Showing posts with label guideline. Show all posts
Showing posts with label guideline. Show all posts

27 July 2025

📊Graphical Representation: Sense-making in Data Visualizations (Part 2: Guidelines)

Graphical Representation Series
Graphical Representation Series
 

Consider the following best practices in data visualizations (work in progress):

  • avoid poor labeling and annotation practices
    • label data points
      • considering labeling at least the important number of points
        • e.g. starts, ends, local/global minima/minima
        • when labels clutter the chart or there's minimal variation
    • avoid abbreviations
      • unless they are defined clearly upfront, consistent and/or universally understood
      • can hinder understanding
        • abbreviations should help compress content without losing meaning
    • use font types, font sizes, and text orientation that are easy to read
    • avoid stylish design that makes content hard to read
    • avoid redundant information
    • text should never overshadow or distort the actual message or data
      • use neutral, precise wording
  • avoid the use of pre-attentive attributes 
    • aka visual features that our brains process almost instantly
    • color
      • has identity value: used to distinguish one thing from another
        • carries its own connotations
        • gives a visual scale of measure
        • the use of color doesn’t always help
      • hue 
        • refers to the dominant color family of a specific color, being processed by the brain based on the different wavelengths of light
          • allows to differentiate categories
        • use distinct hues to represent different categories
      • intensity (aka brightness)
        • refers to how strong or weak a color appears
      • saturation (aka chroma, intensity) 
        • refers to the purity or vividness of a color
          • as saturation decreases, the color becomes more muted or washed out
          • highly saturated colors have little or no gray in it
          • highly desaturated colors are almost gray, with none of the original colors
        • use high saturation for important elements like outliers, trends, or alerts
        • use low saturation for background elements
      • avoid pure colors that are bright and saturated
        • drive attention to the respective elements 
      • avoid colors that are too similar in tone or saturation
      • avoid colors hard to distinguish for color-blind users
        • e.g. red-green color blindness
          • brown-green, orange-red, blue-purple combinations
          • avoid red-green pairings for status indicators 
            • e.g. success/error
        • e.g. blue-yellow color blindness
          • blue-green, yellow-ping, purple-blue
        • e.g. total color blindness (aka monochromacy)
          • all colors appear as shades of gray
            • ⇒ users must rely entirely on contrast, shape, and texture
      • use icons, labels, or patterns alongside color
      • use tools to test for color issues
      • use colorblind-safe palettes 
      • for sequential or diverging data, use one hue and vary saturation or brightness to show magnitude
      • start with all-gray data elements
        • use color only when it corresponds to differences in data
          • ⇐ helps draw attention to whatever isn’t gray
      • dull and neutral colors give a sense of uniformity
      • can modify/contradict readers' intuitive response
      • choose colors to draw attention, to label, to show relationships 
    • form
      • shape
        • allows to distinguish types of data points and encode information
          • well-shaped data has functional and aesthetic character
        • complex shapes can become more difficult to be perceived
      • size
        • attribute used to encode the magnitude or extent of elements 
        • should be aligned to its probable use, importance, and amount of detail involved
          • larger elements draw more attention
        • its encoding should be meaningful
          • e.g. magnitudes of deviations from the baseline
        • overemphasis can lead to distortions
        • choose a size range that is appropriate for the data
        • avoid using size to represent nominal or categorical data where there's no inherent order to the sizes
      • orientation
        • angled or rotated items stand out.
      • length/width
        • useful in bar charts to show quantity
        • avoid stacked bar graphs
      • curvature
        • curved lines can contrast with straight ones.
      • collinearity
        • alignment can suggest grouping or flow
    • highlighting
    • spatial positioning
      • 2D position
        • placement on axes or grids conveys value 
      • 3D position in 2D space

