (Ray Kurzweil, "The Age of Spiritual Machines: When Computers Exceed Human Intelligence", 1999)

"Periods of rapid change and high exponential growth do not, typically, last long. A new equilibrium with a new dominant technology and/or competitor is likely to be established before long. Periods of punctuation are therefore exciting and exhibit unusual uncertainty. The payoff from establishing a dominant position in this short time is therefore extraordinarily high. Dominance is more likely to come from skill in marketing and positioning than from superior technology itself." (Richar Koch, "The Power Laws", 2000)

"There is a strong tendency today to narrow specialization. Because of the exponential growth of information, we can afford (in terms of both economics and time) preparation of specialists in extremely narrow fields, the various branches of science and engineering having their own particular realms. As the knowledge in these fields grows deeper and broader, the individual's field of expertise has necessarily become narrower. One result is that handling information has become more difficult and even ineffective." (Semyon D Savransky, "Engineering of Creativity", 2000)

"Evolution moves towards greater complexity, greater elegance, greater knowledge, greater intelligence, greater beauty, greater creativity, and greater levels of subtle attributes such as love. […] Of course, even the accelerating growth of evolution never achieves an infinite level, but as it explodes exponentially it certainly moves rapidly in that direction." (Ray Kurzweil, "The Singularity is Near", 2005)

"The first idea is that human progress is exponential (that is, it expands by repeatedly multiplying by a constant) rather than linear (that is, expanding by repeatedly adding a constant). Linear versus exponential: Linear growth is steady; exponential growth becomes explosive." (Ray Kurzweil, "The Singularity is Near", 2005)

"Thus, nonlinearity can be understood as the effect of a causal loop, where effects or outputs are fed back into the causes or inputs of the process. Complex systems are characterized by networks of such causal loops. In a complex, the interdependencies are such that a component A will affect a component B, but B will in general also affect A, directly or indirectly.  A single feedback loop can be positive or negative. A positive feedback will amplify any variation in A, making it grow exponentially. The result is that the tiniest, microscopic difference between initial states can grow into macroscopically observable distinctions." (Carlos Gershenson, "Design and Control of Self-organizing Systems", 2007)

"A characteristic of such chaotic dynamics is an extreme sensitivity to initial conditions (exponential separation of neighboring trajectories), which puts severe limitations on any forecast of the future fate of a particular trajectory. This sensitivity is known as the ‘butterfly effect’: the state of the system at time t can be entirely different even if the initial conditions are only slightly changed, i.e., by a butterfly flapping its wings." (Hans J Korsch et al, "Chaos: A Program Collection for the PC", 2008)

"A quantity growing exponentially toward a limit reaches that limit in a surprisingly short time." (Donella Meadows, "Thinking in systems: A Primer", 2008)

"In physical, exponentially growing systems, there must be at least one reinforcing loop driving growth and at least one balancing feedback loop constraining growth, because no system can grow forever in a finite environment." (Donella H Meadows, “Thinking in Systems: A Primer”, 2008)

"[...] a high degree of unpredictability is associated with erratic trajectories. This not only because they look random but mostly because infinitesimally small uncertainties on the initial state of the system grow very quickly - actually exponentially fast. In real world, this error amplification translates into our inability to predict the system behavior from the unavoidable imperfect knowledge of its initial state." (Massimo Cencini et al, "Chaos: From Simple Models to Complex Systems", 2010)

"In chaotic deterministic systems, the probabilistic description is not linked to the number of degrees of freedom (which can be just one as for the logistic map) but stems from the intrinsic erraticism of chaotic trajectories and the exponential amplification of small uncertainties, reducing the control on the system behavior." (Massimo Cencini et al, "Chaos: From Simple Models to Complex Systems", 2010)

"Standard economists don't seem to understand exponential growth. Ecological economics recognizes that the economy, like any other subsystem on the planet, cannot grow forever. And if you think of an organism as an analogy, organisms grow for a period and then they stop growing. They can still continue to improve and develop, but without physically growing, because if organisms did that you’d end up with nine-billion-ton hamsters." (Robert Costanza, "What is Ecological economics", 2010)

"Cyberneticists argue that positive feedback may be useful, but it is inherently unstable, capable of causing loss of control and runaway. A higher level of control must therefore be imposed upon any positive feedback mechanism: self-stabilising properties of a negative feedback loop constrain the explosive tendencies of positive feedback. This is the starting point of our journey to explore the role of cybernetics in the control of biological growth. That is the assumption that the evolution of self-limitation has been an absolute necessity for life forms with exponential growth." (Tony Stebbing, "A Cybernetic View of Biological Growth: The Maia Hypothesis", 2011)

"Exponentially growing systems are prevalent in nature, spanning all scales from biochemical reaction networks in single cells to food webs of ecosystems. How exponential growth emerges in nonlinear systems is mathematically unclear. […] The emergence of exponential growth from a multivariable nonlinear network is not mathematically intuitive. This indicates that the network structure and the flux functions of the modeled system must be subjected to constraints to result in long-term exponential dynamics." (Wei-Hsiang Lin et al, "Origin of exponential growth in nonlinear reaction networks", PNAS 117 (45), 2020) 

More quotes on "Exponential Growth" at the-web-of-knowledge.blogspot.com.

🕸Systems Engineering: Attractors (Just the Quotes)

 "To adapt to a changing environment, the system needs a variety of stable states that is large enough to react to all perturbations but not so large as to make its evolution uncontrollably chaotic. The most adequate states are selected according to their fitness, either directly by the environment, or by subsystems that have adapted to the environment at an earlier stage. Formally, the basic mechanism underlying self-organization is the (often noise-driven) variation which explores different regions in the system’s state space until it enters an attractor. This precludes further variation outside the attractor, and thus restricts the freedom of the system’s components to behave independently. This is equivalent to the increase of coherence, or decrease of statistical entropy, that defines self-organization." (Francis Heylighen, "The Science Of Self-Organization And Adaptivity", 1970)

"Cellular automata are discrete dynamical systems with simple construction but complex self-organizing behaviour. Evidence is presented that all one-dimensional cellular automata fall into four distinct universality classes. Characterizations of the structures generated in these classes are discussed. Three classes exhibit behaviour analogous to limit points, limit cycles and chaotic attractors. The fourth class is probably capable of universal computation, so that properties of its infinite time behaviour are undecidable." (Stephen Wolfram, "Nonlinear Phenomena, Universality and complexity in cellular automata", Physica 10D, 1984)

"Cellular automata may be considered as discrete dynamical systems. In almost all cases, cellular automaton evolution is irreversible. Trajectories in the configuration space for cellular automata therefore merge with time, and after many time steps, trajectories starting from almost all initial states become concentrated onto 'attractors'. These attractors typically contain only a very small fraction of possible states. Evolution to attractors from arbitrary initial states allows for 'self-organizing' behaviour, in which structure may evolve at large times from structureless initial states. The nature of the attractors determines the form and extent of such structures." (Stephen Wolfram, "Nonlinear Phenomena, Universality and complexity in cellular automata", Physica 10D, 1984)

"Regarding stability, the state trajectories of a system tend to equilibrium. In the simplest case they converge to one point (or different points from different initial states), more commonly to one (or several, according to initial state) fixed point or limit cycle(s) or even torus(es) of characteristic equilibrial behaviour. All this is, in a rigorous sense, contingent upon describing a potential, as a special summation of the multitude of forces acting upon the state in question, and finding the fixed points, cycles, etc., to be minima of the potential function. It is often more convenient to use the equivalent jargon of 'attractors' so that the state of a system is 'attracted' to an equilibrial behaviour. In any case, once in equilibrial conditions, the system returns to its limit, equilibrial behaviour after small, arbitrary, and random perturbations." (Gordon Pask, "Different Kinds of Cybernetics", 1992)

"Systems, acting dynamically, produce (and incidentally, reproduce) their own boundaries, as structures which are complementary (necessarily so) to their motion and dynamics. They are liable, for all that, to instabilities chaos, as commonly interpreted of chaotic form, where nowadays, is remote from the random. Chaos is a peculiar situation in which the trajectories of a system, taken in the traditional sense, fail to converge as they approach their limit cycles or 'attractors' or 'equilibria'. Instead, they diverge, due to an increase, of indefinite magnitude, in amplification or gain." (Gordon Pask, "Different Kinds of Cybernetics", 1992)

"A strange attractor, when it exists, is truly the heart of a chaotic system. If a concrete system has been in existence for some time, states other than those extremely close to the attractor might as well not exist; they will never occur. For one special complicated chaotic system - the global weather - the attractor is simply the climate, that is, the set of weather patterns that have at least some chance of occasionally occurring." (Edward N Lorenz, "The Essence of Chaos", 1993)