      • grouping
        • proximity implies relationships.
        • keep columns, respectively bars close together
      • enclosure
        • borders or shaded areas signal clusters.
      • depth (stereoscopic or shading)
        • adds dimensionality
  • avoid graphical features that are purely decorative
    • aka elements that don't affect understanding, structure or usability
    • stylistic embellishments
      • borders/frames
        • ornamental lines or patterns around content
      • background images
        • images used for ambiance, not content
      • drop shadows and gradients
        • enhance depth or style but don’t add meaning.
      • icons without function
        • decorative icons that don’t represent actions or concepts
    • non-informative imagery
      • stock photos
        • generic visuals that aren’t referenced in the text.
      • illustrations
        • added for visual interest, not explanation.
      • mascots or logos
        • when repeated or not tied to specific content.
    • layout elements
      • spacers
        • transparent or blank images used to control layout
        • leave the right amount of 'white' space between chart elements
      • custom bullets or list markers
        • designed for flair, not clarity
      • visual separators
        • lines or shapes that divide sections without conveying hierarchy or meaning
  • avoid bias
    • sampling bias
      • showing data that doesn’t represent the full population
        • avoid cherry-picking data
          • aka selecting only the data that support a particular viewpoint while ignoring others that might contradict it
          • enable users to look at both sets of data and contrast them
          • enable users to navigate the data
        • avoid survivor bias
          • aka focusing only on the data that 'survived' a process and ignoring the data that didn’t
      • use representative data
        • aka the dataset includes all relevant groups
      • check for collection bias
        • avoid data that only comes from one source 
        • avoid data that excludes key demographics
    • cognitive bias
      • mental shortcut that sometimes affect interpretation
        • incl. confirmation bias, framing bias, pattern bias
      • balance visual hierarchies
        • don’t make one group look more important by overemphasizing it
      • show uncertainty
        • by including confidence intervals or error bars to reflect variability
      • separate comparisons
        • when comparing groups, use adjacent charts rather than combining them into one that implies a hierarchy
          • e.g. ethnicities, region
    • visual bias
      • design choices that unintentionally (or intentionally) distort meaning
        • respectively how viewers interpret the data
      • avoid manipulating axes 
        • by truncating y-axis
          • exaggerates differences
        • by changing scale types
          • linear vs. logarithmic
            • a log scale compresses large values and expands small ones, which can flatten exponential growth or make small changes seem more significant
          • uneven intervals
            • using inconsistent spacing between tick marks can distort trends
        • by zooming in/out
          • adjusting the axis to focus on a specific range can highlight or hide variability and eventually obscure the bigger picture
        • by using dual axes
          • if the scales differ too much, it can falsely imply correlation or exaggerate relationships 
        • by distorting the aspect ration
          • stretching or compressing the chart area can visually amplify or flatten trends
            • e.g. a steep slope might look flat if the x-axis is stretched
        • avoid inconsistent scales
        • label axes clearly
        • explain scale choices
      • avoid overemphasis 
        • avoid unnecessary repetition 
          • e.g. of the same graph, of content
        • avoid focusing on outliers, (short-term) trends
        • avoid truncating axes, exaggerating scales
        • avoid manipulating the visual hierarchy 
      • avoid color bias
        • bright colors draw attention unfairly
      • avoid overplotting 
        • too much data obscures patterns
      • avoid clutter
        • creates cognitive friction
          • users struggle to focus on what matters because their attention is pulled in too many directions
          • is about design excess
        • avoid unnecessary or distracting elements 
          • they don’t contribute to understanding the data
      • avoid overloading 
        • attempting to show too much data at once
          • is about data excess
        • overwhelms readers' processing capacity, making it hard to extract insights or spot patterns
    • algorithmic bias 
      • the use of ML or other data processing techniques can reinforce certain aspects (e.g. social inequalities, stereotypes)
      • visualize uncertainty
        • include error bars, confidence intervals, and notes on limitations
      • audit data and algorithms
        • look for bias in inputs, model assumptions and outputs
    • intergroup bias
      • charts tend to reflect or reinforce societal biases
        • e.g. racial or gender disparities
      • use thoughtful ordering, inclusive labeling
      • avoid deficit-based comparisons
  • avoid overcomplicating the visualizations 
    • e.g. by including too much data, details, other elements
  • avoid comparisons across varying dimensions 
    • e.g. (two) circles of different radius, bar charts of different height, column charts of different length, 
    • don't make users compare angles, areas, volumes

27 July 2019

🧱IT: Standardization (Definitions)

"The imposition of standards which, in turn, are fixed ways of doing things that are widely recognized." (Roy Rada &  Heather Holden, "Online Education, Standardization, and Roles", 2009)

"Formulation, publication, and implementation of guidelines, rules, methods, procedures and specifications for common and repeated use, aimed at achieving optimum degree of order or uniformity in given context, discipline, or field; standards are most frequently developed on international level; there exist national standardization bodies cooperating with international bodies; standards can be either legally binding or de facto standards followed by informal convention or voluntary standards (recommendations)." (Lenka Lhotska et al,"Interoperability of Medical Devices and Information Systems", 2013)

"A framework of agreements to which all relevant parties in an industry or organization must adhere to ensure that all processes associated with the creation of a good or performance of a service are performed within set guideline." (Victor A Afonso & Maria de Lurdes Calisto, "Innovation in Experiential Services: Trends and Challenges", 2015)

"The development of uniform specifications for materials, products, processes, practices, measurement, or performance, usually via consultation with stakeholders and sanction by a recognized body, providing for improvements in productivity, interoperability, cooperation, and accountability." (Gregory A Smith, "Assessment in Academic Libraries", 2015)

"A process of developing and implementing technical standards based on consensus among various stakeholders in the field. Standardization can greatly assist with compatibility and interoperability of otherwise disparate software components, where consistent solutions enable mutual gains for all stakeholders." (Krzysztof Krawiec et al, "Metaheuristic Design Patterns: New Perspectives for Larger-Scale Search Architectures", 2018)

"The process through which a standard is developed." (Kai Jakobs, "ICT Standardization", 2018)

"Is a framework of agreements to which professionals in an organization must accept to ensure that all processes associated with the creation of a product or service are performed within set guidelines, achieving uniformity to certain practices or operations within the selected environment. It can be seen as a professional strategy to strengthen professional trust and provide a sense of certainty for professionals or it can be interpreted as a way to lose professionalization and as an adjustment to organizational demands." (Joana V Guerra, "Digital Professionalism: Challenges and Opportunities to Healthcare Professions", 2019)

"The process of making things of the same kind, including products and services, have the same basic features and the same requirements." (Julia Krause, "Through Harmonization of National Technical Regulations to More Sustainability in Engineering Business", 2019)

24 July 2019

🧱IT: Information Technology Information Library [ITIL] (Definitions)

"A series of documents used to aid the implementation of a framework for IT service management (ITSM). This framework defines how service management is applied in specific organizations. Being a framework, it is completely customizable for an application within any type of business or organization that has a reliance on IT infrastructure." (Tilak Mitra et al, "SOA Governance", 2008)

"A framework and set of standards for IT governance based on best practices." (Judith Hurwitz et al, "Service Oriented Architecture For Dummies" 2nd Ed., 2009)

"A framework of supplier independent best practice management procedures for delivery of high quality IT services." (DAMA International, "The DAMA Dictionary of Data Management", 2011)

"a set of guidelines for developing and managing IT operations and services." (Bill Holtsnider & Brian D Jaffe, "IT Manager's Handbook" 3rd Ed., 2012)

"A framework and set of standards for IT governance based on best practices." (Marcia Kaufman et al, "Big Data For Dummies", 2013)

"A group of books written and released by the United Kingdom’s Office of Government and Commerce (OGC). ITIL documents best practices organizations can implement to provide consistent IT services. The library includes five books." (Darril Gibson, "Effective Help Desk Specialist Skills", 2014)

"A set of process-oriented best practices and guidance originally developed in the United Kingdom to standardize delivery of informational technology service management." (Robert F Smallwood, "Information Governance: Concepts, Strategies, and Best Practices", 2014)

"Best practices for information technology services management processes developed by the United Kingdom’s Office of Government Commerce." (Adam Gordon, "Official (ISC)2 Guide to the CISSP CBK" 4th Ed., 2015)

"The IT Infrastructure Library; a set of best practice publications for IT service management." (by Brian Johnson & Leon-Paul de Rouw, "Collaborative Business Design", 2017)

"The Information Technology Infrastructure Library (ITIL) presents pre-defined processes for IT service management. The fourth edition of ITIL depicts two key elements ITIL Service-Value-System (SVS) and a four dimensions model." (Anna Wiedemann et al, "Transforming Disciplined IT Functions: Guidelines for DevOps Integration", 2021)

"set of best practices guidance" (ITIL)

18 July 2019

🧱IT: Asset (Definitions)

[process asset:] "Anything that the organization considers useful in attaining the goals of a process area." (Sandy Shrum et al, "CMMI: Guidelines for Process Integration and Product Improvement", 2003)