"An attractor that consists of an infinite number of curves, surfaces, or higher-dimensional manifolds - generalizations of surfaces to multidimensional space - often occurring in parallel sets, with a gap between any two members of the set, is called a strange attractor." (Edward N Lorenz, "The Essence of Chaos", 1993)

"When a system has more than one attractor, the points in phase space that are attracted to a particular attractor form the basin of attraction for that attractor. Each basin contains its attractor, but consists mostly of points that represent transient states. Two contiguous basins of attraction will be separated by a basin boundary." (Edward N Lorenz, "The Essence of Chaos", 1993)

"As with subtle bifurcations, catastrophes also involve a control parameter. When the value of that parameter is below a bifurcation point, the system is dominated by one attractor. When the value of that parameter is above the bifurcation point, another attractor dominates. Thus the fundamental characteristic of a catastrophe is the sudden disappearance of one attractor and its basin, combined with the dominant emergence of another attractor. Any type of attractor static, periodic, or chaotic can be involved in this. Elementary catastrophe theory involves static attractors, such as points. Because multidimensional surfaces can also attract (together with attracting points on these surfaces), we refer to them more generally as attracting hypersurfaces, limit sets, or simply attractors." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"Fundamental to catastrophe theory is the idea of a bifurcation. A bifurcation is an event that occurs in the evolution of a dynamic system in which the characteristic behavior of the system is transformed. This occurs when an attractor in the system changes in response to change in the value of a parameter. A catastrophe is one type of bifurcation. The broader framework within which catastrophes are located is called dynamical bifurcation theory." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)

"Self-organization is seen as the process by which systems of many components tend to reach a particular state, a set of cycling states, or a small volume of their state space (attractor basins), with no external interference." (Luis M Rocha, "Syntactic Autonomy", Proceedings of the Joint Conference on the Science and Technology of Intelligent Systems, 1998)

"A sudden change in the evolutive dynamics of a system (a ‘surprise’) can emerge, apparently violating a symmetrical law that was formulated by making a reduction on some (or many) finite sequences of numerical data. This is the crucial point. As we have said on a number of occasions, complexity emerges as a breakdown of symmetry (a system that, by evolving with continuity, suddenly passes from one attractor to another) in laws which, expressed in mathematical form, are symmetrical. Nonetheless, this breakdown happens. It is the surprise, the paradox, a sort of butterfly effect that can highlight small differences between numbers that are very close to one another in the continuum of real numbers; differences that may evade the experimental interpretation of data, but that may increasingly amplify in the system’s dynamics." (Cristoforo S Bertuglia & Franco Vaio, "Nonlinearity, Chaos, and Complexity: The Dynamics of Natural and Social Systems", 2003)

"Physically, the stability of the dynamics is characterized by the sensitivity to initial conditions. This sensitivity can be determined for statistically stationary states, e.g. for the motion on an attractor. If this motion demonstrates sensitive dependence on initial conditions, then it is chaotic. In the popular literature this is often called the 'Butterfly Effect', after the famous 'gedankenexperiment' of Edward Lorenz: if a perturbation of the atmosphere due to a butterfly in Brazil induces a thunderstorm in Texas, then the dynamics of the atmosphere should be considered as an unpredictable and chaotic one. By contrast, stable dependence on initial conditions means that the dynamics is regular." (Ulrike Feudel et al, "Strange Nonchaotic Attractors", 2006)

"Although the potential for chaos resides in every system, chaos, when it emerges, frequently stays within the bounds of its attractor(s): No point or pattern of points is ever repeated, but some form of patterning emerges, rather than randomness. Life scientists in different areas have noticed that life seems able to balance order and chaos at a place of balance known as the edge of chaos. Observations from both nature and artificial life suggest that the edge of chaos favors evolutionary adaptation." (Terry Cooke-Davies et al, "Exploring the Complexity of Projects", 2009)

"Strange attractors, unlike regular ones, are geometrically very complicated, as revealed by the evolution of a small phase-space volume. For instance, if the attractor is a limit cycle, a small two-dimensional volume does not change too much its shape: in a direction it maintains its size, while in the other it shrinks till becoming a 'very thin strand' with an almost constant length. In chaotic systems, instead, the dynamics continuously stretches and folds an initial small volume transforming it into a thinner and thinner 'ribbon' with an exponentially increasing length." (Massimo Cencini et al, "Chaos: From Simple Models to Complex Systems", 2010)

More on "Attractors" at the-web-of-knowledge.blogspot.com

Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 24 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.