[organizational process assets:] "Artifacts that relate to describing, implementing, and improving processes (e.g., policies, measurements, process descriptions, and process implementation support tools). The term process assets is used to indicate that these artifacts are developed or acquired to meet the business objectives of the organization, and they represent investments by the organization that are expected to provide current and future business value." (Sandy Shrum et al, "CMMI: Guidelines for Process Integration and Product Improvement", 2003)

[process asset:] "Artifacts that relate to describing, implementing, and improving processes (e.g., policies, process descriptions, guidance, examples, aids, checklists, project closeout reports, metrics data, and training materials). The artifacts meet the organization’s business objectives, and represent investments expected to provide current and future business value." (Richard D Stutzke, "Estimating Software-Intensive Systems: Projects, Products, and Processes", 2005)

[organizational process assets:] "Any or all process-related assets, from any or all of the organizations involved in the project that are or can be used to influence the project's success. These process assets include formal and informal plans, policies, procedures, and guidelines. The process assets also include the organizations’ knowledge bases such as lessons learned and historical information." (Project Management Institute, "Practice Standard for Project Estimating", 2010)

[organizational process assets:] "Any or all process related assets, from any or all of the organizations involved in the project that are or can be used to influence the project's success. These process assets include formal and informal plans, policies, procedures, and guidelines. The process assets also include the organizations' knowledge bases such as lessons learned and historical information." (Cynthia Stackpole, "PMP Certification All-in-One For Dummies", 2011)

[IT assets:] "Tangible deliverables created during the course of an IT project that can be used in other similar projects. Examples include design, software code, or a testing scenario." (Janice M Roehl-Anderson, "IT Best Practices for Financial Managers", 2010)

[organizational process assets:] "Plans, processes, policies, procedures, and knowledge bases specific to and used by the performing organization. " (Project Management Institute, "The Standard for Portfolio Management" 3rd Ed., 2012)

[organizational process assets:] "Plans, processes, policies, procedures, and knowledge bases that are specific to and used by the performing organization." (For Dummies, "PMP Certification All-in-One For Dummie", 2nd Ed., 2013)

[Software assets:] "software tools needed to manipulate the organization's information to accomplish the organization's mission." ( Manish Agrawal, "Information Security and IT Risk Management", 2014)

"Data contained in an information system; or a service provided by a system; or a system capability, such as processing power or communication bandwidth; or an item of system equipment (that is, a system component - hardware, firmware, software, or documentation); or a facility that houses system operations and equipment." (William Stallings, "Effective Cybersecurity: A Guide to Using Best Practices and Standards", 2018)

"Any item that has value to the organisation." (ISO/IEC 27000:2012)

20 January 2019

🤝Governance: Guideline (Definitions)

"An indication or outline of policy or conduct. Adherence to guidelines is recommended but is not mandatory." (Tilak Mitra et al, "SOA Governance", 2008)

"A kind of business rule that is suggested, but not enforced." (David C Hay, "Data Model Patterns: A Metadata Map", 2010)

"An official recommendation or advice that indicates policies, standards, or procedures for how something should be accomplished." (For Dummies, "PMP Certification All-in-One For Dummies, 2nd Ed.", 2013)

"A document that support standards and policies, but is not mandatory." (Weiss, "Auditing IT Infrastructures for Compliance" 2nd Ed., 2015)

"Non-enforced suggestions for increasing functioning and performance." (Mike Harwood, "Internet Security: How to Defend Against Attackers on the Web" 2nd Ed., 2015)

"Recommended actions and operational guides for users, IT staff, operations staff, and others when a specific standard does not apply." (Shon Harris & Fernando Maymi, "CISSP All-in-One Exam Guide" 8th Ed, 2018)

"A description of a particular way of accomplishing something that is less prescriptive than a procedure." (ISTQB)

"A description that clarifies what should be done and how, to achieve the objectives set out in policies"
(ISO/IEC 13335-1:2004)
Related Posts Plugin for WordPress, Blogger...

About Me

My photo
Koeln, NRW, Germany
IT Professional with more than 25 years experience in IT in the area of full life-cycle of Web/Desktop/Database Applications Development, Software Engineering, Consultancy, Data Management, Data Quality, Data Migrations, Reporting, ERP implementations & support, Team/Project/IT Management, etc.